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Abstract: Computer-assisted de novo design of natural product mimetics offers a viable strategy to
reduce synthetic efforts and obtain natural-product-inspired bioactive small molecules, but suffers
from several limitations. Deep learning techniques can help address these shortcomings. We propose
the generation of synthetic molecule structures that optimizes the binding affinity to a target. To
achieve this, we leverage important advancements in deep learning. Our approach generalizes to
systems beyond the source system and achieves the generation of complete structures that optimize
the binding to a target unseen during training. Translating the input sub-systems into the latent
space permits the ability to search for similar structures, and the sampling from the latent space for
generation.
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1. Introduction

An outbreak of the novel coronavirus, SARS-CoV-2, has caused worldwide social and
economic disruption. The scientific community has limited knowledge of the molecular
details of the infection. Currently, there is a lack of common adaption of antiviral drugs,
and are no vaccines for prevention.

The time and effort to create and market a drug or vaccine that can treat a certain
infection can span over decades and millions of investments. Throughout the process
of drug discovery, one of the main challenges is to identify a molecular structure that
can attach itself to a target. The quality of the binding has a direct influence on the side
effects and effectiveness of the treatment. Multiple approaches exist to find or create these
structures. On successful structure identification, the compounds’ structure is further built
around it.

Computer-assisted de novo design permits to reduce efforts and obtain natural-
product-inspired bioactive molecules. Three types of in silico drug-target interaction (DTI)
prediction methods have been proposed in the literature: molecular docking [1], similarity-
based [2], and deep learning-based models [3]. Molecular docking is a simulation-based
on predefined human rules aiming to optimize the conformation of ligand and the tar-
get protein. The currently applied docking methods have shown multiple limitations,
in particular unsatisfactory scoring of biological activities. Investigations have shown
that the performance of docking approaches is dependent on the type of receptors and
performs better on hydrophobic vs. hydrophilic pockets [4]. Additionally, in practice, the
binding pose rarely has enough information to reproduce affinities. For this reason, more
computationally expensive methods, such as molecular mechanics generalized born and
surface area continuum solvation (MM/GBSA), need to be applied to re-score compounds
during virtual screening [5].

Proposed machine learning DTI approaches as, KronRLS [6] and SimBoost [7], concen-
trate on binding affinity prediction. Where the compound and protein are transformed into
their Simplified Molecular Input Line Entry System (SMILES) and sequence representation,
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respectively, and used to predict the probability of high-affinity score. By applying this
transformation, the ligands and proteins are considered in their 1D representations by
the model. This results in the loss of all relative information regarding the interactions
of the two in 3D space. Additionally, the underlying complexity of the protein sequence
is completely ignored, as each letter in the sequence is encoded as a single unique id.
However, each letter represents an amino acid that by itself is a sequence of atoms and
bonds that have a particular 3D formation and possible reactions between them and the
ligand.

Transformer architectures [8] are used to leverage the advances of Natural Language
Processing (NLP) and work with the SMILES representations of compounds. Additional to
the above-mentioned limitations, following this approach, the compounds must be created
manually or searched in the chemical space. The chemical space has been estimated to
be in the order of 1063 organic compounds of size up to 30 atoms [9], which infers that
iterating over the full space in search of a potential hit is computational expansive and
highly inefficient.

Reinforcement Learning techniques [10] have successfully been applied by splitting
compounds into meaningful molecule fragments and adding a molecule fragment at a time
to produce a score generated by human-defined rules. The model, however, is not gaining
insights from the training data, but rather by humanly predefined rules for scoring.

To address these shortcomings, we propose the generation of synthetic small and
sophisticated molecule structures that optimize the binding affinity to a target (ASYNT-
GAN). To achieve this, we leverage three important achievements in machine learning:
attention, deep learning on graphs, and generative adversarial networks. Similar to
question answer in NLP, we generate a molecular architecture based on an existing target
that functions as context. By exploring the latent space, created by the model, we propose
a novel way of searching for candidate compounds suitable for binding.

2. Experimental Section
2.1. Data

Our method is learned from a collection of systems comprised of proteins and ligands,
small molecules, used in drug compounds. The proteins are split into chains. Per chain, we
extract the proteins, ligands, and their respective binding bonds and transform them using
PyMol to their cartoon representation that is then exported as a point cloud, i.e., every
point of the structure is encoded with its x, y, z coordinates.

Point cloud learning has attracted increasing attention, due to its wide applications in
many areas, such as computer vision, autonomous driving, and robotics [11]. An increasing
number of methods are proposed to address various problems related to 3D processing,
including 3D shape classification, 3D object detection, and tracking, 3D point cloud segmen-
tation, 3D point cloud registration, 6-DOF pose estimation, and 3D reconstruction [12–14].
During training, we use as input the proteins and a sample Gaussian distribution or a
limited number of points sampled from the point cloud of the ligand. All data and scripts
needed to reproduce the experiments are provided in the projects GitHub repository [15].

The systems are protein structures from the protein data bank RCSB [16]. The Protein
Data Bank archives information about the 3D shapes of proteins, nucleic acids, and complex
assemblies that helps students and researchers understand all aspects of biomedicine and
agriculture, from protein synthesis to health and disease. As a member of the wwPDB, the
RCSB PDB curates and annotates PDB data. The ligands that we consider as valid are the
ligands that are referenced as Chemical Component with a Drug Bank [17] identifier.

2.2. Methods
2.2.1. Encoder-Decoder

We first learn the transformation of an input molecule into the latent space using
an encoder-decoder architecture with attention. Encoder-decoder architecture has been
extensively used in deep learning thanks to its excellent performance for various problems.
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Consider the encoder and decoder blocks in Figure 1. The encoder block maps a given
input into the latent space, whereas the decoder block takes this latent space map as an
input, processes it, and produces an output as similar as possible the input. By doing so,
the encoder learns to produce latent features that are of high importance to the essence of
the input. The latent space learned by this approach follows a distributed representation,
but observes the vector arithmetic phenomenon. We show that by following this approach,
we can sample from the latent space for generation purposes and find similar structures
by their proximity in the latent space. We identify regions of interest and resample points
from those regions. The resampled points are then used together with the initial activations
to generate the final output by a run through a second encoder-decoder architecture that
may share weights with the first one.
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attention gates to encode the point cloud coordinates of the target protein and a PointNet [19] decoder 
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the direct consumption of point clouds that respects the permutation invariance of the inputs. It 
similarly helps us work with the 3D input without the need to translate it into an unnecessary 
voluminous representation of 3D voxel grids. 

Figure 1. The architecture of the proposed solution. The model consists of an Encoder-Decoder architecture that translates
the inputs into the latent space and a Generator that produces the 3D structure of the system. We propose a stacked
Generator architecture that takes the first output and calculates regions of interest. We use the regions of interest to
resample and generate a second output that is concatenated to the first to produce the prediction of the 3D structure of the
molecular system.

The output is the coordinates of the molecules in 3D space. This approach permits the
generation of molecule sequences with specific attributes.

2.2.2. Attention Based Generator

We use U-Net architecture, as shown in Figure 2, U-Net [18] decorated with residual
blocks and attention gates to encode the point cloud coordinates of the target protein and a
PointNet [19] decoder for constructing the ligand structure fitting the binding in 3D space.
PointNet architecture permits the direct consumption of point clouds that respects the
permutation invariance of the inputs. It similarly helps us work with the 3D input without
the need to translate it into an unnecessary voluminous representation of 3D voxel grids.

U-Net architectures are used for segmentation when applied to classification tasks,
e.g., U-Net used for Biomedical Image Segmentation [18]. U-Net’s have been successfully
applied on generative task and have proven to improve the generation process by im-
proving the capacity to synthesize globally and locally coherent shapes and to learn the
translation of input from a source domain into a target domain in the absence of paired
examples. [20,21]
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Figure 2. Attention U-Net: The inputs are down sampled to a common shape using a convolutional layer followed by a
max-pooling. The attention with the previous layer is calculated using the attention gate, and the result is concatenated to
the result of the up sampling.

Attention gates are used during the up sampling where the down sampled inputs
from the ligand and the protein are concatenated and run through an attention gate.
The produced activations are concatenated with previous up sampled activations. The
concatenated result is up sampled by the following layer, as seen in Figure 3.
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The decoder takes in the latent representation produced from the up sapling in the
U-Net and produces the point cloud coordinates for the ligand. The decoder is a Point Net
residual network with up sampling capacity in residual blocks Figure 4.BioChem 2020, 1, 5 
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During training, we sample coordinates from the target protein and train the network
to produce point samples of the ligand that will produce the best binding affinity in 3D
space.

The encoder is trained with a 2048 randomly sampled points from the protein and 64
randomly sampled points from a ligand or a 64 point sampled from the boundary with
Gaussian-decaying probabilities. This is done with the purpose of simulating use cases
where the ligand or part of it is known and provided as input.

The decoder is conditioned to generate the ligands structure based on the target
structure as an input. We train the encoder and decoder with the L2 loss from the Chamfer
distance [22] (CD) that produces the sum of closest point distances, with an additional
latent regularization loss to constrain the latent space of the learned embeddings.

We use a symmetric version of the CD, calculated as the sum of the average minimum
distance from the point set A to point set B and vice versa. The average minimum distance
from one point set to another is calculated as the average of the distances between the
points in the first set and their closest point in the second set, and is, thus, not symmetrical.

The loss is given as:

Ch(X, Y) = ∑
x∈X

miny∈Y‖x− y‖2
2

dCD(X, Y) = Ch(X, Y)− Ch(Y, X)

Lend(θe, θd) =
1

|P‖B| ∑
i∈P

∑
j∈B

Lc
(
dCD

(
Dθd

(
xi,j, Eθe(gi)

)
, ti,j

))
+ λ‖Eθe(gi)‖2

where P is the set of all training molecules in each mini-batch, B is the set of point samples
sampled per target, Lc(., .) is the L2 loss, Eθe is the encoder parameterized by trainable
parameters θe, Dθd is the decoder parameterized by trainable parameters θd, and gi is the
sampled point cloud for the i-th binding ligand structure.

2.2.3. Metrics

For our experiments, we evaluate the generative quality with CD [22]. We estimate CD
using 1024 randomly sampled points on the ground truth and generated systems. We have
tested the Chamfer Distance [22] on a series of viral Proteins of the Severe acute respiratory
syndrome coronavirus 2.

2.3. Similarity Search

We translate the inputs, protein, and ligands, into the latent space. We can use the
properties of the encoder to index systems or part of systems and perform a search for
similar systems.

The embeddings of all the systems are inserted into an index and searched for similar-
ities using Approximate nearest neighbor [23].

An approximate nearest neighbor search algorithm can return points, whose distance
from the query is at most c times the distance from the query to its nearest points.

The appeal of this approach is that, in many cases, an approximate nearest neighbor is
almost as good as the exact one. In particular, if the distance measure accurately captures
the notion of user quality, then small differences in the distance should not matter.

The search in latent space can be done during training or during inference. During
training, if the ligand is partially known, its latent representation can be used to look for
candidates instead of sampling from the Gaussian-decaying probabilities. The latent space
has a structure that can be explored as shown in Figure 5, such as by interpolating between
points and performing vector arithmetic between points. For instance, we can use the best
match from the approximate nearest neighbor search as a starting point for a walk through
the latent space.
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2.4. Progressive Training

We introduce the notion of progressive training. During training, we progressively
reduce the number of sampled points from the ligands. We start by sampling 1042 points
from the point cloud of the ligand, and gradually reduce to zero. When reduced to zero,
we sample from Gaussian-decaying probabilities as an input to the up sampling part of the
attention-based U-Net. We observe an overall stabilization and faster convergence of the
generator.

2.5. Stacked Generators

We introduce the notion of stacked generators. The points generated from the first
generator layer are used as attention regions for the second generator layer. Points from
the target protein are sampled from these regions, as shown in Figure 6, and used as input
for the next Generator Layer.

We trained the generator layers with shared weights and separately. In both cases,
we noticed a significant increase in accuracy in the second generative layer, as well as a
stabilization of the overall loss during the training, as shown in Figures 7 and 8.
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2.6. Interpolation

We experimented with an interpolation approach that takes in the attention grids from
the Attention U-Net and interpolates the input points. The interpolated points are fed into
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Residual Network [24] consistent with PointNet Dense Layers. This approach has shown
promising results in converging fast in coordinates of ligands.

This approach would be a good fit when systems are split into meaningful sub-systems,
and generation is done in particular 3D sub-spaces. As shown in Figure 9, the interpolation
produces less noise and in contrast to Figure 10. However, not enough points are generated.
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3. Results

We quantitatively and qualitatively compare performances in Tables 1 and 2, respec-
tively. Given our solution is trained to learn a latent representation of ligands; the learned
representation does generalize to systems and chains beyond the source system. Visually,
as shown in Table 2, our solution achieves a good generation of complete structure that
optimizes the binding molecules in the system (e.g., ligand and protein), but performs
poorly in terms of generating point clouds without noise, as shown in Figure 11.
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Table 1. Quantitative representation of the metric applied to the results produced.

Protein Chain Chamfer Distance

6VYB B 49.71
6VYB A 90.33
6VW1 A 5.95
6VW1 B 16.87
6WPT A 78.67
6WPT B 29.55
6WPT C 58.04
6WPT E 48.25
6VXX A 69.02
6VXX B 107.20
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Figure 11. Depicts the amount of noise in the generated structure. 

4. Discussion and Conclusions 

The generation of synthetic small and more sophisticated molecule structures that optimize the 
binding affinity to a target (ASYNT-GAN) through encoding a protein and generating a system 
comprised of a ligand and a protein. Experiments show that ASYNT-GAN is able to generate ligand 
structures for proteins unseen during training. Translating the input sub-systems into the latent space 
permits the reachability for similar structures and the sampling from the latent space for a generation. 
Topics for future work include ways of integrating the search capabilities in the training process, 
explore alternatives for sampling and generating points ASYNT-GAN from regions of interest, 
provide for the ability to generate alternative variants of proteins to predict mutations. 

Current approaches require a biochemist to manually seek or create existing potential ligand 
that can bind to a target. The selected target is then manually placed in potential binding pockets and 
aligned with the target to evaluate the reactions. The selection of the potential pockets is made based 
on the scientists’ knowledge and potential literature discussing the particular protein. The binding 
affinity is evaluated using simulation techniques, e.g., docking. This process is repeated until the best 
fit is found. 

In contrast to the above-described approach, ASYNT-GAN can directly produce ligand 
structures represented in a point cloud in their respective binding pockets in the alignment that 
optimizes binding affinity. The search approach described in Section 2.3 produces a list of indexed 
ligands. 

A concrete example of the usage of ASYNT-GAN is as follows. Protein 6VYB [25] is converted 
to point cloud and analyzed chain per chain, as shown in Figure 12. We represent the ligand as a 
sample from a Gaussian distribution, i.e., we are unaware of potential binding ligand and wish the 
model to generate it. Using the point cloud of the protein and the sample from the Gaussian 
distribution, ASYNT-GAN generates the point clouds of the ligands, as shown in Figure 13, in 
multiple shades of orange. ASYNT-GAN’s prediction provides the areas where the ligand will bind 
with the higher affinity, the alignment, and the ligand in point cloud representation. ASYNT-GAN’s 
prediction also provides the translation of the generated ligand into the latent space, which permits 
the search for a list of candidates in the index of ligands, as described in Section 2.3. Additionally, we 
can perform vector arithmetic between points in latent space, which have meaningful and targeted 
effects, e.g., we can combine the predicted ligands with a chain from another protein and start a 
lookup from that point in the latent space. The results can similarly be used to initiate a search and 
walk through the latent space to provide a broader list of candidate ligands and proteins, as shown 
in Figure 14. 
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4. Discussion and Conclusions

The generation of synthetic small and more sophisticated molecule structures that
optimize the binding affinity to a target (ASYNT-GAN) through encoding a protein and
generating a system comprised of a ligand and a protein. Experiments show that ASYNT-
GAN is able to generate ligand structures for proteins unseen during training. Translating
the input sub-systems into the latent space permits the reachability for similar structures
and the sampling from the latent space for a generation. Topics for future work include
ways of integrating the search capabilities in the training process, explore alternatives for
sampling and generating points ASYNT-GAN from regions of interest, provide for the
ability to generate alternative variants of proteins to predict mutations.

Current approaches require a biochemist to manually seek or create existing potential
ligand that can bind to a target. The selected target is then manually placed in potential
binding pockets and aligned with the target to evaluate the reactions. The selection of
the potential pockets is made based on the scientists’ knowledge and potential literature
discussing the particular protein. The binding affinity is evaluated using simulation
techniques, e.g., docking. This process is repeated until the best fit is found.

In contrast to the above-described approach, ASYNT-GAN can directly produce ligand
structures represented in a point cloud in their respective binding pockets in the alignment
that optimizes binding affinity. The search approach described in Section 2.3 produces a
list of indexed ligands.

A concrete example of the usage of ASYNT-GAN is as follows. Protein 6VYB [25]
is converted to point cloud and analyzed chain per chain, as shown in Figure 12. We
represent the ligand as a sample from a Gaussian distribution, i.e., we are unaware of
potential binding ligand and wish the model to generate it. Using the point cloud of
the protein and the sample from the Gaussian distribution, ASYNT-GAN generates the
point clouds of the ligands, as shown in Figure 13, in multiple shades of orange. ASYNT-
GAN’s prediction provides the areas where the ligand will bind with the higher affinity,
the alignment, and the ligand in point cloud representation. ASYNT-GAN’s prediction
also provides the translation of the generated ligand into the latent space, which permits
the search for a list of candidates in the index of ligands, as described in Section 2.3.
Additionally, we can perform vector arithmetic between points in latent space, which have
meaningful and targeted effects, e.g., we can combine the predicted ligands with a chain
from another protein and start a lookup from that point in the latent space. The results
can similarly be used to initiate a search and walk through the latent space to provide a
broader list of candidate ligands and proteins, as shown in Figure 14.
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Figure 12. Depicts the point cloud of Chain A of 6VYB [25] SARS-CoV-2 spike ectodomain structure. 

 

Figure 13. Generated ligands predictions are the points in multiple shades of orange. 

 

Figure 14. Shows the ability to perform vector arithmetic for search and walk through latent space. 

It is important to note that the latent space representations hold important insights that the 

model learned throughout the training where its task is to understand the structures and generate 

new structures based on shape and interactions. This results in a latent space that holds latent features 

that have high value in terms of shape and interactions between the elements. Additionally, they are 

comparable and combinable that permits sophisticated search strategies. 

This is in contrast to current search approaches, which do not take interactions and folding in 

3D space into account, and do not permit any arithmetic between multiple elements where sequences 

are compared—resulting into a best match that is a sequence with the most overlapping elements 

with the query sequence. 
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Figure 14. Shows the ability to perform vector arithmetic for search and walk through latent space.

It is important to note that the latent space representations hold important insights that
the model learned throughout the training where its task is to understand the structures
and generate new structures based on shape and interactions. This results in a latent space
that holds latent features that have high value in terms of shape and interactions between
the elements. Additionally, they are comparable and combinable that permits sophisticated
search strategies.
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This is in contrast to current search approaches, which do not take interactions and
folding in 3D space into account, and do not permit any arithmetic between multiple
elements where sequences are compared—resulting into a best match that is a sequence
with the most overlapping elements with the query sequence.

In the presented experiments, we have taken the approach to generate ligands into 3D
space that bind into the target protein. The same approach can be taken for any interaction
between elements in 3D space, e.g., amino acid interaction with other amino acids in a
chain, protein interaction with other proteins, sub-systems interaction in a macro molecule,
atom, and bonds interaction with other atom and bonds.
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