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Abstract: Shape memory materials have been playing an important role in a wide range of bioengineering
applications. At the same time, recent developments of graphene-based nanostructures, such as
nanoribbons, have demonstrated that, due to the unique properties of graphene, they can manifest
superior electronic, thermal, mechanical, and optical characteristics ideally suited for their potential
usage for the next generation of diagnostic devices, drug delivery systems, and other biomedical
applications. One of the most intriguing parts of these new developments lies in the fact that certain
types of such graphene nanoribbons can exhibit shape memory effects. In this paper, we apply
machine learning tools to build an interatomic potential from DFT calculations for highly ordered
graphene oxide nanoribbons, a material that had demonstrated shape memory effects with a recovery
strain up to 14.5% for 2D layers. The graphene oxide layer can shrink to a metastable phase with lower
constant lattice through the application of an electric field, and returns to the initial phase through
an external mechanical force. The deformation leads to an electronic rearrangement and induces
magnetization around the oxygen atoms. DFT calculations show no magnetization for sufficiently
narrow nanoribbons, while the machine learning model can predict the suppression of the metastable
phase for the same narrower nanoribbons. We can improve the prediction accuracy by analyzing only
the evolution of the metastable phase, where no magnetization is found according to DFT calculations.
The model developed here allows also us to study the evolution of the phases for wider nanoribbons,
that would be computationally inaccessible through a pure DFT approach. Moreover, we extend our
analysis to realistic systems that include vacancies and boron or nitrogen impurities at the oxygen
atomic positions. Finally, we provide a brief overview of the current and potential applications of
the materials exhibiting shape memory effects in bioengineering and biomedical fields, focusing on
data-driven approaches with machine learning interatomic potentials.

Keywords: shape memory effects; DFT calculations; physics-based multiscale modelling; data-driven
dynamic environments; knowledge engineering and machine learning; critical size of nanostructures;
first-principles studies; biomedical applications; moment tensor potentials; phase transformations;
physics-informed machine learning

1. Introduction

Materials with shape memory effects have revolutionized the fields of bioengineering
and biomedicine. Some prominent examples of their applications in these fields include
sensors and actuators, medical implants, coronary stents, organ frame retractors, and
artificial muscles, to name just a few. Shape memory materials (SMMs), a subgroup of
intelligent materials, have taken their prominent place in these fields due to their ability not
only to sense environmental changes, such as temperature, forces, electromagnetic fields,
solvents, and humidity, but also to respond to such changes, adjusting their parameters
in order to return to their original state [1]. The role of such parameters can be taken by
their shape, position, strain, etc. Therefore, it should not come as a surprise that SMM
applications also cover many other areas, well beyond those already mentioned, and
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may also include deployable components of complex systems, energy conversion, and
energy harvesting. Today, such areas as orthopedics and orthodontics, with a wide range
SMM-based biomedical devices, are simply unimaginable without an extensive usage of
these materials.

Concurrently with the continuing developments in conventional shape-memory
materials, more recent research on advanced biomedical applications has also been focusing
on graphene-based nanostructures, and in particular on graphene nanoribbons (GNRs, [2]).
The latter structures are known for their superior properties, including large surface area,
enhanced mechanical strength, and improved electro-conductivity, which make them
a major candidate for many applications in biomedicine and bioengineering, including
biosensing and diagnostics. GNRs can be used for fast DNA sequencing and can also make
good memories, as has been known for quite some time [3,4]. The scope of applications
of graphene-based materials, also termed as “smart”, has grown significantly over recent
years [5,6]. With the rise of data-driven modeling [7–9], machine learning tools and
associated methodologies of computational statistics become increasingly important for
further progress in these fields [10].

The search for materials that can lead to the fabrication of devices with low-energy
consumption has attracted the scientific community to the 2D materials realm. Graphene
promises not only that, but also a myriad of exotic properties. Its derivatives can further
improve certain desired properties. Graphene oxide (GO) is among these derivative systems
that can modulate or enhance the thermomechanical and energy storage properties, due to
the presence of oxygen functional groups attached to the layer. Compared to the pristine
graphene, GO is cheaper to produce [11] and easy to deposit on a variety of substrates,
making it suitable for flexible electronics and bioengineering applications [12–14]. GO can
be synthesized by either bottom-up or top-down techniques including the Staudenmaier,
Brodie, Offeman, Hummer methods [15], and environmentally friendly modifications of
them to eliminate the emission of toxic gases [11]. The presence of the epoxide groups
alters the electronic band structure and density of states near the Fermi level [16]. As
a result, a non-zero bandgap is generated which can be modulated by rearranging the
distribution and concentration of oxygen atoms in the surface. The bandgap can be used to
take advantage of GO as a luminescent material to be used for biological imaging [17,18].
Epoxide groups can also be used to trap lithium atoms in regions with poor electronic
density [19], allowing the use of GO in Li storage devices. GO has also found potential
applications for hydrogen storage [20,21] and water purification [22,23].

On the other hand, GO nanostructures can be employed as nanofillers to strengthen
mechanical properties of polymers [24] and can be used to fabricate artificial tough nacre of
interest in aerospace applications [25,26]. Additionally, GO can endow with shape memory
behavior to nanocomposites [27,28] for bone repair with minimal invasive surgery [29],
and electrical actuators with low power consumption [30], essential for many applications
in bioengineering. Recently, first-principle calculations have shown that GO with highly
ordered epoxy groups can experience shape memory effect on its own without the presence of
a polymer matrix [31,32] and can experience recoverable strain rates up to 14%. Applications
for such shape memory nanomaterials include resonators, artificial muscles, and molecular
robots [33], among many others. The carbon–oxygen–carbon interfaces in the GO layer
induce the presence of an additional stable phase. The two phases, located at different
lattice constant values, are separated by about ∼100 meV. The system can be deformed
from one phase into the other one by application of an external force or an electric field [31].

In this work, we use machine learning (ML) to study GO nanostructures, not only
to reduce the computational cost involved in the estimation of the two stable phases, but
also to analyze the response of GO nanoribbons subject to deformations, and the presence
of vacancies and impurities. This work is an extension of [34]. Here, we show different
approaches used to improve the model prediction, the approximate critical nanoribbon size
for which the shape memory effect is suppressed, and its validation with actual DFT results.
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Finally, the machine learning potential is used for a systematic study in which a more
realistic distribution of oxygen positions covers the GO surface instead of a highly ordered
distribution, the effect of vacancies, and impurities such as boron and nitrogen atoms.

The machine learning technique developed in this paper is part of the group of
methodologies known as Machine Learning Interatomic Potential (MLIP). They have been
actively developed over the recent years because by controlling the degree of freedoms,
the MLIP functional forms allow us to consider different environments and to use more
elaborate descriptors of local atomic environments. In bridging the gap between costly DFT
calculations and less accurate classical potential methods, we develop a data-driven method
known as Moment Tensor Potentials (MTP) for shape memory graphene nanoribbons. As
such, the MTP is a powerful multipurpose tool that can be used: for training (as in linear
regression, it finds the coefficients that minimizes a function that depends on the energy,
forces, and stress values found in static DFT results), for structural optimization (instead
of relaxing the structure via DFT), as well as for energy prediction only. One of our main
motivations to choose the MTP method for ML in this paper was due to the fact it works
directly with atomic environments and already makes use of physical restrictions. While
for other ML techniques, it would have been necessary to choose first an appropriate
representation (see, e.g., [34] and Section 4 for further details), the methodology developed
here in Sections 2 and 3 allows a robust trade-off between accuracy and computational
cost. Not only we have demonstrated the proof-of-concept as well as the efficiency of
the developed MTP algorithm on a class of important problems considered here, we also
have provided a series of reproducible illustrative examples. Such examples have been
given for a significant class of innovative nanostructures that are poised to be vital in many
bioengineering and other applications.

2. Methods

Given available options to tune their electronic, mechanical, and optical properties,
graphene oxides (as well as reduced graphene oxides) have been playing an important
role in many applications of graphene and its derivatives [35]. In what follows, we will
describe our methodology to analyze GO layers first, moving to its generalization for GO
nanoribbons as the next step.

From the different arrangements in which a highly oxygen-ordered configuration can
be found in a GO layer, we focus our attention on the C8O structure defined in [31] since it
exhibits shape memory effect and the two different phases in which it can be energetically
stable. The unit cell is depicted in Figure 1. The periodicity of the unit cell along the X
and Z directions defines a 2D sheet. From the figure, it can be noticed that the oxygen
epoxy groups define graphene stripes of zigzag interfaces. The electronic re-arrangement
around the zigzag interfaces bends the 2D layer at angle α, as shown by the optimized DFT
structure also represented in Figure 1. According to [31], the GO sheet presents two phases
around α = 104° and 133° [31,32], corresponding to lattice constants of alat ∼ 16 Å and
18.5 Å. The two phases are separated by ∼100 meV. First-principles DFT calculations will
be used to validate literature results.
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Figure 1. (Top) GO structure before structural optimization. The unit cell is shown in between dashed
lines. The unit cell’s length along the X-direction defines the lattice constant, alat. (Bottom) Side view
of the optimized GO structure using DFT. Gray (red) balls represent carbon (oxygen) atoms.

Specifically, we perform spin-polarized DFT calculations to relax the atomic positions
at several fixed lattice constants to build the energy vs. lattice constant curve. All of our DFT
calculations were performed by using the Quantum ESPRESSO simulation package v.6.8
(see, e.g., [36]), plane-wave basis sets, and ultrasoft pseudopotentials [37], while employing
the gradient approximation with the PBE exchange-correlation functional [38]. Our tests
of convergence showed optimal values for a wavefunction energy cutoff of 60 Ry and a
4× 1× 4 Monkhorst-Pack k-point grid (periodicity is along the X and Z directions). Here
we used an interlayer separation of 18 Å to ensure a minimum distance of ∼12 Å between
atoms, even with a bent structure for the range of lattice constant values considered (from
alat = 14 Å to alat = 19 Å).

2.1. Moment Tensor Potentials (MTP)

After the validation, we have employed ML approaches that can mimic the DFT
results and allows us to predict the behavior of nanoribbons with very big super unit cells,
multiples of the unit cell shown in Figure 1 with periodicity only along the X-direction.
We use a physics-based ML model designed for materials, coded in the MLIP (Machine
Learning Interatomic Potential) package [39] that we use to build an interatomic potential
for the GO system.

The MLIP code is based on moment tensor potentials (MTP) [39,40]. By utilizing active
learning, the construction procedure leads to an automatic sampling of configurations for
the training set in an efficient manner, as well as indicates a way to expand the training
set amenable to the concurrent analysis of the prediction errors. In this machine learning
approach, the quantum mechanical energy of a structure, EQM, is approximated as a sum
of interatomic potentials, V,

EQM ≈∑
i

V(ni), (1)

where ni represents the neighborhood of the i-th atom, given by a collection of atomic
positions and species of each neighbor atom up to cutoff radius. V is expressed as an
expansion of polynomials

V(ni) =
N

∑
i=1

cαBα(ni), (2)

where the expansion in the polynomial Bα and its construction ensures V to be invariant to
structure’s rotation and permutations of the same-species elements. Bα is build in terms of
the moment tensor potentials Mµ,v defined as

Mµ,v(ni) = ∑
j
|ri|2µr⊗v

i , (3)

where r⊗v
i = ri ⊗ . . .⊗ ri indicates the Kronecker product of v copies of the ri.
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The model is trained by finding the coefficients cα that best fit not only the quantum
mechanical energy of the system in expression (1), but also the forces on each atom
(derivative of (1) with respect to atomic positions), and stress values (proportional to
the derivative of (1) with respect to lattice constants), values that were found in static
DFT results.

The model built through the learning of energy, forces, and stress values can be used to
relax the atomic positions. In the relaxation process, the different configurations generated
are graded according to geometric considerations. If a configuration is found to be an
extrapolation from the training set and its grade is higher than a threshold grade value
(“active learning”), a static DFT calculation is required on the new configuration to obtain
its energy, forces, and stress.

2.2. ML Implementation for a GO Layer

We generate an initial set (IS) of 41 artificial structures as shown in Figure 1 with lattice
constant values over the range from 14 to 20 Å to analyze the GO energy dependence on
the structure length along the X-direction and learn from the associated stress. Atomic
equilibrium positions were approximated to a pristine graphene nanoribbon with a carbon-
carbon distance of 1.42 Å.

Given the IS, the relaxed structures have been found by MTP and compared to DFT
calculations. In the process of building the interatomic potential, a training set (TS) is
generated, from which static DFT calculations are performed. Now, the interatomic
potential is created. However, it is possible to build a new potential with higher accuracy
prediction by choosing new configurations closer to the ground state, although the new
potential will have an energy prediction valid for a window of energies restricted to the
neighborhood above the ground state.

2.3. ML Implementation for GO Nanoribbons

Finally, by using the ML interatomic potential methodology, we extend our study to
a class of graphene nanoribbons. Graphene nanoribbons have been studied extensively
in the context of various applications (e.g., [41–46] and references therein), including
biomedical [47,48]. As we already mentioned in Section 1, graphene itself is considered
to be a smart material [5], and the range of graphene-based smart materials and their
applications continues to grow [6]. Our main attention in this paper has been given to the
class of armchair GO nanoribbons (AGONRs).

The training set is composed of DFT optimized structures with different widths. The
provided atomic environments will be used to train an MTP mode, which will be used
as an interpolation tool to estimate the energy dependence over the lattice constant. This
approach will let us study the effect of confinement on the shape memory behavior of a
GO sheet, and the evolution of the two phases at finite nanoribbons widths.

The ML interatomic potential allows us to investigate GO nanoribbons of large widths
compared to what is accessible through DFT calculations. Oxygen vacancies and lower
ordered epoxy groups are considered as parts of realistic configurations that can be found
in GO. We also analyze the effect of boron and nitrogen atoms replacing oxygen atoms.

3. Results and Discussion

DFT validation is shown in Figure 2a. The 2D system exhibits a stable phase at∼18.5 Å
and a metastable phase at ∼15.5 Å, separated by 60 meV. The symmetry evolution of the
electronic wavefunction can be noticed in the inset of the same figure. The electronic
distribution around the oxygen atoms is rearranged as the system is shrunk into an
anti-bonding-like configuration, with higher energy, and then again into a bonding-like
configuration, for ∼17 Å and ∼15.5 Å, respectively. The electronic rearrangement around
the bendings in the red shadowed area in Figure 2a behaves as quantum wells, effectively
isolating the zigzag graphene nanoribbons (ZGNRs) between the rows of oxygen atoms.
The electronic repulsion at carbon atoms in isolated ZGNRs leads to ground state magnetic
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solutions. The magnetic distribution in ZGNRs is similar to Figure 2b, where magnetization
reaches a maximum value at the edges. The application of an electric field has a parallel
component to each ZGNRs plane, and it leads to a rearrangement of charges across the
zigzag interfaces that could break the isolation of the ZGNRs, and hence lowering down
the energy barrier between the phases. As shown in [31], the application of the right electric
field intensity destroys the energy barrier between the two phases and generates instead
a new global energy minimum. Therefore, the application of an electric field shrinks the
system into a new lattice constant. In what follows, we will use ML to learn from this
structure with no electric field applied.
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Figure 2. (a) Energy (black marks) and maximum magnetization (red marks) found in optimized GO
nanoribbons of different widths, according to DFT calculations. The red shadowed area indicates
non-zero magnetization for structures in the corresponding lattice constant range. The insets show
partial charge densities around the oxygen atoms (red balls) and carbon atoms (gray balls) for three
alat values: 15.5 Å, 17 Å, and 18.5 Å. (b) Magnetization at each atomic site in the unit cell of a GO
layer of alat = 17 Å.

3.1. ML Results for a GO Layer

The 41 structures in the IS were used to start the iterative process of selection, training,
and relaxation. Convergence tolerance is achieved, and the RMSE of the trained potential is
75 meV (or 4 meV per atom). Overall, 395 configurations are generated as the TS, and static
DFT results are used to feed the training process. The TS spans over 1 eV above the ground
state configurations, as shown in Figure 3a. We use the trained interatomic potential to
reproduce the DFT energies in the TS and to relax the configurations in the IS. Figure 3b
gives a better idea of the extent of the accuracy of the trained potential. While it can predict
accurately enough for configurations with higher energies, it fails for configurations around
the second phase (∼18.5 Å) as the resulting value exceeds the RMSE of the trained potential
mentioned earlier in this section. This happens only for the energies around this second
phase. Two quantities, the energy and C-O-C angles, obtained with the MTP and DFT for
the two minima, are provided in Table 1. It should be emphasized that these data may not
be considered as a basic attribute characterizing the model in this case. What is important is
that the model can be used to filter structures in the search for candidates to be the ground
state, so it is where we can find essential applicability of the ML model. For completeness,
in Figure 4 we also present the C-O-C-angles evolution according to DFT, and according to
the ML potential used for the 3d graph. Despite the limitations in predicting the energies
mentioned above, one can see that the C-O-C-angles of the ground state configurations
calculated via MTP are superposed with the DFT results.
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Table 1. Energies and angles for the two minima obtained with the MTP and DFT: initial calculations.

MTP alat (Å) MTP Energy (meV) MTP C-O-C Angle (deg)

15.45 101.86 102.1
18.02 101.20 130.8

DFT alat (Å) DFT Energy (meV) DFT C-O-C Angle (deg)

15.45 52.1 101.8
18.56 0.0 136.2
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Figure 3. Energy of a GO layer via DFT and MTP. (a) Energy distribution of the training set (TS)
compared to the ground state energies according to DFT calculations (circle marks). (b) Energy
distribution of the input set (IS) and TS according to the ML potential. The IS has been relaxed
using the ML potential (blue circle marks) and DFT (black circle marks). (c) Same as (a), but with an
improved IS. (d) Energy distribution of the TS according to an improved ML potential.
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Figure 4. DFT-optimized structures compared to MTP predictions: C-O-C angles.
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Next, we extract the atomic positions of DFT relaxed configurations (“RS”) to verify
if the ML energy prediction agrees with DFT. The ML potential agrees that those are the
ground state configurations (“MTP relaxed” and “MTP on RS” curves coincide in Figure 3b),
but again the energy prediction is higher around the second phase (see “DFT relaxed” curve
in Figure 3b). Still, the ML potential can find the two local minima around the two phases.

To increase the accuracy of the ML potential, we now take as IS to be the 41 MTP
relaxed configurations in the previous process (configurations for which energies were
plotted as the “MTP relaxed” curve in Figure 3b). In this specific case, the new IS already
coincides with the DFT relaxed configuration, as discussed above. The iterative process of
selection, training, and relaxation is repeated until convergence is achieved. The RMSE is
111 meV (or 6 meV per atom). Overall, 386 configurations were generated by MTP to train
the ML potential. Figure 3c shows the energy distribution of the new TS compared to the
ground state energies. We can notice that the TS includes ground state configurations up to
∼18.5 Å only. The new ML potential is used to reproduce the energies of configurations in
the TS, and the results are shown in Figure 3d. We also employ the ML potential to “relax”
the IS (although they already coincide with the DFT relaxed configurations); we expected
the energies to coincide with the ground state according to DFT. The results are exhibited
as the “MTP relaxed” curve in Figure 3d. The curve partially recovers the DFT ground
state energies, but fails to predict the behavior around the second phase. This result is in
part due to the lack of the required configurations in the TS around the second phase, and
in part due to the long-range interactions introduced by spin-polarized carbon atoms (see
Figure 2b) that MTP is not able to learn from. MTP approximates the quantum mechanical
energy of the system to a sum of local energies (Equation (1)), and as stated in [40], the
assumption could not be valid at all for systems with long-range interactions.

Letting MTP learn from larger atomic neighborhoods to account for long-range
interactions might improve accuracy prediction. MTP learns from each atomic neighborhood
(Equation (1)) and so far we have worked with a default cutoff value of 5 Å, which includes
interactions up to the third nearest neighbors in a graphene derivative. However, choosing
an ML potential with a larger cutoff of 10 Å does not seem enough to improve accuracy
prediction at low energies, as shown in Figure 5a.
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Figure 5. (a) Energy distribution of the TS for a model trained using a cutoff of 10 Å, according to DFT
and MTP. (b) Energy distribution of the TS for a model trained on a restricted range of lattice constant
values from 14 Å to 16.5 Å. For comparison, ground state energies, according to DFT calculations, are
provided (black marks).

Magnetic solutions introduce additional complexity that MTP cannot capture to make
accurate energy predictions. Hence, we will focus on a lattice constant range for which no
magnetic configurations have been found. The ML potentials have shown better accuracy
prediction around the first phase, so we now restrict the IS and TS to configurations with
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alat = 14 Å to alat = 16.5 Å. Results are presented in Figure 5b. However, the generated TS
includes more than 1000 configurations, so it is no longer computationally cost-effective to
continue trading for a higher accuracy prediction.

3.2. ML Results for GO Nanoribbons

Training an ML model for the highly oxygen ordered C8O layer involves the learning
of atomic environments of 18 atoms per unit cell. For GO nanoribbons, ML training might
result challenging due to the computational cost involved in the DFT calculations of the
TS (even though they are static calculations), except for very narrow strips. Therefore, to
build the ML model for nanoribbons, we choose relatively narrow nanoribbons that have
been DFT relaxed, and restrict our ML model to work with configurations very close to
the ground state configurations. In this part, we are not following the selection, relaxation,
and training iterations as we did for the 2D GO. Here, MTP is not used to relax structures,
instead we use MTP only as an interpolation tool to find the approximate energies of GO
nanoribbons. To generate the TS, we combine DFT results for relaxed nanoribbons and the
2D GO, so that MTP can find the interpolated energies for structures all the way from 1D to
2D structures.

Figure 6a displays the evolution of DFT relaxed nanoribbons of different widths compared
to the GO layer. While the GO layer has a global minimum at ∼18.5 Å, narrow nanoribbons
have a minimum at ∼17.5 Å. However, the global minimum shifts to larger lattice constants
for wider nanoribbons, as revealed by the 25-AGONR’s evolution. Additionally, narrow
nanoribbons do not present ground state magnetic solutions. This scenario changes for
25-AGONR, in which maximum magnetization is no longer zero, but it is at half range to
the maximum magnetization found for the 2D GO (compare triangle marks in Figures 2a
and 6a). Finally, Figure 6a shows that while 5- and 7-AGONRs evolve with a very well
defined convexity, the 25-AGONR presents a noticeable change in the gradient at around
∼15.5 Å, i.e., the formation of an additional phase begins to take place, although there is no
local energy minimum defined yet.
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Figure 6. (a) Energy evolution of relaxed m-AGONRs with m = 5, 7, 25 armchair lines, according to
DFT calculations. For comparison, ground state energies of the GO layer are included (black circle
marks). The red shadowed area indicates non-zero magnetization for a nanoribbon with m = 25 in
the corresponding lattice constant range. (b) Energy evolution for GO nanoribbons with different
widths according to the ML potential.

As explained above, we combine DFT results for nanoribbons and the 2D layer to
construct the TSs, which are used to train ML potentials. Several TSs can be built: 3-
AGONR/GO, 5-AGONR/GO, 7-AGONR/GO, and combinations between them. The ML
model with TS as 3-AGONR/GO can describe well the convergence to the 2D system, but
overestimate the energies for narrow nanoribbons, possibly due to an overestimation of
the edge to edge interaction, which should decrease rapidly for nanoribbons with higher
widths. The potential trained with TS as 5-AGONR/GO can reproduce better DFT results
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for narrow nanoribbons, but fails to reproduce the formation of the two phases at the
2D limit, possibly due to the lack of enough oxygen-oxygen interaction data (5-AGONR
has only 2 Oxygen atoms at each bending). Figure 6b presents results for the best ML
potential we found, in terms of convergence to the 2D limit, the evolution of the two
phases for nanoribbons with higher widths, and the low energy prediction error for narrow
nanoribbons. The ML potential was trained with TS as 7-AGONR/GO. It predicts the
change in the gradient for the 25-AGONR energy curve (25-AGONR DFT results are
not contained in the TS), and it can even describe the shift of the global minimum for
wider nanoribbons.

Furthermore, Figure 6b tells us that the stable phase is rapidly created when increasing
the nanoribbon width, while the metastable phase (at alat∼15 Å) gradually appears at a slow
rate. Therefore, the metastable phase is associated with the formation of new states due
to the oxygen–oxygen interactions in the same row that strengthen as the width increases,
and converges at the 2D limit. According to MTP, the first signatures of the metastable
phase are predicted to appear around nanoribbons with 25 armchair lines (3 nm wide),
results that are confirmed by DFT calculations. For 51-AGONR, the metastable phase is
still evolving. For 401-AGONR, around ∼50 nm width, a clear local minimum is obtained.
This critical value seems reasonable when compared to the critical size of 60 nm for FePd
nanostructures, either with experimental results [49] or via a phase-field model [50]. Here,
we have used a different approach on a different system to find a critical width in which
the effect of confinement suppresses the shape memory behavior in GO nanoribbons.

3.3. Effect of Oxygen Defects in GO Nanoribbons

The robustness of the second phase in the presence of imperfections can now be
evaluated through the same ML potential built above (using a TS as 7-AGONR/GO). We
consider the case in which the bendings of the GO nanoribbon are partially filled with
oxygen atoms. Figure 7 shows the distribution of energies for a 401-AGONR at 0.25%, 2.5%,
and 10% of vacancy concentrations (1, 10, and 40 out 400 oxygen atoms, respectively). For
each lattice constant value, 50 samples are generated by randomly removing oxygen atoms
over the bendings, so the energies are spread over a range that could remove local minima.
As expected, low vacancy concentrations lead to configuration energies close to the ground
state. In contrast, the second phase is destroyed for vacancy concentrations around 10%.
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Figure 7. Energy distribution, according to the ML potential, of a pristine 401-AGONR (n = 0), and
in the presence of n = 1, 10, 40 vacancies out of 400 oxygen atoms at random positions. Fifty samples
are collected for each lattice constant and for each n.

So far, we have studied GO with highly ordered oxygen rows. We now address the
case of a more realistic configuration in which oxygen atoms adhere to the GO nanoribbon
surface at random positions, but are still restricted to the C8O stoichiometry, as shown in
Figure 8a. Yet, the preference for the formation of ordered oxygen rows can be modeled by
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keeping the same oxygen positions over q armchair lines, and then by choosing randomly
a different oxygen position for the next q armchair lines. A balance between totally random
oxygen positions and ordered rows is depicted in Figure 8b. Defects between the ordered
interfaces, new oxygen–carbon atom interactions, and other long-range interactions could
affect now the nanoribbon energy, as shown in Figure 8c for q = 201, in which the second
phase still can be found (in the plot, 5 energy samples per lattice constant value were
collected using configurations with ∼10,800 atoms per unit cell). The second phase is not
totally destroyed even for higher frequent change in the orderings (p = 8, and p = 10 in the
figure), provided that the ordered strips formed between line defects are wide enough to
exhibit the two phases if they were isolated from each other (above 51 armchair lines wide).
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Figure 8. (a) Unit cell of a 50-AGONR with no ordered oxygen atoms over the surface (q = 1).
(b) Unit cell of a 40-AGONR with partially ordered oxygen atoms, with the order covering a length
of q = 10 armchair lines. Periodicity is along the horizontal direction (X-axis). Atoms are represented
as balls in gray color levels to indicate their atomic height positions over the XY-plane. (c) Energy
distribution of a 800-AGONR with partially ordered oxygen atoms at different levels, for q = 201
(highly ordered), 101, and 51.

3.4. Effect of Boron and Nitrogen Substitutions

Other realistic configurations include substitutions of oxygen atoms by impurities.
We choose boron and nitrogen atoms as substitutes since the valence electrons of B and
N together equal to those of a pair of C atoms. It is known that substitution of carbon by
boron atoms in an armchair graphene nanoribbon (AGNR) breaks the conjugated electron
system, creating a reflective barrier for the π-electrons, and can induce magnetized edge
states [51]. The ordered oxygen atoms in the disposition shown in Figure 1 also define
localized states for which a finite magnetization has been found for an interval of lattice
constant values. However, oxygen substitutions by boron or nitrogen atoms destroy the
two-phase feature, and hence its shape memory behavior. We include here DFT results for
structural optimization for oxygen substitutions either by boron or nitrogen atoms (C8B
or C8N), or with a boron–nitrogen pair of atoms (C8B0.5N0.5). Figure 9 shows the relative
energy in each case for different lattice constant values, with bending angles from 100◦ to
180◦ (flat system). The two-phase feature displayed by C8O is lost.

We follow a similar procedure to generate configurations with oxygen vacancies in
the previous section using the ML potential. Random oxygen atoms were chosen to be
replaced either by boron atoms, presented in Figure 10a, or nitrogen atoms, shown in
Figure 10b. Low boron substitution concentration (0.25%: nB = 1 out of 400 oxygen atoms)
does not exhibit noticeable change. The two-phase feature is only destroyed for a 10%
boron substitution concentration. This result contrasts with nitrogen substitutions, in which
the two-phase feature is already affected by a 0.25% concentration, and destroyed for a
2.5% concentration.
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Figure 9. Energy evolution of relaxed GO layers when all oxygen atoms are replaced by boron (blue
marks) or nitrogen (red marks) atoms or a pair B-N (black marks), according to DFT calculations.
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Figure 10. (a) Energy distribution, according to the ML potential, for a 401-AGONR where
nB = 1, 10, 40 oxygen atoms out of 400 are replaced by boron atoms at random positions. (b) Same as
(a) for nitrogen substitutions. Fifty samples are collected for each lattice constant and for each nB or
nN values.

4. Data-Driven Approaches for Studying Materials with Shape Memory Effects in
Biomedical and Other Applications

Our main focus in the previous sections has been on an important emerging class
of materials with shape memory effects, specifically graphene-based nanostructures for
which we have developed machine learning tools allowing their further advanced studies.
Applications of such materials, including shape memory GNRs, are still in their early, but
very active development phase [46,52,53]. In the meantime, other classes of materials with
shape memory have a well-established range of biomedical and other applications and
we believe it is important to provide a brief overview of the situation, also because the
type of MLIP techniques we have developed in the previous sections can potentially be
useful for more efficient treatments of problems in already existing SMM applications.
On the other hand, the ideas we discuss below in the context of SMMs could certainly
be useful for multiscale analyses of GNRs after their integration into actual biomedical
devices or structures. While the classes of SMMs we discuss in this section are much
better developed from a modeling point of view, this cannot be said about shape memory
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nanomaterials to which we have devoted the main part of this paper. Yet, both require
the development of data-driven approaches such as those based on ML and DL. Hence,
our brief review of other classes of materials with shape memory effects in the context of
biomedical engineering will be followed by a discussion on the most recent developments in
such data-driven approaches, paying special attention to the methods preserving physical
invariant properties and to MLIP functional forms permitting considerations of different
environments and using more elaborate descriptors of local atomic environments.

In designing materials for biology and medicine, materials with shape-memory effects
have played a remarkable role [54]. From efficient responses to injuries and delivering drugs
to hardening techniques in producing casts on broken bones, and to implants and prostheses,
the healthcare system of today relies heavily on SMMs. Many areas, including orthopedic
surgery and orthodontics, are simply unimaginable without these materials. Moreover,
SMMs continue molding many minimally invasive therapies and related bioengineering
technologies. Indeed, these materials not only assist in accelerating wound healing, provide
self-expandable vascular stents, and result in high clinical effectiveness, but also aid
in developing new biomedical appliances, thanks to their biocompatibility properties.
They are a critical component for biotribological systems [55,56] which, in their turn,
inspire the development of new technologies in bio-related fields. Furthermore, SMMs
for biocompatible microactuators, as biocompatible suture materials for tissues such as
tendon [57], also showed excellent cytocompatibility properties for better cell adhesion
and morphology in different cell culture systems [58]. SMMs have been vital in various
methods of tissue engineering, including distraction osteogenesis [59].

From the modeling point of view, much research in these fields is based on the phase-
field theory, where the Landau order parameter framework can be applied in the areas
ranging from traditional materials science to the phase transitions in the genome-wide
dynamic networks and other complex systems. For example, single-molecule stretching
experiments on DNAs, RNAs, and other biological macromolecules opened up the possibility
of impressive progress in many fields of life and medical sciences [60], and the methodologies
for the analysis in these areas are frequently based on non-convex free energies, which is
akin to the analysis of force-induced martensitic phase transformations in SMMs. Since
reversibility of structural phase transformations in these materials has profound technological
implications, covering many areas including bioengineering, it is important to develop
dynamic models of underlying processes [61]. Coupled thermoelastic martensitic phase
transformations and microstructure evolution are behind these processes. At the same
time, in order to make the dynamic problem tractable in engineering applications, a
dimensional reduction of the fully coupled dynamic three-dimensional model for SMMs
needs to be carried out, which was for the first time proposed in [62]. The reduced
model was approximated by a system of differential-algebraic equations and was applied
to the modeling of SMM-based devices such as actuators [63]. This approach allowed
us to study both stress- and temperature-induced phase transformations and associated
hysteresis phenomena in SMM structures in a unified manner [64] and to extend the
developed technique to the Cattaneo–Vernotte law for heat conduction, following principles
of extended thermodynamics in the context of SMMs [65]. The problems at hand require the
development of multiscale approaches [66] and by now we know that a synergy between
multiscale modeling and machine learning can provide a very powerful tool for this
research [67]. For example, in [68] polycrystalline structures with microstructure properties
have been a subject of studies with machine learning and deep learning approaches,
combined with multiscale analysis. The interest in machine learning tools for studies of
martensitic phase transformations, typical for SMMs, has been growing significantly over
recent years [69], and this direction of research has also included various approaches for
developing interatomic potentials [70].

In parallel with the above research, the search for new composition regions of SMMs
to achieve improved control of SMM properties has been underway [71]. One of the key
candidates for this search has always been polymeric materials that exhibit shape memory
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properties. They come in a wide range of forms, from those that can be extracted from
biological oils [72] to those that use carbon nanotube reinforcement [73], with many other
forms of shape memory polymers and their composites currently under investigation [74,75].
Indeed, each class of such smart, stimuli-responsive shape-memory polymers is designed
according to the specific requirements [76], e.g., programmed to a specific temporary shape
and such that they can recover their original shape upon the application of various stimuli,
depending on a specific application (temperature, electric and/or magnetic field, solvents,
light irradiation, etc.). In such cases, shape memory properties are influenced by many
factors which, in the case of computational studies, would need to be investigated with
refined techniques such as first-principles calculations. In the development of various
adaptive composite materials for biological applications with embedded shape memory
components, other coupled field properties of smart materials, such as piezoelectric,
flexoelectric, auxetic, may also become important in the analysis and their applications
at the device level [77]. At the smaller scales, shape memory effects and martensitic
transformations have also been observed in superlattices [78].

In the meantime, the interest in graphene oxide and carbon-based composites with
shape memory effects have been grown significantly over the last few years [1,52,79–81].
Among multiple promising directions, this interest also includes research studies in the
context of sustainability pertinent to biomass as the associated carbon source [82] and to
4D printing technologies [83,84]. Other coupled field properties mentioned above, such
as auxetic, have also been a subject of studies in graphene-based 2D materials [85]. As
we mentioned earlier, the issue of microstructure evolution in SMMs has been important
since the development of coupled dynamic models describing phase transformations
in these materials and the methods for the solution of such models [86]. This issue
remains critical for our better understanding of the dynamics of shape memory polymer
composites and graphene-based structure with shape memory effects [87]. With graphene-
and carbon-based composites exhibiting shape memory effects, new exciting applications
continue to arise. Natural sunlight-actuated shape-memory materials with reversible shape
change and self-healing abilities based on carbon nanotubes filled conductive polymer
composites have recently been reported in [88]. Such composites can be fast healed under IR
irradiation, and as such, these natural sunlight-responsive materials are amenable to large-
scale production, providing new opportunities for the design and fabrication of sunlight-
actuated smart devices and soft robotics, which can be used in biomedical applications.
Bioinspired shape memory graphene properties such as tunable wettability [89] can also
bring new applications in these fields, as well as graphene oxide applications for shape
memory actuators implemented in micro/nanomechanical systems (MEMS/NEMS, [32]),
together with new GNRs with shape memory effects. Finally, we would also mention
graphene’s environmental stability and staggering transport properties [19], nonvolatile
memories based on graphene [35], along with other astonishing characteristics, that can
lead to sustainable applications in the future. This, combined with biocompatibility,
biodegradability, and unique mechanical properties, will continue contributing to the
application of SMMs in the fields of biomedicine and bioengineering.

Concurrently with this, data-driven approaches, including those based on ML, have
experienced remarkable advances over recent years in many applications. Nanotechnology
and materials science are among those fields where such advances have been largely due
to the development of ML potentials, bridging the gap between the efficiency and accuracy
in DFT and (classical) MD calculations (e.g., [90]). Depending on the ML models and
descriptors used, some of the most common methodologies in this group can be differentiated
by the ways we control the degree of freedoms, which can be done efficiently through
the MLIP functional forms already mentioned at the beginning of this section. Among
such functional forms that are used in applications, we mention Gaussian Approximation
Potentials (GAP), Moment Tensor Potentials (MTP), Neural Network Potentials (NNP),
Spectral Neighbor Analysis Potentials (SNAP), and their numerous modifications. Like
other MLIPs, in the analysis of a structure, the MTP method encodes its local atomic
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environments into atomic descriptors (rotationally covariant tensors in this case), which
then can be passed via an embedding function. In principle, the way to adjust the
performance of the MTP, like any other MLIPs, would be to play with the number of
descriptors and/or the complexity of their embedding functions [91]. However, while
pushing MLIPs to their limits of the model space where we seek an efficient trade-off
sampling between lower computational complexity and high resulting accuracy, problems
with phase transformations have particularly serious challenges. In this paper, such
problems have been addressed in the context of shape memory GRNs with the MLIP
methodology for the first time (with the exception of [34], where a preliminary analysis
was reported).

The MLIP methodology is moving gradually to address other complex problems,
which recently also included the development of accurate interatomic potentials to study
dislocation problems, point defects, and their clusters in certain materials (e.g., in bcc iron
and tungsten [92]). While, to our best knowledge, no other work reported the development
of MLIPs, and MTPs in particular, for the materials with phase transformations, recent
attempts have been made in advancing algorithms for training MTPs on such materials as
random alloys (e.g., MoNbTa medium-entropy alloys), which can be considered as a first
step in simulating multicomponent systems with this methodology [93].

Our choice of MTPs in this paper was motivated by several factors. Given the recent
benchmark developments for MLIPs [94], the interest in the development of MLIPs based
on MTP frameworks has increased and a number of new problems have been successfully
attacked, including problems with defects (not only point defects mentioned above, but
also those caused, e.g., by radiation damage in bcc iron [95])). Examples of data sets that
were considered include bcc (Li, Mo) and fcc (Cu, Ni) metals, as well as diamond group IV
semiconductors (Si, Ge) to showcase a range of crystal structures and bonding. Such data
sets were generated by using high-throughput density functional theory (DFT) calculations.
With machine learning interatomic potentials (IAPs), various local environment descriptors
can be used, e.g., atom-centered symmetry functions (ACSF), smooth overlaps of atomic
positions (SOAP), the spectral neighbor analysis potential (SNAP) bispectrum components,
as well as moment tensors. The new frontier in the development of IAPs is considered
exactly that: machine learning of the quantitative relationship between local environment
descriptors and the potential energy surface of a system of atoms [95]. While all descriptors
mentioned above have demonstrated superior performance, compared to classical IAPs, in
predicting energies, forces, and some properties, our choice in this paper has been the MTP
methodology allowing a robust trade-off between accuracy and computational cost. What
these works and developed benchmarks demonstrated is that the MTP can provide high
accuracy at relatively low computational cost, and it is capable of accurately describing
the short-range and (near) equilibrium interactions within a unified IAP model. For other
applications in bioengineering discussed earlier in this section, other methods for ML
potentials may prove to be useful as well, including GAP, NNP, SNAP, etc.

MLIPs can be considered as a data-driven development of approaches based on
classical potentials. Such approaches are relatively easy to derive from quantum mechanics
arguments via physics-based representations, leading to a lower computational cost
compared to MLIPs. Consequently, although MLIPs are considered to be more robust
compared to classical potentials, providing better accuracy, these features frequently come
at a higher computational cost. As a result, there is a recent surge of research directed
towards lowering the complexity of MLIPs and increasing their physical interpretability,
while preserving their near-DFT accuracy [91]. At the same time, the quality of all data-
driven approaches that are based on interpolation (and extrapolation) of the data from first-
principles calculations rests on a prudent choice of training databases and the descriptors
representing atomic structures. There is a wealth of atomic descriptors that have been
developed over the recent decade (see, e.g., [96] and references therein), including those
based on pattern learning from electronic densities of states [97] and on scaling wavelets
transformation [98]. Much research has been carried out recently on the construction of
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physics-(quantum-mechanics)-informed ML descriptors [99], including those based on
physical observables, e.g., via various approximations for calculating the self-energy on
many-particle systems [100].

While in this paper, we have focused on bioengineering applications, the application
of the techniques developed here could prove to be useful in other fields such as complex
energy materials (mentioned earlier in Section 1), molecular and condensed systems,
where the interest in MLIPs algorithms have substantially increased in recent years [101].
In addition, one should not forget that we frequently have to deal with noisy atomic
structural data obtained from experiments or computations. In this latter case, probabilistic
approaches capable of obtaining uncertainty estimates, such as those based on Bayesian-
deep-learning models (BDLMs), can prove to be very useful [102]. Any data-driven
approach of interest here, whether based on MLIPs or BDLMs, will require a mapping
of the input coordinates, physico-chemical species, and other characteristics (e.g., for
crystalline atomic structures, that includes the lattice periodicity) into a suitable descriptor
or descriptors. As seen in Section 2, the latter can be interpreted as vectors that are
invariant under rigid translations and rotations of the input structure, as well as under
permutations of same-species atoms [102]. Clearly, the confidence in ML or DL models
would be substantially greater if physics, implied by these invariant properties, is respected
in the construction of such mappings. The MPT methodology, considered here, incorporates
this physical invariance.

5. Conclusions

Motivated by a wide range of applications of materials with shape memory effects in
biomedical engineering, which include a growing number of graphene-based structures,
in this paper we have paid special attention to GNRs with shape memory effects. A
pair of physics-based ML potentials (based on MTP) has been developed to relax two-
dimensional GO structures, each of them targets for different energy prediction range and
accuracy. Long-range interactions due to the magnetism found in ground state structures
affect the ML accuracy. A third potential has been generated for energy prediction of
GO nanoribbons close to ground state configurations, which allows the study of samples
with thousands of atoms, computationally expensive for a purely DFT approach. The ML
potential has been used to analyze the evolution of the two-phase feature for nanoribbons
with different widths. The suppression process begins around ∼50 nm and finishes around
∼6 nm nanoribbon’s width, although the magnetization associated with the second phase
is still present for 3 nm nanoribbon’s width. The ML potential feature predictions for a
3 nm nanoribbon’s width have been validated by DFT results.

Furthermore, the ML potential has been used to analyze different defects that can be
found in realistic GO nanoribbons. We found that the two-phase shape memory behavior is
destroyed for 10% of oxygen vacancy concentrations, but it is stable in front of line defects
that break the high oxygen order, provided that the generated strip domains are wide
enough to show the two-phase feature on their own. As such, the problems considered
here involve phase transformations and, even under simplifications made, are substantially
more complex and notoriously more difficult compared to those where MLIP techniques
have been applied so far. Moreover, we also found that the two-phase shape memory
behavior can be strongly affected by the introduction of nitrogen atoms replacing oxygen
atoms, compared to the substitution of oxygen by boron atoms. We expect that future
research will involve the generation of an ML potential to account for magnetic effects
and the stability of larger structures at non-zero temperatures. Finally, an overview of the
current and potential applications of SMMs in biomedical applications has been provided
in the context of data-driven approaches, in particular physics-informed MLIP techniques.
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