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Abstract: In Neonatal Intensive Care Units (NICUs), the early detection of neonatal seizures is
of utmost importance for a timely clinical intervention. Over the years, several neonatal seizure
detection systems were proposed to detect neonatal seizures automatically and speed up seizure
diagnosis, most based on the EEG signal analysis. Recently, research has focused on other possible
seizure markers, such as electrocardiography (ECG). This work proposes an ECG-based NSD system
to investigate the usefulness of heart rate variability (HRV) analysis to detect neonatal seizures
in the NICUs. HRV analysis is performed considering time-domain, frequency-domain, entropy
and multiscale entropy features. The performance is evaluated on a dataset of ECG signals from
51 full-term babies, 29 seizure-free. The proposed system gives results comparable to those reported
in the literature: Area Under the Receiver Operating Characteristic Curve = 62%, Sensitivity = 47%,
Specificity = 67%. Moreover, the system’s performance is evaluated in a real clinical environment,
inevitably affected by several artefacts. To the best of our knowledge, our study proposes for the first
time a multi-feature ECG-based NSD system that also offers a comparative analysis between babies
suffering from seizures and seizure-free ones.

Keywords: neonatal seizures; ECG; HRV; multiscale entropy; NICU

1. Introduction

Neonatal epileptic seizures represent the most common clinical sign of neurological
disease in newborns: the estimated incidence is about 1–5/1000 live births and 8.6/1000
in Neonatal Intensive Care Units (NICUs) [1]. They may lead to severe neurological
damage, developmental delay, post-neonatal epilepsy and neonatal death in the most
acute cases [2]. Therefore, the early detection of neonatal seizures is of utmost importance
for an effective and timely clinical intervention [3,4]. Recently, the American Clinical
Neurophysiology Society (ACNS) has defined video-electroencephalography (v-EEG) as
the gold standard for the identification and quantification of neonatal seizures [5]. Indeed,
the simultaneous and synchronous acquisition of EEG and video signals allows monitoring
of the spontaneous electrical cerebral activity along with functional parameters, behavioral
states and events causing artifacts. However, v-EEG involves a large amount of data to
manage and analyze. In addition, setting up the EEG equipment and interpreting the signal
requires expert staff available 24/24 h [6]. For these reasons, over the years, several studies
have proposed EEG-based neonatal seizure detection systems (NSDs) to automatically

Bioengineering 2022, 9, 165. https://doi.org/10.3390/bioengineering9040165 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9040165
https://doi.org/10.3390/bioengineering9040165
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0002-6291-1120
https://orcid.org/0000-0001-7455-5656
https://orcid.org/0000-0002-6540-5952
https://doi.org/10.3390/bioengineering9040165
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9040165?type=check_update&version=1


Bioengineering 2022, 9, 165 2 of 21

detect and characterize critical events to support the clinicians’ decision in the complex
diagnostic process [7]. To increase the NSD systems’ performance, researchers have focused
on other possible markers of critical events. Thus, electrocardiography (ECG) has been
investigated to evaluate alterations of the heart rate variability due to changes in the control
of the cardiovascular system [8–12]. Moreover, video recordings have been examined to
detect the presence of possible “unusual” movements of the newborn induced by seizure
events [11,13–19].

Latest research findings suggest that seizures strongly influence the adults’ and new-
borns’ cardiocirculatory activity [12,20–27]. The normal heart rate (HR) rhythm is deter-
mined by the rate of depolarization of the sinoatrial (SA) node and is defined as the number
of times per minute the heart beats. This rate is regulated by the Autonomic Nervous
System (ANS), specifically by its main components, which are the parasympathetic system,
which is responsible for decelerating the SA node activity and thus the HR rhythm, and the
sympathetic activity that has accelerating effects on the HR.

The term “heart rate variability” describes oscillations in consecutive cardiac cycles,
and its evaluation can indicate the effect of seizures on the ANS functions [28].

The HRV signal is usually obtained from ECG and can be analyzed with different algo-
rithms defined in time and frequency domains as well as methods derived from nonlinear
dynamics. Time domain analysis uses statistical and geometrical parameters to examine
HR variability. Frequency domain analysis involves estimating the power spectrum of the
R-R interval time series. More specifically, the HRV power spectrum is usually divided into
different spectral bands to describe the different physiological phenomena and activities of
the ANS. Methods derived from nonlinear dynamics, including those based on information
theory, estimate the complexity of cardiovascular dynamics [29]. Previous studies employ-
ing this methodology showed a loss of complex physiological variability under certain
pathological conditions, for example, measuring the unpredictability of the R-R interval
time series, and highlighted a reduced HR dynamic [30,31].

The analysis of ECG recordings is of increasing clinical interest as it could represent a
reliable approach to developing helpful systems to support seizure diagnosis. The advantage
is that the ECG signal is routinely performed, recordings are easier and it is less invasive
and less expensive than the EEG [10,32]. Most of the computer-based systems proposed
in the literature are developed to automatically detect seizure activity in adults and chil-
dren. De Coomant et al. proposed a patient-independent algorithm for online epileptic
seizure detection based on the analysis of single-channel ECG data from eight patients (age:
29–51 years) with temporal lobe epilepsy [33]. They used Linear Support Vector Machine and
Linear Discriminant Analysis classifiers. The best performance was found for the LDA-based
system, giving a Sensitivity (SEN) = 80% and Specificity (SPE) = 87%.

Behbahani et al. proposed Multilayers Perceptron (MLP) neural networks with differ-
ent numbers of hidden layers to detect seizures performing the HRV analysis on ECG data
from 15 patients (9 patients with complex partial seizures, 6 with secondarily generalized
seizures) (mean age 42.2 years) [34]. The MLP trained with the Levenberg–Marquardt
algorithm gave SEN = 83.33%, SPE = 86.11 and Accuracy (ACC) = 84.72% for the patients
with complex partial seizures, and for the patients with secondarily generalized seizures,
SNE = 86.66%, SPE = 90% and ACC = 88.33%.

Jeppesen et al. validated an HRV-based seizure detection algorithm analyzing ECG
signals recorded using a wearable device [35]. They performed an offline and patient-
specific analysis based on recordings from 19 patients (age: 4–62 years). The overall SEN
was 56.3%. They observed that the algorithm performed better on patients with marked
autonomic changes, giving an SEN = 87%.

Although these methods show appealing performance, they cannot be directly applied
to newborns due to their quite different electrophysiological activity. However, some
attempts to support seizure diagnosis through the ECG/HRV analysis have also been made
for newborns.
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Frassineti et al. investigated the ability of the HRV analysis of discriminating between
newborns with seizures and seizure-free ones in NICUs [36]. They developed a Linear SVM
system that was validated on 52 full-term newborns (33 with seizures and 19 seizure-free) of a
public dataset collected at the Helsinki University Hospital. The system gave an AUC = 87%.

A few other studies have focused on the HRV analysis to define efficient and reliable
automatic systems able to identify neonatal seizures’ occurrence.

Greene et al. presented an ECG-based system using a Linear Discriminant (LD)
classifier [9]. They considered a dataset of ECG recordings from seven full-term newborns
suffering from hypoxic ischemic encephalopathy (HIE) in the NICU of the Unified Maternity
Hospitals in Cork, Ireland, and the Kings’ College Hospital, London. The HRV analysis was
performed extracting properties of the R-R intervals in time, frequency and information
theory domains. They developed a patient-specific and a patient-independent system. The
first one provided an Accuracy (ACC) = 66.04%, Sensitivity (SEN) = 75.52% and Specificity
(SPE) = 57.70%, while the patient-independent system gave an ACC = 61.80%, SEN = 78%
and SPE = 51.75%.

Doyle et al. investigated the usefulness of the HRV analysis to detect neonatal seizures
introducing a Support Vector Machine (SVM)-based system [10]. They considered the
ECG recordings of 14 full-term newborns admitted in the NICUs of the Unified Maternity
Hospitals in Cork, Ireland. Concerning the HRV analysis, only a feature set defined in time
and frequency domains was considered. The system results were mean Area Under the
ROC Curve (AUC) = 60% and mean SEN = 60%.

However, the system performance was lower than that provided by the EEG-based
systems [7,37].

Our purpose is to assess a methodological improvement to the ECG-based NSD
systems. We have recently developed a Generalized Linear Model (GLM)-based system
analyzing statistical HRV features and features defined in frequency and information theory
domains [38]. The model was validated on 52 full-term newborns (33 with seizures and
19 seizure-free) of a public dataset collected at the Helsinki University Hospital. It gave
Concatenated Area Under the ROC Curve = 69%. In this paper, we investigate the use of
the SVM classifier, which is most widely used in the literature for the NSD task, as showed
in [7]. We considered ECGs from a dataset of video-EEG and ECG recordings collected at
the NICU of the Neuro-physiopathology Clinic, AOU Careggi, Firenze, Italy. The dataset
concerns 51 full-term babies, 29 of which are control patients. To the best of our knowledge,
it is the first study that compares healthy with pathological newborns, thus providing
detailed and representative results from a clinical point of view. The HRV analysis is
performed extracting features defined in time, frequency and information theory domains
as described in [9,10]. Specifically, entropy and multiscale entropy analyses were performed,
as they might provide additional cues for characterizing alterations in cardiocirculatory
activity during neonatal seizures [36].

This paper is organized as follows: Section 2 describes the dataset in detail. Section 3
reports the pre-processing steps required to extract the R-R time series, the implemented
methods to perform the HRV analysis, feature extraction and selection processes and the
classification and validation steps. Section 4 explains the metrics employed to test the
method’s performance. Section 5 resumes the achieved results. Section 6 is devoted to
discussing the usefulness of HRV analysis in the NSD task. Concluding remarks are drawn
in Section 7.

2. Dataset

A dataset of video-EEG and ECG recordings collected at the Neuro-physiopathology
and Neonatology Clinical Units of AOU Careggi (Firenze, Italy) was taken into account.
It was collected between March 2010 and October 2020. It consists of 51 full-term new-
borns with gestational age (GA) between 38 and 41 weeks. Out of 51 subjects, 29 were
control patients (CP). Specifically, 20 of them did not show any seizure event, and the
other 9 were healthy newborns in the Nursery. The remaining 22 newborns compose the
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pathological dataset as they were admitted to NICU mainly for suspected or diagnosed
hypoxic-ischemic encephalopathy (HIE). More specifically, 10 out of the 22 pathological
newborns showed electrographic-only seizures (EGP) characterized by abnormal changes
in the EEG signal and poor clinical signs such as ocular, oral/buccal/lingual and progres-
sion movements [10,39–41]. The remaining 12 subjects exhibited electroclinical seizures
(ECP), characterized by clinical signs coupled with EEG changes [42].

None of the considered newborns have heart disease that could affect the study; thus,
the proposed analysis was performed on the whole dataset.

Video-EEG and ECG data were synchronously recorded for each patient using the
Nemus ICU (EB Neuro S.p.A, Firenze, Italy) Galileo NT Line system, with a sampling
frequency of 128 Hz. The ECG signals were pre-processed using a high-pass filter with a
time constant of 0.1 s and a 50 Hz notch filter. Moreover, the one-lead ECG system was
equipped with two electrodes: the active one was placed on the left axillary line at the level
of the 7th rib, while the reference electrode was placed on the right clavicle.

The total length of recordings of the dataset was 45:46:44 h (mean duration per patient
00:53:51 h). An experienced neurologist independently annotated the seizure activity.
The total seizure duration across records for the 22 pathological newborns was 03:32:11 h
(EGP 00:22:07 h; ECP 03:10:04 h). The mean seizure duration per pathological patient was
00:09:39 h (EGP 00:02:13 h; ECP 00:15:50 h). The pathological dataset is reported in Table 1.
Specifically, for each pathological patient, Table 1 summarizes the length of recordings,
the number of seizure events and their duration and the etiology. Figure 1 shows seizure
events’ duration and seizure events’ occurrence.
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Table 1. Description of recordings of patients with electrographic (EGP) and electroclinical (ECP)
seizures. Recordings length, number of seizure events and their duration and etiology for each
pathological patient are reported.

Patients Record Length (h) Number of Seizure Events
Seizure Events Duration

Etiology
Average Min Max

EGP1 01:08:29 1 00:03:40 00:03:40 00:03:40 Metabolic

EGP2 01:09:34 8 00:00:24 00:00:12 00:00:43 HIE

EGP3 01:10:15 1 00:00:31 00:00:31 00:00:31 Other

EGP4 00:56:28 4 00:00:16 00:00:07 00:00:22 HIE

EGP5 01:02:30 3 00:01:45 00:01:18 00:02:00 HIE

EGP6 01:17:02 4 00:00:12 00:00:08 00:00:16 HIE

EGP7 01:05:53 1 00:00:50 00:00:50 00:00:50 HIE

EGP8 00:45:40 3 00:01:28 00:01:19 00:01:40 HIE

EGP9 01:20:39 1 00:00:29 00:00:29 00:00:29 Other

EGP10 00:58:22 1 00:01:40 00:01:40 00:01:40 Other

ECP1 00:48:12 1 00:48:12 00:48:12 00:48:12 Genetic

ECP2 00:54:31 13 00:01:48 00:00:27 00:09:49 Metabolic

ECP3 01:04:14 6 00:02:49 00:01:20 00:04:40 Stroke

ECP4 01:18:36 5 00:00:33 00:00:16 00:00:50 Genetic

ECP5 01:00:10 3 00:07:54 00:01:56 00:19:45 Other

ECP6 01:10:02 7 00:01:05 00:00:33 00:02:23 HIE

ECP7 00:54:06 1 00:10:26 00:10:26 00:10:26 Stroke

ECP8 01:00:43 10 00:02:53 00:01:19 00:11:04 Other

ECP9 01:30:08 5 00:00:48 00:00:22 00:01:16 HIE

ECP10 00:41:16 3 00:03:52 00:00:20 00:10:10 Stroke

ECP11 01:01:02 8 00:00:52 00:00:26 00:02:01 HIE

ECP12 01:20:06 3 00:01:58 00:01:19 00:02:31 HIE

Total 23:37:58 92

3. Methods

This section describes the methods implemented to develop an SVM-based system.
SVM makes use of both the Gaussian and the Linear kernel. The system aims at recording
and analyzing the ECG signal to highlight the occurrence of seizures. Moreover, when
provided with a suitable user interface, it could be a valid decision support tool for the clin-
icians, speeding up neonatal epileptic seizure detection and thus early clinical intervention.

The presented methods are performed on the raw ECG signals collected by the medical
staff in NICUs, without artifact correction to improve the recording quality.

The proposed system is implemented in MATLAB computing environment (version
2020b [43]), OS Windows 10, 64 bit. Processor: AMD Ryzen 9 3950X 16 Core 4.7 GHz, RAM
64 Gb, GPU NVIDIA RTX 2060 Super 8 GB GDDR6.

In the following subsections, we report the processing methodology implemented into
the system. It is split into three subsections. The first describes the ECG windowing process
and the extraction algorithm for the interbeat interval (IBI) time series computation (also
named RR time series, i.e., the time series composed by the time intervals between consecutive
R peaks); the second subsection reports both the features extraction and feature selection
methods. Eventually, in the third, the classification and validation steps are explained.
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3.1. ECG Windowing and RR Time Series Extraction

The ECG signals were segmented into non-overlapping time windows, called “epochs” [44].
We considered both 60 s epochs [8–10] and 180 s epochs [25]. The experienced neurologist
labeled the seizure events indicating both the beginning and the ending time instant of a
seizure. Since an event labeled by the clinician did not precisely overlap with one or more
epochs, we labeled an epoch as a “seizure epoch” if at least one sample of the signal fell
inside a time interval previously classified by the experienced neurologist as a seizure event.

One of the most crucial aspects of the ECG analysis was the identification of QRS
complexes for the segmentation into single beats. This ECG pre-processing enabled HRV
estimation and thus found out the possible seizure’s effects on the ANS [45].

In particular, the localization of the R peaks was performed by implementing the
Pan–Tompkins algorithm [46,47], as it was previously used for R peaks detection from
neonatal ECGs [48]. Given the time instants at which R peaks were detected, we computed
the time distance between each pair of consecutive R peaks obtaining the RR time series.
In order to develop a fully-automatic ECG-based NSD system, no correction procedures
visual-inspection-based were performed to remove false detections and ectopic beats.

3.2. Features Extraction

The HRV analysis was performed for each epoch, extracting a set of features defined in
time, frequency and information theory domains. More specifically, we extracted 18 features
for both 60 and 180 s epochs. These features were selected among the most widely used
in the literature for HRV analysis [9,10,24,49]. To increase the system performance, we
introduced additional features concerning the multiscale entropy, as they could provide
additional useful information to characterize alterations in cardiovascular activity during
neonatal seizures [36]. More specifically, we considered the Multiscale Sample Entropy
(MSE) [50] and the Multiscale Distribution Entropy (MDE) [51], which were computed
implementing the coarse-grained procedure [36]. The multiscale entropy indexes describe
and characterize the HRV complexity at multiple time scales. Recently, the multiscale
entropy analysis was successfully applied to ECG signals to detect seizures in adults [52].
We considered the Sample Entropy (SampEn) [53] one of the entropy measures most applied
to physiological signals analysis. It measures the unpredictability of a time series according
to Equation (1):

SampEn = − log
A
B

(1)

where A is the number of cases in which two sets of data points of length m + 1 have
distance <r for a given embedding dimension m and tolerance r; B is the number of cases
in which two sets of data points of length m have distance <r.

However, the SampEn is strongly dependent on the number of samples of the investi-
gated signal, the embedding size (m) and the tolerance (r) [52]. Therefore, an erroneous and
inaccurate combination of these parameters may lead to inconsistent results. To overcome
this drawback, the Distribution Entropy (DistEn) was introduced [54]. It is defined in
Equation (2):

DistEn(m) = − 1
log2(M) ∑M

t=1 pt log2(pt) (2)

where M is the number of bins of the histogram built by evaluating the distances between
pairs of sets of data points of length m, pt is the frequency of each bin. Several studies in
the literature suggested DistEn as a promising marker of arrhythmias from R-R interval
time series [54–56].

The MSE was implemented defining the embedding size equal to 2 and the tolerance
value equal to 0.2 [57]. The MDE was implemented defining the embedding size equal to
2, the time delay equal to 1 and the number of bins equal to 512. Moreover, considering
the average newborn heart rate at rest (100–200 bpm [10]), we computed these features
up to scale 4 for the 180 s epochs and considered only the scale 1 for the 60 s epochs. It
allowed us to achieve at least 102 points on each scale. This choice was made to avoid an
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inaccurate estimation of entropy parameters due to a coarse-grained scale at higher scales
where the number of points could be too low [36,58]. All the considered features and a
short description of each are reported in Table 2.

Table 2. Features extracted for HRV analysis. Domain, unit of measure and a short description are
provided for each feature.

Feature Unit of Measure Short Description

Time
domain

SDSD (ms) Standard deviation of successive R-R interval differences

SDNN (ms) Standard deviation of R-R intervals

RMSDD (ms) Root mean square of successive differences

pNN50 (%) Probability of R-R intervals > 50 ms e < −50 ms

TRI - Area of the histogram of R-R intervals divided by its maximum height

TINN (ms) Width of the R-R intervals histogram evaluated trough triangular interpolation

CD - Correlation dimension

SD2 (ms) Standard deviation of Poincarè plot along the line-of-identity

SD1SD2ratio - Ratio of standard deviation of Poincarè plot perpendicular to the line-of-identity
to standard deviation of Poincarè plot along the line-of-identity

HR (beats/min) Average heart rate

Frequency
domain

VLF (ms2) Spectral density (computed through FFT) of the linear interpolated R-R
tachogram up to 0.04 Hz (very low frequency) [25]

LF (ms2) Spectral density (computed through FFT) of the linear interpolated R-R
tachogram between 0.04 and 0.3 Hz (low frequency) [25]

HF (ms2) Spectral density (computed through FFT) of the linear interpolated R-R
tachogram between 0.3 and 1.3 Hz (high frequency) [25]

LFHFratio - Ratio between spectral density of low frequency parts and high frequency parts

TP (ms2) Total spectral density

pLF (%) Percentage of spectral density of low frequency parts to total spectral density
minus the spectral density of very low frequency parts

pHF (%) Percentage of spectral density of high frequency parts to total spectral density
minus the spectral density of very low frequency parts

Information theory
domain

ApEn - Approximate Entropy

Multiscale DistEn Scale (1–4) - Multiscale Distribution Entropy from scale 1 to scale 4 for the 180 s epochs; at
scale 1 for the 60 s epochs

Multiscale SampEn Scale (1–4) - Multiscale Sample Entropy from scale 1 to scale 4 for the 180 s epochs; at scale 1
for the 60 s epochs

Total 20 (60 s epochs)/26 (180 s epochs)

3.3. Feature Selection, Classification and Validation

In this study, the feature sets extracted from each epoch were normalized (zero mean
and unit variance). To manage the presence of missing feature values in the dataset, an
imputation process was performed. It replaces missing values with the average values
of the features set. Moreover, a feature selection algorithm was applied to identify the
most informative subset of features. The feature selection process allows us to reduce
the number of those features that did not add significant information, making the classes
separation difficult [59]. The Minimal-Redundancy-Maximal-Relevance (mRMR) algorithm
was implemented. It is a filter model characterized by a low computational complexity [60].
Redundancy is defined as the average value of the mutual information between each
feature and the whole set of features. The relevance is the average value of the mutual
information between each feature and the target class. The mRMR algorithm maximized
the mutual information between the features and the target class. It ensured that the mutual
information between the new features and the already chosen ones was minimal. The
features corresponding to the minimum redundancy and the maximum relevance were
selected [60]. The mRMR algorithm has been tested on several clinical datasets, leading to
promising performances in classification problems [61,62].

The optimal features set selection step was performed by comparing the classification
performances of a Support Vector Machine (SVM) classifier fed by the full features set and
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then the subsets of 2 to 20 features chosen according to the order of ranking determined
with mRMR [10].

The Linear SVM is a supervised learning technique that performs classification, finding
the hyperplane that maximizes the margin between the two considered classes, thus separat-
ing data into two non-overlapping classes [63]. When data are not perfectly separable, SVM
searches for the hyperplane that maximizes the margin and minimizes the misclassifications
by introducing a regularization penalty term called λ. In general, the problem of maximizing
the margin leads to minimizing the norm of the vector perpendicular to the hyperplane.

This optimization problem can be solved using different routines called Solvers [64].
When data are not linearly separable, kernel functions are applied to map the samples into
a high-dimensional feature space in which linear classification is possible. In that case, the
Gaussian kernel approach was used.

The main hyperparameters of the Linear and the Gaussian SVMs with a short descrip-
tion are reported in Tables 3 and 4, respectively [64,65].

Table 3. Main hyperparameters of the Linear SVM.

Linear SVM

Hyperparameters Short Description

λ
Regularization penalty term introduced to search for the hyperplane that
maximizes the margin and minimizes the misclassifications.

Costs Misclassification costs introduced to mitigate the class imbalance that occurs
when one class has a smaller number of examples compared to the other.

Seizure detection is an inevitably unbalanced problem because a short duration usually
characterizes critical events as compared to non-critical activity [66]. In our dataset, the
total duration of pathological patients’ recordings was 23:37:58 h, and the total duration of
their seizure activity was only 03:32:11 h. Moreover, we also considered control patients,
thus making the dataset more unbalanced. The unbalanced data distribution can affect
the detection and classification performance leading to biased classifier results toward the
majority class to which the non-seizure data belonged. To deal with this problem, data in
the non-seizure and the seizure class were managed asymmetrically by introducing the
Costs C1 and C2, respectively, thus assigning different weights to the elements of the classes
during the training step [67].

Table 4. Main hyperparameters of the Gaussian SVM.

Gaussian SVM

Hyperparameters Short Description

Box Constraints Regularization term that controls the number of misclassifications [68].

Kernel Scale Scaling parameter for the input data preventing some features that have a
wider range than others from becoming dominant in the kernel calculation.

Costs Misclassification costs introduced to mitigate the class imbalance that occurs
when one class has a smaller number of examples compared to the other.

Figure 2A,B show the unbalanced data in the experiments based on the segmentation
of the ECG signal into the 60 and 180 s epochs, respectively: in the first case, we had
2733 non-seizure and 277 seizure epochs; in the second one, we had 893 non-seizure and
139 seizure epochs. We labeled an epoch as a seizure if at least one sample of the signal was
classified as belonging to a seizure event previously marked by the experienced neurologist.
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Figure 2. Unbalanced data in the experiments based on the segmentation of the ECG signal into the
60 s (A) and 180 s (B) epochs.

To find the optimal hyperparameters values for each classifier, we performed the Grid
Search optimization and the Leave One-Subject Out (LOSO) cross-validation. The Grid
Search operation implemented an exhaustive search through a manually specified subset
of the hyperparameter space of the learning algorithm. The LOSO method provided an
almost unbiased estimation of the true generalization error. It is an iterative method: at
each iteration, the training set is defined by excluding the registration of a patient, and the
test set is composed of the data from that excluded patient. This process is repeated until
each patient has been considered as a test subject. Thus, it performs a good evaluation
of the system’s ability to generalize the classification: once trained on all the available
data, it achieves performances similar to those obtained by the system with an unknown
dataset [69,70]. LOSO is very useful for small datasets as no subsampling of the original
dataset is performed, thus reducing the risk of overfitting.

4. Performance Metrics

The main metrics used to describe the performance of seizure detection systems can
be divided into epoch-based and event-based metrics [44,71].

The epoch-based metrics consider the segmentation of the signals into epochs. The set
of analyzed epochs is divided into two classes: the seizure epochs, which are conventionally
named “positive”, and the non-seizure epochs, which are named “negative”. Neonatal seizure
detection can be modeled as a binary supervised problem. Generally, the classifiers developed
for seizure detection provide the probability that a certain epoch belongs to the positive or
negative class. System performance is obtained by evaluating the decisions made by the
classifier against the manual labeling made for each epoch by the experienced neurologist.

The decision made by the classifier can be represented by the so-called confusion
matrix made of four categories: true positives (TP), i.e., epochs correctly labeled as seizures;
false positives (FP), i.e., epochs incorrectly labeled as seizures; true negatives (TN), which
refer to correctly labeled non-seizure epochs; false negatives (FN) that are epochs incorrectly
labeled as non-seizure [44]. As an example, Figure 3 shows the comparison between the
labeling made by the expert (Figure 3A) and the time-windows classified by the system
(Figure 3B). In this example, the system correctly labeled three epochs as seizures (TP) and
five epochs as non-seizures (TN), while it wrongly labeled two epochs as seizures (FP) and
five epochs as non-seizures (FN).
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(A) and the time-windows classified by the system (B). In this example, the detector finds two false
positive (FP), five false negative (FN), three true positive and five true negative (TN) values.

In the literature, two main metrics are widely used to evaluate NSD systems’ per-
formance: Sensitivity (SEN) and Specificity (SPE). SEN (Equation (3)) is defined as the
ratio of the number of epochs correctly labeled as seizures and the total number of seizure
epochs [44]. SPE (Equation (4)) is defined as the number of epochs correctly labeled as
non-seizures over the total number of non-seizure epochs [44].

SEN =
TP

TP + FN
(3)

SPE =
TN

TN + FP
(4)

However, these metrics can be misleading evaluation measures for unbalanced prob-
lems. Thus, we also introduced the Fisher score (F1) (Equation (5)) that describes the
balance between SEN and SPE.

F1 =
2∗SEN ∗ PRE
SEN + PRE

(5)

where PRE stands for Precision (Equation (6)) which is defined as the ratio of the number
of epochs correctly labeled as seizures and the total number of epochs labeled as seizure.

PRE =
TP

TP + FP
(6)

Most studies also report as metrics the Receiver Operator Characteristic (ROC) curves,
obtained by plotting SEN against SPE (or 1-SPE), and the Area Under the ROC Curve
(AUC), which is another useful parameter for comparing the performances of different
systems [44].

In the event-based metrics the time interval between the starting and the ending time
instant of a seizure labeled by the experienced neurologist is called “event”. Thus, an
event is correctly detected when the classifier correctly labels at least one seizure epoch
inside the interval defined by the neurologist. Figure 4 shows an example where the
classifier correctly identified three seizure epochs (solid circles in Figure 4B) during two
different seizure events. Thus, it correctly detected the two seizure events (signed by the
tick symbols in Figure 4A). However, the classifier did not detect a seizure epoch during
the last event (dashed circle in Figure 4B), thus missing that event (signed by the cross
symbol in Figure 4A).
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Figure 4. Example of the event-based metrics: comparison between the labeling made by the expert
(A) and the time-windows classified by the system (B). An event is considered as correctly identified
if the system detects at least one epoch during the event. In this example, the first two events are
correctly identified, while the third one is not identified.

The main event-based metrics are:

• Good Detection Rate (GDR): the overall percentage of the seizure events correctly
identified by the system [44]. A seizure event is correctly identified if the system
detects at least one epoch during the event.

• False Discovery Rate (FDR): the overall percentage of the seizure events incorrectly
identified by the system [44].

• False Detection per Hour (FDH): the number of seizure events identified by the system
in 1 h that have no overlap with the events labeled by the expert [44].

We quantified the performance of the models using all above mentioned metrics.
Additionally, we investigated the seizure detection delay by introducing the time

delay metric, evaluated as the time interval between the seizure onset marked by the expert
and the end of the first seizure epoch that identifies that seizure event, as shown in Figure 5.
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Figure 5. Example of the time delay metric: comparison between the labeling made by the expert
(A) and the time-windows classified by the system (B). The time delay describes the time interval
between the seizure detected by the algorithm and the seizure onset marked by the expert.

5. Results

The Grid Search operation was implemented through a model for every combination
of specified hyperparameters, and we evaluated each model using the above mentioned
metrics. More specifically, we tested the Linear and Gaussian SVMs trained using the full
set of features and the subsets selected through mRMR. We selected the models with the
best average AUC values for pathological patients. Performance and hyperparameters of
these models for the experiments based on the segmentation of the ECG signal into the 60
and 180 s epochs are listed in Tables 5 and 6, respectively.
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Table 5. Models with the best average AUCs obtained in the experiment based on the segmentation
of the ECG signal into 60 s implementing the LOSO cross-validation.

Model N◦

Features
Hyperparameters

AUC
(%)

SEN
(%)

SPE
(%)

GDR
(%)

FDH
(h−1)

FDR
(%)

F1
(%)

Time Delay
(s)

(Mean ± Standard Error)

Linear
SVM

Full feature set (20)
λ = 10−5

Solver: dual
C1 = 1; C2 = 2

52 ± 4 24 ± 7 89 ± 3 27 ± 8 2 ±1 4 ± 1 12 ± 4 56 ± 3.5

Features
selected through mRMR (20)

λ = 10−8

Solver: dual
C1 = 1; C2 = 7

54 ± 3 26 ± 8 87 ± 3 36 ± 8 3 ± 0.4 5 ± 1 15 ± 4 116 ± 10

Gaussian
SVM

Full feature set (20)
Box Constraint: 1
Kernel Scale: 5
C1 = 1; C2 = 7

52 ± 3 29 ± 8 84 ± 4 34 ± 9 4 ± 1 6 ± 1 16 ± 5 42 ± 0.6

Features selected with mRMR (5)
Box Constraint: 0.5
Kernel Scale: 1
C1 = 1; C2 = 7

54 ± 3 24 ± 8 85 ± 2 27 ± 9 3 ± 1 6 ± 1 16 ± 5 55 ± 3

Table 6. Models with the best AUCs obtained in the experiment based on the segmentation of the
ECG signal into 180 s implementing the LOSO cross-validation.

Model N◦

Features
Hyperparameters

AUC
(%)

SEN
(%)

SPE
(%)

GDR
(%)

FDH
(h−1)

FDR
(%)

F1
(%)

Time
Delay

(s)

(Mean ± Standard Error)

Linear
SVM

Full feature set (26)
λ = 10−7

Solver: dual
C1 = 3; C2 = 1

56 ± 5 22 ± 7 87 ± 3 31 ± 8 1 ± 0.2 6 ± 1 20 ± 6 141 ± 4

Features
selected with mRMR (2)

λ = 10−7

Solver: dual
C1 = 1; C2 = 40

58 ± 5 22 ± 9 77 ± 5 25 ± 9 1 ± 0.2 4 ± 1 13 ± 1 138 ± 15

Gaussian
SVM

Full feature set (26)
Box Constraint: 0.5
Kernel Scale: 25
C1 = 1; C2 = 5

50 ± 4 51 ± 1 61 ± 5 58 ± 10 2 ± 0.3 10 ± 1 27 ± 6 117 ± 13

Features selected through mRMR (2)
Box Constraint: 5
Kernel Scale: 0.1
C1 = 1; C2 = 200

62 ± 5 47 ± 8 67 ± 3 62 ± 9 3 ± 0.3 16 ± 1 29 ± 5 123 ± 3

The results reported in Tables 5 and 6 suggest that an epoch length of 180 s is appro-
priate to analyze and detect seizure events in the considered dataset. Therefore, we focused
on the experiment based on the signal segmented into 180 s epochs.

Figure 6 shows the 26 features defined for this experiment and described in Table 2. It
also displays their classification relevance based on the mRMR’s predictor importance score.

Moreover, we evaluated the Sensitivity values for each pathological patient
(ECP = newborns with electroclinical seizures, EGP = newborns with electrographic
seizures). Figure 7 shows schematic representations of the Sensitivity values for the
22 pathological patients obtained by the Linear SVM models. A circular sector describes
each patient (EGP and ECP), and each Sensitivity value is represented by the radius: 0% is
at the center, and 100% is at the outer circumference. More specifically, the model trained
using the full set of features resulted in 10 out of 22 pathological patients characterized
by Sensitivity values >0, as shown in Figure 7A. The model trained with the subset of
2 features selected through the mRMR algorithm, shown in Figure 7B, gave worse results:
only 7 out of 22 pathological patients were characterized by Sensitivity values >0. Similarly,
Figure 8A,B show the Sensitivity values for the pathological patients obtained by the Gaus-
sian model trained with the full set of features and the subset of two features selected with
the mRMR algorithm, respectively. The first one gave 15 patients with Sensitivity values >0.
The second one gave 17 patients with Sensitivity values >0.
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Figure 7. (A) Schematic representation of the Sensitivity values for the 22 pathological patients,
iteratively obtained by the Linear SVM model trained on the full set of features during the LOSO
cross-validation. A total of 10 out of 22 pathological patients are characterized by Sensitivity values >0.
(B) Schematic representation of the Sensitivity values for the 22 pathological patients, iteratively
obtained by the Linear SVM model trained on the subset of two features selected through the
mRMR algorithm during the LOSO cross-validation. A total of 7 out of 22 pathological patients are
characterized by Sensitivity values >0.
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Figure 8. (A) Schematic representation of the Sensitivity values for the 22 pathological patients,
iteratively obtained by the Gaussian SVM model trained on the full set of features during the LOSO
cross-validation. A total of 15 out of 22 pathological patients are characterized by Sensitivity values >0.
(B) Schematic representation of the Sensitivity values for the 22 pathological patients, iteratively
obtained by the Gaussian SVM model trained on the subset of two features selected through the
mRMR algorithm during the LOSO cross-validation. A total of 17 out of 22 pathological patients are
characterized by Sensitivity values >0.

Considering the overall performance, the Gaussian SVM model trained using a
subset of two features seems to provide a good tradeoff between a high AUC value
(mean ± standard error: 62 ± 5%) and a large number of patients with Sensitivity >0.
We also calculated the concatenated AUC (AUCcc), defined as the Area Under the ROC
curve, across all the concatenated recordings [72]. This ROC curve, shown in Figure 9, was
built linking together all the recordings from control and pathological patients. The AUCcc
was equal to 63%.
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6. Discussion

This study aimed to develop an SVM-based system to automatically detect neonatal
seizures in NICUs by investigating ECG recordings. In order to analyze the effects that
seizures might have on the Autonomic Nervous System (ANS), the HRV analysis was per-
formed based on features defined in time, frequency and information theory domains [9,10].
In addition, entropy and multiscale entropy features were also considered.

According to the main ECG-based scientific approaches for the NSD task [8–10,25],
two experiments were performed, segmenting the ECG signals into the 60 and 180 s epochs,
respectively. These choices are based on the following considerations. The Task Force
of the European Society of Cardiology and the North American Society of Pacing and
Electrophysiology suggested time windows of 5 min as standard time duration for the
HRV analysis in adults [28]. As the average newborn heart rate at rest is higher than that
of adults, a 3 min window should contain a comparable number of beats with respect to
the 5 min in adults [24]. Moreover, in our dataset, 89% of seizures last less than 3 min, and
about 40% of them last less than 1 min, as shown in Figure 1. Therefore, in most cases
windows lasting 1 min are too short to include a seizure event. Additionally, as suggested
in [73], changes in the autonomic (ANS) functions related to epilepsy might be observed in
the ictal period and the interictal and postictal periods, both close to the ictal events. Thus,
longer time windows might be able to catch these variations accurately.

Based on these considerations, the results reported in Tables 5 and 6 suggest that, for
our dataset, an epoch length of 180 s achieved better ability in detecting and analyzing
seizure events than 60 s epochs, although it leads to an increase in the seizure detection
delay, which is assessed with the time delay metric. Indeed, this measure is heavily
influenced by the time duration of the epochs in which the signal is segmented and the
processing time required to run the algorithms [7]. In the experiment based on the signal
segmentation into 60 s epochs, the time delay ranged between (mean ± standard error)
42 ± 0.6 and 116 ± 10 s. In the experiment based on the signal segmentation into 180 s
epochs, the time delay ranged between (mean ± standard error) 117 ± 13 and 141 ± 4 s.
Thus, although it achieved better overall performance, as shown in Table 6, the system
developed segmenting the ECG signals into 180 s epochs would not seem suitable for
real-time applications. However, the use of overlapping time windows, which could reduce
the system’s response time, should be investigated.

As mentioned above, we labeled an epoch ad a seizure epoch if at least one sample of
the signal fell inside a time interval previously classified by the experienced neurologist as a
seizure event. This choice could seem extreme, leading to reduced performance. However,
finding a clinical univocal definition of neonatal seizure is still challenging, and thus also
finding an operational definition for the NSD task is very tricky. Some papers consider
a seizure epoch when 50% of the time window contains seizure [9]. This choice is not
feasible for our dataset segmented into 180 s epochs, because about 66% of seizures last less
than 90 s, and the risk of missing them would occur. According to the American Clinical
Neurophysiology Society (ACNS) [5], which defined an electrographic neonatal seizure
as “a sudden, abnormal EEG event, defined by a repetitive and evolving pattern with a
minimum 2 µV peak-to-peak voltage and duration of at least 10 s”, we tested our methods
re-labeling an epoch as a “seizure epoch” if it contains at least 10 s of seizure previously
classified by the experienced neurologist as a seizure event. However, we achieved lower
performance than those reported in Tables 5 and 6. Indeed, ACNS also remarks that the
choice of 10 s is conventional and arbitrary; thus, other seizure durations should also be
evaluated in NSD experiments. Based on this evidence, the choice of considering at least
one signal sample could be cautionary, even if drastic. The AUC values reported in Table 6
show that the Linear and Gaussian SVM models trained using a subset of two features look
promising. They gave AUC values equal to (mean ± standard error) 58 ± 5 and 62 ± 5%.
These models were trained using the Triangular Index (TRI) and the average heart rate
measurements, as shown in Figure 6. The TRI is a geometrical measure that estimates the
overall HRV [28]. Its main advantage is its relative insensitivity to artifacts [74,75]. To
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the best of our knowledge, no other studies analyzed the relationship between the TRI
values and the seizure events in newborns. However, some works developed for adults [76]
and children [77] have observed that TRI values were lower in epileptic patients than in
controls, reflecting reduced parasympathetic and increased sympathetic activities during
seizures [74]. This research evidence supports our results, suggesting that TRI is a robust
and valuable measure for discriminating between seizure and non-seizure epochs.

The average heart rate feature is important as well. Indeed, heart rate is one of the
most common autonomic manifestations of seizures in the neonatal period [40,78]. Several
authors reported significant changes in heart rate during adult epileptic seizures [27,79–81].
These changes were also observed in neonatal seizures. Greene et al. considered five
recordings from four epileptic neonates, and their study showed a significant increase in
heart rate during clinical and subclinical seizures [82]. Statello et al. found that HR values
were significantly higher during seizure events than the interictal periods far from the
seizure events [25].

Table 6 shows high values of AUC, appealing FDH (mean ± standard error: 1 ± 0.2 h−1)
and FDR (mean ± standard error: 4 ± 1%) values obtained by the Linear SVM model
trained using the two features described above. However, it achieves a rather low average
Sensitivity (mean ± standard error: 22 ± 9%), GDR (mean ± standard error: 25 ± 9%) and
F1 (mean ± standard error: 13 ± 1%). Indeed, as shown in Figure 7B, it gives Sensitivity
values >0 only for 7 out of 22 pathological patients. Instead, in our opinion, a reliable
NSD should give a Sensitivity >0 for the largest number of pathological patients, as missed
seizures could have a higher impact on the newborn’s health status than false positives.
Moreover, detecting at least one seizure epoch for each pathological patient may speed
up the diagnostic decision process and thus early clinical intervention. It highlights the
recordings on which the medical staff should focus its attention for further analysis. There-
fore, the Gaussian SVM model trained using the two features (TRI and average HR) should
be preferable, although it gave worse values of FDH (mean ± standard error: 3 ± 0.3 h−1)
and FDR (mean ± standard error: 16 ± 1%). On the other hand, it provided a high AUC
value (mean ± standard error: 62 ± 5%) and increased Sensitivity (mean ± standard
error: 47 ± 8%) and F1 (mean ± standard error: 29 ± 5%) values. At the same time, it
gave Sensitivity values >0 for 17 out of 22 pathological patients, as shown in Figure 8B.
Moreover, the Gaussian SVM model gave higher Sensitivity values for 64% of pathological
patients than those given by the Linear SVM.

Concerning Sensitivity and Specificity, our results are slightly worse than those re-
ported by Greene et al. [9] and Doyle et al. [10]. However, a comparison is challenging
because a standardized performance assessment framework for the seizure detection task
is currently missing, and the metrics used to report NSD systems results vary in the litera-
ture [44]. Moreover, our study was retrospective as we trained and validated our methods
on ECGs collected by the medical staff in NICUs, with no artifact correction to improve
the recording quality. Thus, raw signals could be affected by noisy artifacts such as those
due to natural newborns’ motor activity and therapeutic maneuvers performed by the
clinicians. Furthermore, most NSD systems proposed in the literature are evaluated on
private datasets only. Greene et al. [9] proposed a Linear SVM for automatic HR-based
seizure detection based on a dataset of eight ECG recordings from seven full-term newborns
admitted in NICU for HIE. This dataset contained 101 h of recordings. Doyle et al. [10] pro-
posed a Linear SVM that was evaluated on a dataset of 208 h of recordings from 14 full-term
newborns admitted in NICU for HIE.

In this study, we considered a dataset of about 46 h of recordings from the Neuro-
physiopathology NICU Clinic, AOU Careggi, Firenze, Italy. Even though our dataset is
made of fewer hours of recordings, it concerns a wider set of subjects which is made of
51 full-term babies, 22 of which have seizures, and 29 are control patients. To the best of our
knowledge, our study is the first one that proposes an ECG-based NSD system focusing the
analysis also on a set of control newborns, thus offering a more representative picture of the
performance of the system in a real clinical environment. Indeed, also considering healthy
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newborns would provide an effective NSD system to support clinicians in distinguishing
between pathological and healthy patients.

Overall, the performances of the ECG-based systems are lower than those provided
by the EEG-based systems [37]; thus, they seem not suitable for clinical implementation.
EEG is the basic technique for detecting neonatal seizures as it allows recording and
analyzing the spontaneous electrical cerebral activity [5,38]. The reasons behind this gap
in performance between EEG-based NSD and ECG-based systems could be several and
heterogeneous [7,9–11,36]. A detailed investigation of such reasons is out of the aim of
this work, but it could be addressed in future studies. However, there is still room for
improvement in HRV features for neonatal seizure detection. For example, searching for
different and specific nonlinear features that can better describe the heart rate dynamics in
neonatal patients could be advisable [24]. Furthermore, there is still a lack of information
about possible relationships between the Autonomic Nervous System and the Central
Nervous System during neonatal seizures. Thus, understanding and characterizing the
interactions between the two systems [83–85] during or close to ictal events in the newborn
might add helpful information in the seizure detection problem. Moreover, to the best of
our knowledge, for ECG/HRV analysis, no deep-learning method was proposed in the
literature for neonatal seizure detection. Considering the improvement obtained by DL
techniques on EEG, these methods should also be evaluated on NSD experiments with
ECG signals [7].

7. Conclusions

This study investigates the use of HRV analysis to detect neonatal seizures in the
NICUs. Specifically, the HRV analysis was investigated introducing additional features to
those most widely used in the literature for HRV analysis [9,10,24,49] describing multiscale
entropy and exploring its capability to detect abnormal heart rate dynamics due to seizure
events. We developed a Gaussian SVM-based system based on the segmentation of the
ECG signal into the 60 and 180 s epochs, finding out that the epoch length of 180 s is more
suitable for analyzing our dataset.

Our findings may confirm that HRV analysis can be helpful to characterize the dynam-
ics of ictal events in the newborn. Moreover, although at present ECG-based NSD cannot
replace EEG-based NSD, when properly developed, they may represent a valid alternative
to EEG systems, especially when these are not readily available.
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