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Abstract: The heat-shock protein, Hsp60, is one of the most abundant proteins in Helicobacter pylori.
Given its sequence homology to the Escherichia coli Hsp60 or GroEL, Hsp60 from H. pylori would
be expected to function as a molecular chaperone in this organism. H. pylori is a type of bacteria
that grows on the gastric epithelium, where the pH can fluctuate between neutral and 4.5, and the
intracellular pH can be as low as 5.0. We previously showed that Hsp60 functions as a chaperone
under acidic conditions. However, no reports have been made on the ability of Hsp60 to function as
a molecular chaperone under other stressful conditions, such as heat stress or elevated temperatures.
We report here that Hsp60 could suppress the heat-induced aggregation of the enzymes rhodanese,
malate dehydrogenase, citrate synthase, and lactate dehydrogenase. Moreover, Hsp60 was found
to have a potassium and magnesium-dependent ATPase activity that was stimulated at elevated
temperatures. Although, Hsp60 was found to bind GTP, the hydrolysis of this nucleotide could not
be observed. Our results show that Hsp60 from H. pylori can function as a molecular chaperone
under conditions of heat stress.
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1. Introduction

Helicobacter pylori is a Gram-negative, microaerophilic bacterium present in the stom-
ach of approximately half of the human population [1]. Chronic infection by this mi-
croorganism can, in certain individuals, give rise to gastric and duodenal ulcers, gastric
adenocarcinoma, and mucosa-associated lymphoid tissue lymphoma [2,3]. H. pylori sur-
vives transient exposure to extreme acid prior to adherence and growth on the gastric
epithelium, where the pH can fluctuate between neutral and 4.5, and the intracellular pH
can be as low as 5.0 [4,5]. Under neutral and moderately acidic conditions, the heat-shock
protein Hsp60 is one of the most abundant proteins in H. pylori. [4,6]. Given its sequence
homology to the Escherichia coli Hsp60 or GroEL [7], Hsp60 from H. pylori would be ex-
pected to function as a molecular chaperone in this organism. The molecular chaperones
are a class of proteins that have been shown to facilitate the folding of nascent polypeptides,
activation of other proteins, and protection of native proteins against the effects of heat,
and oxidative and acid stress [8–13]. The co-expression of H. pylori urease, Hsp60, and
Hsp10 in E. coli was shown to substantially increase the activity of urease [14], which
suggested that urease activity was protected by the heat-shock proteins. Furthermore,
we previously demonstrated that Hsp60 from H. pylori had a chaperone activity under
acidic conditions [15]. No reports, however, have been made on the potential chaperone
activity of Hsp60 from H. pylori under heat-shock conditions. It is well known that protein
denaturation can be induced at elevated temperatures and molecular chaperones, such
as Hsp60 may be needed to stabilize them against heat-induced aggregation. This study
was performed to determine if Hsp60 could function as a molecular chaperone at elevated
temperatures. The enzymes rhodanese, malate dehydrogenase (MDH), citrate synthase
(CS), and lactate dehydrogenase (LDH) were used as substrate proteins for Hsp60 given
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their propensity to aggregate at elevated temperatures and because they were previously
used as protein models to investigate the function of other heat-shock proteins [16–19].
Here, we report that Hsp60 prevented the heat-induced aggregation of these enzymes at
elevated temperatures. The aggregation of Hsp60 alone was not observed under these
conditions. It is also reported here that Hsp60 was able to hydrolyze ATP in a potassium
and magnesium-dependent manner. Furthermore, Hsp60’s ATPase activity was found to
be highly stimulated at elevated temperatures. Thus, our results show that Hsp60 from H.
pylori can function as a molecular chaperone with an increased ability to hydrolyze ATP
under conditions of heat stress.

2. Materials and Methods

All the reagents used here were of analytical grade. IPTG was purchased from Gold
Biotechnology and benzonase nuclease from Novagen. The protease inhibitor cocktail,
rhodanese, MDH, CS, and LDH were purchased from Sigma Co. The H. pylori Hsp60
gene was synthesized by GenScript (Piscataway, NJ, USA) and inserted into the expression
vector pET-22b (+). The resulting plasmid pET-Hsp60 was transformed into competent E.
coli BL21 (DE3) cells using ampicillin resistance for selection. The expressed protein was
purified using His GraviTrap chromatography (GE Healthcare, Chicago, IL, USA) followed
by dialysis. Purification of Hsp60 was confirmed by SDS-PAGE [20] and its concentration
determined by using a Bradford assay (BioRad, California, CA, USA).

Protein aggregation assay: the aggregation of rhodanese, MDH, CS, and LDH was
monitored by using light scattering. Protein (1 µM) samples were incubated in 50 mM
Tris-HCl (pH 7.5). Measurement of the light scattering of each enzyme, alone or in the
presence of Hsp60 (0.5–2 µM), was made with a Fluoromax-3 spectrophotometer using an
excitation wavelength of 350 nm. The light scattered intensity at 90◦ was recorded at the
same wavelength. The appropriate blanks were subtracted.

ATPase activity assay: Hsp60 (1 µM) was incubated in a reaction mixture containing
50 mM Tris-HCl (pH 7.5), 1 mM KCl, 1 mM MgCl2, and 250 µM ATP at 25 ◦C. Every 5 min,
aliquots were removed and the released phosphate was detected using a Malachite Green
Assay Kit (Cayman, UK) by measuring the absorbance at 620 nm.

All the experiments were independently performed twice (n = 2), and the results are
the average of both. Error bars were used to show the range or variability of the data.

3. Results and Discussion
3.1. Hsp60 Reduces Protein Thermal Aggregation

Given the sequence homology of H. pylori Hsp60 to the E. coli Hsp60 protein or
GroEL [7,21], Hsp60 from H. pylori would be expected to function as a molecular chap-
erone. Here, we tested the ability of Hsp60 from H. pylori to prevent the heat-induced
aggregation of several heat-sensitive enzymes. Thus, to test the ability of Hsp60 to prevent
the aggregation of these enzymes, each enzyme was incubated at 48 ◦C in the absence
or presence of Hsp60, and the samples light scattering was measured after 60 min. As
shown in Figure 1, Hsp60 was able to reduce aggregation of the tested enzyme, resulting
in decreased scattered light intensities in the case of rhodanese (96.2%), MDH (91.9%), CS
(94.2%), and LDH (99.9%). The potential aggregation of Hsp60 alone was monitored by
incubating the protein at the same temperature and measuring the sample light scattering
with time. No significant changes in light scattering were detected (not shown) that would
indicate either Hsp60 aggregation or disassembly by an increase or decrease in the light
scattering, respectively.
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 Figure 1. Hsp60 reduced the aggregation of proteins as measured by the reduction in light scattered
intensity. Hsp60 (2 µM) was incubated in 50 mM Tris-HCl pH 7.5 at 48 ◦C for 10 min and then 1 µM
of rhodanese or malate dehydrogenase (MDH) or citrate synthase (CS) or lactate dehydrogenase
(LDH) was added and the light scattering was recorded after 60 min. n = 2 biologically independent
experiments, and the result is the average of both.

Figure 2 shows the time course of the light scattering of MDH (panel A) and CS (panel
B) when these enzymes were incubated at 48 ◦C in the absence or presence of Hsp60. Light
scattering was detected to increase within a few minutes after the addition of MDH or CS
to the buffer without Hsp60.
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Figure 1. Hsp60 reduced the aggregation of proteins as measured by the reduction in light scat-
tered intensity. Hsp60 (2 μM) was incubated in 50 mM Tris-HCl pH 7.5 at 48 °C for 10 min and 
then 1 μM of rhodanese or malate dehydrogenase (MDH) or citrate synthase (CS) or lactate dehy-
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independent experiments, and the result is the average of both. 
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Figure 2. Time course of the light scattering of MDH (A) and CS (B) without (closed circles) or with Hsp60 (open circles). 
For samples containing Hsp60, this was incubated at 2 μM in 50 mM Tris-HCl pH 7.5 at 48 °C for 10 min and then MDH 
(1 μM) or CS (1 μM) was added at t = 0. n = 2 biologically independent experiments, and the result is the average of the 
two. 

As shown in Figure 2 no increase in the intensity of scattered light was observed 
when MDH or CS were incubated with Hsp60. Thus, these results demonstrate that Hsp60 
from H. pylori can function as a molecular chaperone at elevated temperature by prevent-
ing the heat-induced aggregation of these model proteins. Our findings are consistent 
with an expected chaperone role for Hsp60 given its high degree of homology to GroEL 
[7,21]. Given that Hsp60 from H. pylori has been reported to exist as a mixture of dimers 
and tetramers [22], and the tested enzymes were monomeric (rhodanese), dimeric (MDH 
and CS), and tetrameric (LDH), in these aggregation assays, Hsp60 and enzymes were 
mixed in a 1:1 tetrameric to monomeric molar ratio. 

Figure 3 shows that sub-stoichiometric amounts of Hsp60 did not suppress com-
pletely the observed light scattered by rhodanese. The suppression of 42% light scattered 
by rhodanese was observed with a 1:0.5 tetrameric Hsp60 to rhodanese stoichiometric ra-
tio. As shown in the figure, complete suppression of light scattered by rhodanese in the 
presence of Hsp60 occurred only with a 1:1 tetrameric Hsp60 to monomeric rhodanese 
stoichiometric ratio. Our light scattering measurements for Hsp60 could not detect any 
structural changes at the tested temperatures suggesting that Hsp60 retained its quater-
nary structure during these experiments. Functional lower oligomers have been reported 

Figure 2. Time course of the light scattering of MDH (A) and CS (B) without (closed circles) or with Hsp60 (open circles).
For samples containing Hsp60, this was incubated at 2 µM in 50 mM Tris-HCl pH 7.5 at 48 ◦C for 10 min and then MDH
(1 µM) or CS (1 µM) was added at t = 0. n = 2 biologically independent experiments, and the result is the average of the two.

As shown in Figure 2 no increase in the intensity of scattered light was observed when
MDH or CS were incubated with Hsp60. Thus, these results demonstrate that Hsp60 from
H. pylori can function as a molecular chaperone at elevated temperature by preventing
the heat-induced aggregation of these model proteins. Our findings are consistent with
an expected chaperone role for Hsp60 given its high degree of homology to GroEL [7,21].
Given that Hsp60 from H. pylori has been reported to exist as a mixture of dimers and
tetramers [22], and the tested enzymes were monomeric (rhodanese), dimeric (MDH and
CS), and tetrameric (LDH), in these aggregation assays, Hsp60 and enzymes were mixed in
a 1:1 tetrameric to monomeric molar ratio.

Figure 3 shows that sub-stoichiometric amounts of Hsp60 did not suppress completely
the observed light scattered by rhodanese. The suppression of 42% light scattered by
rhodanese was observed with a 1:0.5 tetrameric Hsp60 to rhodanese stoichiometric ratio.
As shown in the figure, complete suppression of light scattered by rhodanese in the
presence of Hsp60 occurred only with a 1:1 tetrameric Hsp60 to monomeric rhodanese
stoichiometric ratio. Our light scattering measurements for Hsp60 could not detect any
structural changes at the tested temperatures suggesting that Hsp60 retained its quaternary
structure during these experiments. Functional lower oligomers have been reported for
the Hsp60 protein from M. tuberculosis [23]. The unusual quaternary structure of H. pylori
Hsp60 raises the question if, under in vivo or certain in vitro conditions, Hsp60 could
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undergo oligomerization like the Hsp60 from M. tuberculosis into a double ring structure
like that of GroEL [24]. Whereas, in the experiments reported here, Hsp60 by itself was
an effective chaperone, it has been shown that the folding process of newly synthesized
proteins in E. coli involves several molecular chaperones [8]. Thus, it remains to be seen
whether Hsp60 from H. pylori can support the folding of other proteins and interact with
other chaperones. Moreover, the nature of the Hsp60-protein complexes detected here and
the mechanism of release of the bound proteins remains to be elucidated.
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the light scattering was recorded after 60 min. n = 2 biologically independent experiments, and the
result is the average of the two.

3.2. ATPase Activity of Hsp60

Given the ability of H. pylori Hsp60 to function as a molecular chaperone, it would
be expected to have an ATPase activity like its homologue the E. coli Hsp60 protein or
GroEL [25]. It has been reported that both potassium and magnesium are required for the
ATPase activity of the E. coli Hsp60 or GroEL protein [26]. Potassium appeared to increase
the affinity of GroEL for ATP, while magnesium is required since the magnesium-bound
form of the nucleotide binds GroEL. Thus, the ability of Hsp60 to hydrolyze ATP was
tested in the absence or presence of potassium and/or magnesium. The results in Figure 4
show that potassium and magnesium are required by Hsp60 to hydrolyze ATP. We also
examined the potential GTPase activity of Hsp60. However, as shown in Figure 4, the
hydrolysis of GTP by Hsp60 from H. pylori was not observed in the presence of potassium
and/or magnesium.
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Figure 4. ATP or GTP hydrolysis by Hsp60. Hsp60 (1 µM) was incubated with 50 mM Tris-HCL,
pH 7.5 at 25 ◦C in the presence of 1 mM KCl or 1 mM MgCl2 or both and 250 µM ATP, and in the
presence of 1 mM potassium or 1 mM magnesium or both and 250 µM GTP. Then, hydrolysis of ATP
or GTP was determined, as described in Materials and Methods. n = 2 biologically independent
experiments, and the result is the average of the two.

3.3. Binding of GTP to Hsp60

To determine if GTP was not hydrolyzed by Hsp60 because of the protein’s inability to
bind the nucleotide, we used the fluorescent nucleotide analog TNP-GTP [27]. An increase
in the fluorescence of TNP-GTP, in the presence of a protein, is considered a reliable test
for the assessment of the nucleotide-binding capacity of the protein [28]. Figure 5 shows
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that Hsp60 had a significant effect on the fluorescence spectrum of TNP-GTP, suggesting
that Hsp60 has a GTP-binding site. The significance of the binding of GTP to Hsp60 in the
function and structure of the chaperone remains to be determined.
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Figure 6. Temperature dependence of the ATPase activity of Hsp60 in the presence of potassium 
and magnesium in the 22–67 °C range. Hsp60 (1 μM) was incubated at the indicated temperature 

Figure 5. Binding of GTP to Hsp60 analyzed by fluorescence spectroscopy. The fluorescence of
TNP-GTP at 50 µM in 600 µL of 50 mM tris buffer, pH 7.8, with and without Hsp60 was measured
using an excitation wavelength of 409 nm and its emission recorded from 500 to 600 nm. n = 2
biologically independent experiments, and the result is the average of the two.

3.4. Temperature Dependence of the ATPase Activity of Hsp60

Given that the ATPase of GroEL was previously shown to be stimulated at elevated
temperatures [29,30], we investigated the ability of Hsp60 from H. pylori to hydrolyze ATP
at elevated temperatures. Figure 6 shows the ATPase activities of Hsp60 in the 22–67 ◦C
range in the presence of potassium and magnesium. As shown in the figure, maximum
ATPase activity was observed at 62 ◦C. Thus, it would be expected that the ATPase of
Hsp60 from H. pylori observed here in that temperature range, would be needed to trigger
the release of bound proteins from Hsp60, like in GroEL-mediated protein folding [8].
However, this question awaits further experimentation.
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Figure 6. Temperature dependence of the ATPase activity of Hsp60 in the presence of potassium 
and magnesium in the 22–67 °C range. Hsp60 (1 μM) was incubated at the indicated temperature 

Figure 6. Temperature dependence of the ATPase activity of Hsp60 in the presence of potassium and
magnesium in the 22–67 ◦C range. Hsp60 (1 µM) was incubated at the indicated temperature with
50 mM Tris-HCl, pH 7.5, 1 mM KCl, 1 mM MgCl2, and 250 µM ATP, and the ATPase activity was
determined as described in Materials and Methods. n = 2 biologically independent experiments, and
the result is the average of the two.

4. Conclusions

Our results demonstrate that Hsp60 from H. pylori can function as a molecular chaper-
one at heat-shock temperatures. Given that that Hsp60 from H. pylori contains a significant
exposure of hydrophobic surfaces [15] and that these are also present in proteins subjected
to elevated temperatures, our results suggest that the interaction between Hsp60 and
other proteins undergoing heat-induced denaturation may be mediated by hydrophobic
interactions. The ability of Hsp60 to protect a protein exposed to elevated temperatures
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is significant in light of the fact that under in vivo conditions of heat shock, like those in
which the synthesis of the Hsp60 proteins is stimulated, partially thermally-denatured
proteins may actually exist.
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