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Abstract: Kidney cancer has several types, with renal cell carcinoma (RCC) being the most prevalent
and severe type, accounting for more than 85% of adult patients. The manual analysis of whole
slide images (WSI) of renal tissues is the primary tool for RCC diagnosis and prognosis. However,
the manual identification of RCC is time-consuming and prone to inter-subject variability. In this
paper, we aim to distinguish between benign tissue and malignant RCC tumors and identify the
tumor subtypes to support medical therapy management. We propose a novel multiscale weakly-
supervised deep learning approach for RCC subtyping. Our system starts by applying the RGB-
histogram specification stain normalization on the whole slide images to eliminate the effect of the
color variations on the system performance. Then, we follow the multiple instance learning approach
by dividing the input data into multiple overlapping patches to maintain the tissue connectivity.
Finally, we train three multiscale convolutional neural networks (CNNs) and apply decision fusion to
their predicted results to obtain the final classification decision. Our dataset comprises four classes of
renal tissues: non-RCC renal parenchyma, non-RCC fat tissues, clear cell RCC (ccRCC), and clear
cell papillary RCC (ccpRCC). The developed system demonstrates a high classification accuracy
and sensitivity on the RCC biopsy samples at the slide level. Following a leave-one-subject-out
cross-validation approach, the developed RCC subtype classification system achieves an overall
classification accuracy of 93.0% ± 4.9%, a sensitivity of 91.3% ± 10.7%, and a high classification
specificity of 95.6% ± 5.2%, in distinguishing ccRCC from ccpRCC or non-RCC tissues. Furthermore,
our method outperformed the state-of-the-art Resnet-50 model.

Keywords: convolutional neural network; renal cell carcinoma; weakly supervised learning;
histopathology

1. Introduction

Kidney cancer is the 9th most commonly occurring cancer in men, and it is less
common in women (14th) [1]. Renal cell carcinoma (RCC) is the most common and
aggressive type of kidney cancer in adults. It affects nearly 300,000 individuals worldwide
annually, and it is responsible for more than 100,000 deaths each year [2]. It develops in the
lining of the proximal kidney tubules, where cancerous cells grow over time into a mass
and might spread to another organ. The symptoms of RCC are usually hidden and not
easily diagnosed.

Many challenges hinder the classification of RCC subtypes, such as the lack of large
datasets with precisely localized annotations. Additionally, there is a severe data imbalance
since the clear cell subtype comprises the majority of the clinical cases, and the coherency
of RCC cells in these different subtypes and the variations in the appearance of the same
subtype cells on different resolution levels are also challenges. Recent RCC classification
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frameworks depend on the precious annotation of pathology digital slides. We propose a
weakly supervised learning approach to classify renal cells using image-level labels where
no additional costly localized annotations are required. Histopathology images can exhibit
dramatically diverse morphology, scale, texture, and color distributions, impeding the
extract of a general pattern for tumor detection and subtype classification. The main idea of
weakly supervised learning is to translate image-level annotations into pixel/patch-level
information. This approach will eliminate the annotations burden on pathologists [3].

The histological classification of RCC is essential for cancer prognosis and the manage-
ment of treatment plans. Manual tumor subtype classification from renal histopathologic
slides is time-consuming and subjective to pathologists’ experience. Each RCC subtype
might lead to a different treatment plan, a different survival rate, and a completely different
prognoses. We propose an automated CNN-based RCC subtype classification system to
assist pathologists with renal cancer diagnosis and prognosis.

1.1. Background

RCC is a type of kidney cancer that arises from the renal parenchyma, as shown in
Figure 1. Renal parenchyma is the functional part of the kidney, where the tubes filter the
blood in the kidneys.

Figure 1. Kidney parenchyma.

RCC has many different subtypes shown in Figure 2, each with different histology, dis-
tinctive genetic and molecular alterations, different clinical courses, and different responses
to therapy [2]. The three main histological types of RCC are [4].

Figure 2. RCC subtypes.

Clear cell RCC (70–90%): This type of lesion contains clear cells due to their lipid-
and glycogen-rich cytoplasmic content. This tumor also depicts cells with eosinophil
granular cytoplasm. The imaging of clear cell RCC (ccRCC) reveals hypervascularized and
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heterogeneous lesions because of the presence of necrosis, hemorrhage, cysts, and multiple
calcifications [5]. It has the worse prognosis among other RCC subtypes; its 5-year survival
rate is 50–69%. When it expands in the kidney and spreads to other parts of the human
body, treatment becomes challenging, and the 5-year survival rate falls to about 10% as per
the National Cancer Institute (NCI).

Papillary RCC (14–17%): This type occurs sporadically or as a familial condition.
Pathologists usually partition this type into two subtypes based on the lesion’s histological
appearance and biological behavior. The two subtypes are Papillary type 1 and Papillary
type 2, where they have entirely different prognostic factors, where type 2 has a poorer
prognosis than type 1. Papillary cells appear in a spindle shape pattern with some regions
of internal hemorrhage and cystic alterations [5].

Chromophobe RCC (4–8%): Chromophobe is more frequent after the age of 60 and
less aggressive than ccRCC. It exhibits the best prognosis among all three RCC subtypes.
Under the microscope, it appears as a mass formed of large pale cells with reticulated
cytoplasm and perinuclear halos. If sarcomatoid transformation occurs, the lesion develops
to be more aggressive with a worse survival rate [5].

Fifteen years ago, pathologists recognized clear cell papillary renal cell carcinoma
shown in Figure 3 as the fourth most prevalent type of renal cell carcinoma. It possesses dis-
tinct morphologic and immunohistochemical characteristics and an indolent clinical course.
When seen under a microscope, it may resemble other RCCs with clear cell characteristics,
such as ccRCC, translocation RCC, and papillary RCC with clear cell alterations. A high
index of suspicion is needed to accurately diagnose ccpRCC in the differential diagnosis of
RCCs with clear cell and papillary architecture. Clinical behavior is highly favorable with
rare, questionable reports of aggressive behavior [6].

Figure 3. Clear cell papillary RCC subtype.

Recent studies demonstrated that multiple imaging modalities such as magnetic
resonance imaging (MRI) and computerized tomography (CT) scans could differentiate
ccRCC from other histological types [5]. A new RC-CAD (computer-assisted diagnosis)
system presents the ability to differentiate between benign and malignant renal tumors [7].
The system relies on contrast-enhanced computed tomography (CE-CT) images to classify
the tumor subtype as ccRCC or not, while the proposed system achieves high accuracy
on the given data, the CT imaging method lacks accuracy when the renal mass is small,
leading to higher false-positive diagnostic decisions [8,9]. Since pre-surgical CT provides
excellent anatomical features with the advantage of three-dimensional reconstruction of
the renal tumor, in [10] the authors propose another radiomic machine learning model
for ccRCC grading. The presented machine learning model differentiates the low-grade
from the high-grade ccRCC with an accuracy of up to 91%. All of the clinical studies
conclude that biopsy is the only gold standard for a definite diagnosis of renal cancer.
Microscopic images of hematoxylin and eosin (H&E)-stained slides of kidney tissue biopsies
are the pathologists’ main tools for tumor detection and classification. Normal renal tissues
present round nuclei with uniform distributed chromatin, while renal tumors exhibit
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large heterogeneous nuclei. Hence, many studies are based on nuclei segmentation and
classification for cancer diagnosis.

Deep learning algorithms achieve human-level performance in medical fields on
several tasks, including cancer identification, classification, and segmentation. RCC sub-
type microscopic images exhibit different morphological patterns and nuclear features.
Hence, we apply a deep learning approach for RCC detection and subtype classification to
extract these essential features.

1.2. Related Work

Computational pathology is a discipline of pathology that entails extracting infor-
mation from digital pathology slides and their accompanying metadata, usually utilizing
artificial intelligence approaches such as deep learning. Whole slide imaging (WSI) technol-
ogy is essential to assess specimens’ histological features. WSIs are easy to access, store, and
share, where pathologists can effortlessly embody their annotations and apply different
image analysis techniques for diagnostic purposes.

Deep learning (DL) methods generated a massive revolution in medical fields such as
oncology, radiology, neurology, and cardiology. DL approaches prove superior performance
in image-based tasks such as image segmentation and classification [11]. DL provides the
most successful tools for segmenting histology objects such as cell nuclei and glands in
computational pathology. However, providing annotations for these algorithms is time-
consuming and potentially biased. Recent research aims to automate this process by
proposing new strategies that could help provide many annotated images needed for deep
learning algorithms [12,13].

Researchers recently deployed deep learning in various CAD systems for cancerous
cell segmentation, classification, and grading. Deep CNNs were able to extract learned
features that replaced hand-crafted features effectively. Most of the classification models in
computational pathology can be categorized based on the available data annotations into
two main categories:

Patch-level classification models: These models use a sliding window approach on
the original WSI to extract small annotated patches. Feeding CNNs with high-resolution
WSIs is impractical due to the extensive computational burden. Hence, patch-wise models
rely on annotated data as cancerous cells region, normal cells, or specific tumor subtype
cells performed by expert pathologists. In [14], the authors developed a deep learning
algorithm to identify Nasopharyngeal Carcinoma in Nasopharyngeal biopsies. Their super-
vised patch-based classification model relies on valuable detailed patch-wise annotated
data. Pathologists require more than an hour to annotate only portions of a whole slide
image, resulting in a high accuracy patch-level learning model. At the same time, it is a
time-consuming process and requires experienced pathologists. They employed gradient-
weighted class activation mapping to extract the morphological features and visualize the
decision-making in a deep neural network. They applied the patch-level algorithm to clas-
sify image-level WSIs, which scored an AUC of 0.9848 for slide-level identification. In [15],
the authors present a deep learning patch-wise model for the classification of histologic
patterns of lung adenocarcinoma. In their research, a patch classifier combined with a
sliding window approach was used to identify primary and minor patterns in whole-slide
images. The model incorporates ResNet CNN to differentiate between the five histological
patterns and normal tissue. They evaluated the proposed model against three pathologists
with a robust agreement of 76.7%, indicating that at least two pathologists out of 3 matched
their model prediction results.

WSI-level classification models: Most deep learning approaches employ slide-level
annotations to detect and classify cancer from histopathology WSIs. These systems fol-
low weakly supervised learning techniques to overcome the lack of large-scale datasets
with precisely localized annotations challenges. They usually incorporate a two-stage
workflow (patch-level CNN and then slide-level algorithm) known as multiple-instance
learning (MIL). In [16], the authors developed a method for training neural networks on
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entire WSIs for lung cancer type classification. They applied the unified memory (UM)
mechanism and several GPU memory optimization techniques to train conventional CNNs
with substantial image inputs without modification in training pipelines or model archi-
tectures. They achieved an AUC of 0.9594 and 0.9414 for adenocarcinoma and squamous
cell carcinoma classification, respectively, outperforming the conventional MIL techniques.
The papers mentioned above deployed well-known CNN architectures such as Resnet
and Inception-V3. In [17], a simplified CNN architecture (PathCNN) was proposed for
efficient pan-cancer whole-slide image classification. PathCNN training data combines
three datasets of lung cancer, kidney cancer, and breast cancer tissue WSIs. The proposed
architecture converged faster with less memory usage than complex architectures such
as Inception-V3. Their model was able to classify the TCGA dataset for RCC subtypes
TCGA-KIRC (ccRCC), TCGA-KIRP (Papillary RCC), and TCGA-KICH (Chromophobe
RCC), with AUC 0.994, 0.994, and 0.992, respectively. However, they used a large dataset
of 430 kidney WSIs partially annotated by specialists. In [18], the researchers presented a
semi-supervised learning approach to identify RCC regions using minimal-point-based
annotation. A hybrid loss strategy utilizes their proposed classification model results for
RCC subtyping. The minimal-point-based classification model outperforms whole-slide
based models by 12%, although it requires partially annotated data, which is not always
accessible and more subjective to human errors.

Attention-based models have been utilized in computational pathology and pre-
sented comparable results to conventional multiple-instance learning (MIL) approaches.
However, we are proposing a multiscale MIL framework to elevate the classification per-
formance of the conventional MIL methods. Attention mechanisms can be employed to
provide a dynamic representation of features by assigning weights to each recognized fea-
ture, improving interpretability and visualization [19]. A clustering-constrained attention
multiple-instance learning (CLAM) system was proposed in [20]. A weakly-supervised
deep-learning approach employs attention-based learning to highlight sub-regions with
high diagnostic value for more accurate tumor subtype classification. The system tests and
ranks all the patches of a given WSI, assigning an attention score for each patch, which
declares its importance to a particular class’s overall slide-level representation. The de-
velopers tested CLAM on three different computational pathology problems; renal cell
carcinoma (RCC) subtyping is one of them. Applying a 10-fold macro-averaged one-vs.-rest
mean test produced an accuracy of 0.991 for the three-class renal cell carcinoma (RCC)
subtyping of papillary (PRCC), chromophobe (CRCC), and clear cell renal cell carcinoma
(CCRCC). The attention model of CLAM helps to learn subcategory features in the data
while simultaneously filtering noisy patches. However, CLAM did not evaluate the effect
of the clustering component. Therefore, replacing the single-instance CNN with the MIL
design, incorporating clustering in an end-to-end approach is recommended [21]. Fur-
thermore, CLAM disregards the correlation between instances and does not appraise the
spatial information between patches [22]. Therefore, in our proposed system, we extract
overlapping patches to maintain the connectivity of the renal tissue and avoid any loss of
contextual and spatial information. In [23], the authors implemented the CLAM model
for prostate cancer grading and compared multiclass MIL with CLAM and their proposed
system. The multiclass MIL outperformed CLAM in terms of classification accuracy.

Proteomics data can be incorporated with histopathology images through machine
learning in RCC diagnosis [24]. The proposed proteomics-based RF classifier achieved
an overall accuracy of 0.98 (10-fold cross-validation results) in distinguishing between
ccRCC and normal tissues and an average sensitivity of 0.97 and specificity of 0.99, while
the histology-based classifier scored an accuracy of 0.95 on the test dataset. However, the
proposed system was not generalized by testing on different datasets, while it highlights
the importance of investigating the predictive relationships between histopathology and
proteomics-based diagnostic models.

Recent research employs multiscale WSI patches classification approaches to reflect
the pathologist’s actual practices in classifying cancerous regions. To provide his precise



Bioengineering 2022, 9, 423 6 of 18

evaluation, the pathologist needs to examine the slides at different magnification levels to
utilize various cellular features at different scales. In [25], the authors proposed a multiscale
deep neural network for bladder cancer classification. The model can effectively extract
similar tissue areas using the ROI extraction method. Their multiscale model achieved an
F1-score of 0.986; however, their patch-based classification model uses carefully annotated
data by expert pathologists. On the other hand, the researchers in [26] proposed another
multiscale MIL CNN for cancer subtype classification on slide-level annotation, which is
similar to our research. Their proposed system addressed malignant lymphoma subtype
classification. The multiscale domain-adversarial MIL approach provided an average
accuracy of 0.871 achieved by 5-fold cross-validation. Authors in [27] proposed a state-
of-the-art semantic segmentation model for histopathology images. HookNet utilizes
concentric patches at multiple resolutions fed to a series of convolutional and pooling
layers to effectively combine information from context and WSI’s details. The authors
present two high-resolution semantic segmentation models for lung and breast cancer.
HookNet outperforms single-resolution U-Net and other conventional multi-resolution
segmentation models for histopathology images.

In this research work, we propose a multiscale learning approach for renal cell car-
cinoma subtyping. We are the first study to apply the proposed idea of combining the
decisions of three CNNs in order to provide high accuracy in histopathology classification.
We address the problem of choosing the optimal patch size for pathology slides classifi-
cation while imitating the pathologists’ practice. Since the small patch size closer to the
cell’s size will embody different features than the larger patches that maintain the connec-
tivity between the different cells. The main contributions of our proposed framework are
as follows:

i. The final classification decision is obtained by a multiscale learning approach to
integrate the global features extracted from the large-size patches and the local ones
extracted from the smaller patches.

ii. The end-to-end system framework is fully automated; hence, hand-made feature
extraction methods are not required.

iii. The decision fusion approach guarantees the discarding of the patches that do not
represent the RCC subtype features that we are looking for in our diagnosis, which
significantly improves the classification accuracy.

2. Materials

Our dataset was acquired from the Bioengineering Department at the University of
Louisville (Institutional Review Board (IRB) number: 22.0415) and included high-resolution
digital WSIs of H&E stained renal tissue slides. The WSIs were annotated on the slide level
by experienced pathologists. A total of 52 renal tissue WSIs annotated on slide-level with
four classes (25 ccRCC, 15 ccpRCC, 7 renal parenchyma, and 5 fat tissues). Two classes
represent two distinct renal tumor types: ccRCC and ccpRCC, while the rest two classes
represent non-cancerous tissues, either parenchyma or fat tissues. Samples of the four
different classes of digital slides are shown in Figure 4.
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(a) (b)

(c) (d)

Figure 4. Samples of renal tissue WSIs from different classes (a) clear cell RCC WSI; (b) clear cell
papillary RCC WSI; (c) parenchyma WSI; and (d) fat WSI.

3. Methods

Our proposed system for renal cancer histologic sub-types classification using a weakly
supervised multiscale learning approach is shown in Figure 5.

Figure 5. The proposed system pipeline. The first stage is data preprocessing, including color
normalization. The second stage is tiling to divide the WSI into small patches. The third stage is
training the multiple CNNs. Finally, the last stage is testing to predict the final classification decision.
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The proposed system pipeline consists of multiple stages toward the final classification.
It is capable of automatically classifying the extracted tissue cells to either normal cells (fat
or Parenchyma) or cancerous cells of ccRCC or ccpRCC.

3.1. Data Pre-Processing

The biopsy tissue under the microscope appears transparent; therefore, we use a stain
such as H&E to depict the tissue content in different colors. The pathologists treat the
tissue samples as stains where any variation in stain color might affect their diagnosis [28].
Staining conditions vary greatly depending on the specimen conditions and the hospital
that acquired the specimen. Thus, WSI color normalization is crucial in any histopathology
image classification or segmentation task. There are multiple methods for the stain normal-
ization of histopathology images to reduce the effect of color variations. We investigated
the performance of different available approaches, such as RGB histogram specification
(Reinhard et al. [29], Macenko et al. [30], and Khan et al. [31]) to choose the best method
for our proposed system. The RGB histogram-based normalization approach is used for
our proposed system since it was proved in the literature to provide higher accuracy on
kidney datasets with the most negligible computation complexity [28]. The approach
starts by converting the RGB image to `αβ space and then maps the image histogram to
the target image histogram. Finally, we convert the image back to the RGB color space.
The target image was chosen from within the same dataset to ensure that both source
and target images have similar statistics. The stain normalization process applying RGB
histogram specification is shown in Figure 6 to demonstrate the effect of the applied color
normalization approach to eliminate the stain variation effect on our CNN training.

(a) (b) (c)

Figure 6. The stain normalization of a clear cell RCC sample (a) before color normalization; (b) the tar-
get sample; and (c) after color normalization.
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3.2. Tiling

Processing a large size WSI with deep learning approaches is computationally in-
tractable [32]. One WSI can produce hundreds of thousands of 400 × 400 tiles. Most avail-
able algorithms select random tiles or patches from each subject slide. Training the CNN on
selected patches will reduce the computational burden of processing all possible extracted
tiles. However, applying a sliding window to extract small patches is less efficient since we
lose valuable information about the degree of overlap between cells. On the other hand,
using a large window increases the number of model parameters and training time.

Our proposed pipeline extracts overlapping patches from each training subject’s WSI.
We extract the patches using a sliding window horizontally and vertically by skipping
50 pixels as shown in Figure 7. This approach preserves the contextual information in every
patch and the overall visual context instead of selecting random small patches. We discard
any tiles with a background of more than 25% since it does not hold enough information
to be utilized in the training process. For testing, we extract multiscale concentric tiles
of 100 × 100, 200 × 200, and 400 × 400 aligned patches, sharing the same center pixel
as shown in Figure 8. The trained, multiscale CNNs will classify each small test patch
and its parent larger concentric patches in a pyramidal approach to extract its inherited
features. Samples of the four different classes of extracted patches after color normalization
are shown in Figure 9.

Figure 7. Tiling, extracting overlapping patches of training subjects’ WSIs.

Figure 8. Tiling, extracting concentric patches of test subjects’ WSIs.
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(a) (b)

(c) (d)

Figure 9. Samples of color-normalized extracted patches from different classes: (a) clear cell patches;
(b) clear cell papillary patches; (c) parenchyma patches; and (d) fat patches.

3.3. Training: Multiscale Classification

We utilize the MIL algorithm in our proposed system, which is a weakly supervised
learning approach leveraged in histopathology classification [33]. The MIL algorithm
starts by arranging the training instances in sets, called bags, and labeling the entire bag.
The extracted small patches are the instances in our system, and the bags are the training
slides. We propose a multiscale system that mimics the pathologists’ manual classification
tasks. They observe the renal tissue on different magnification levels to compare and
contrast the different cellular features in order to make a decision.

We train three CNNs on different input patches scales; 400 × 400, 200 × 200, and
100 × 100. The CNN architecture in our pipeline follows the ResNet-50 architecture
(see Figure 10), where the identity shortcut connections enable training a deeper network
faster while avoiding vanishing gradient problems [34]. Many researchers leveraged
the ResNet architecture in histopathology since it employs more complex connections
between the residual blocks [35–38]. The ResNet represents deeper architecture compared
to VggNet and AlexNet. However, the residual connections between its layers maintain the
perceived learning through the whole training process while training faster by increasing
the network capacity. We listed the optimal hyperparameters of training our CNNs in
Table 1. We utilized early stopping in python to avoid overtraining our CNN. We configured
our network training to function under monitoring the model performance. Therefore,
the validation accuracy reached the maximum after ten epochs and did not improve
further. Moreover, we employed a learning rate control method in python for reducing
the learning rate while monitoring the validation accuracy. We reduce the learning rate
by a factor of 0.1 once learning stagnates for the patience of two epochs. We performed a
hyper-parameters optimization to choose the optimal patch size and optimizer for training
our classification model, as shown in Table 2, where the mini-patch size of 64 produced
the highest validation accuracy. The Adam optimizer is computationally efficient with
fewer memory requirements, which makes it suitable for problems with large data such
as our system [39]. The results of testing three different optimizers are shown in Table 3,
where Adam outperformed the stochastic gradient descent with momentum (SGDM) and
RMSprop. Finally, the trained classifiers will be tested on the test patches to decide the
predicted class of these patches.
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Figure 10. Using ResNet-50 model in the proposed technique.

Table 1. CNN’s optimal hyperparameters.

Hyperparameter Value

Patch size 64
Number of epochs 10

Learning rate 0.001
Optimizer Adam

Loss Function Categorical Crossentropy

Table 2. CNN’s performance comparison for different patch sizes.

Optimizer Patch Size Validation Accuracy
% Learning Rate

Adam 32 84.01 0.001
Adam 64 95.63 0.001
Adam 128 91.68 0.001

Table 3. CNN’s performance comparison for different optimizers.

Optimizer Patch Size Validation Accuracy
% Learning Rate

SGDM 64 90.41 0.001
RMSprop 64 92.00 0.001

Adam 64 95.63 0.001

3.4. Testing: Fusion and Features Aggregation

The trained, multiscale classifiers will generate three predicted classes for every single
patch in the test dataset (see Figure 11). First, we implement decision fusion following
Algorithm 1 to classify each patch as a class-based patch or discarded. Then, the percentage
of the overall class-based patches will be mapped per slide to decide the slide-level pre-
dicted class, using majority voting. This approach will enhance the system’s classification
performance and the ability to adapt to new data.
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Figure 11. Demonstration of the decision fusion implementation.

Algorithm 1 Decision Fusion

1: for Every patch in the test slide do
2: Classify its 400× 400 parent patch using the trained network CNN1 and output YPred1
3: Classify its 200× 200 parent patch using the trained network CNN2 and output YPred2
4: Classify that 100 × 100 patch using the trained network CNN3 and output YPred3
5: Vote = 0
6: Count = 0
7: Similarity = 0
8: for Each Decision in [YPred1, YPred2, YPred3] do
9: if Count = 0 then

10: Vote = Decision
11: end if
12: if Vote = Decision then
13: Count = Count+1
14: else
15: Count = Count−1
16: end if
17: end for
18: if Vote 6= Decision(1) and Vote 6= Decision(2) then
19: Vote = Patch is discarded
20: end if
21: return Vote
22: end for

4. Evaluation Metrics

Researchers use multiple metrics to assess the performance of deep learning models
tailored for medical image analysis. The evaluation process primarily starts by obtaining
the confusion matrix to visualize the performance of the algorithm and to calculate the
different evaluation metrics [40]. The confusion matrix’s rows represent the number of
test samples of actual results, and the columns represent the test samples of predicted
results of the algorithm shown in Figure 12. The ratio of correctly classified samples to
the total number of samples in the test data is the accuracy. This metric is one of the most
widely employed in medical applications of machine learning. However, it is also known
to be deceptive in the case of varying proportions between classes. Sensitivity or recall
is the ratio between successfully classified positive samples and all samples allocated to
the positive class to compute the rate of positive samples correctly classified. This metric
is one of the most significant in medical data analysis. It reflects how likely a test can
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accurately detect a tumor/disease when it is present in a patient resulting in a high recall.
The specificity is the negative class version of the sensitivity, indicating the percentage of
correctly classified negative samples. It is calculated as the proportion of correctly classified
negative samples to all negative samples. It is also crucial in medical investigations since
it represents the ability of a test to rule out the presence of a tumor/disease in someone
who does not have it [41]. To evaluate our proposed framework, we report the accuracy,
sensitivity, and specificity on the patch as well as the WSI level.

Figure 12. Confusion matrix.

5. Experimental Results

Multiscale classification and decision fusion approaches are integrated into our pro-
posed system to generalize the classification model and classify new data accurately. To com-
pare the performance of the proposed framework with the single multiscale classifiers
(CNN1, CNN2, and CNN3), we applied a 5-fold cross-validation and reported the results
in Table 4. The proposed decision fusion approach achieves higher accuracy compared
to each of the single classifiers. Many research works utilized an ensemble of CNNs to
classify or segment histopathology images such as [42,43]. Hence to highlight the merit
of our proposed multiscale ensemble of classifiers, we experimented by combining the
decision of three different CNN architectures into a single-scale ensemble of classifiers. To
compare our proposed system results, we applied the same 5-fold cross-validation. We
reported the results of each single-scale CNN accuracy and the final decision utilizing the
same adopted decision fusion algorithm in Table 5. We chose ResNet architecture again for
its superior performance in classifying WSI patches as in [44], where Renet18 and Resnet50
outperformed other CNN architectures in multiclass classification problems. Furthermore,
MobileNetV2 was adopted in [42,45,46] to classify breast histopathology images achieving
comparable performance to deeper architectures with fewer model parameters. Hence, we
trained Renset18, Renset50, and MobileNetV2 on our single-scale extracted patches. Com-
paring Tables 4 and 5 confirms the importance of our proposed multiscale approach in
extracting the local and global features and combining them to produce a more accurate
and robust classification decision.

We implemented Resnet-50 architecture without transfer learning to achieve higher
accuracy by extracting deeper features in our proposed system. As the ImageNet dataset
varies from our renal cancer tissue slides, complete learning will consume more time while
outperforming transfer learning results to accomplish our target of designing a robust and
highly accurate classification model for renal cancer diagnosis.

To evaluate the generalization of our final proposed system, we applied the leave-one-
subject-out (LOSO) cross-validation approach. We summarized the overall classification
performance on the patch-level in terms of average accuracy, sensitivity, and specificity
in Table 6. The final classification for the whole slide is concluded based on the percentage
of correctly classified patches. The WSI class label will be defined based on the class label
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with the most significant percentage of patches per slide. We report the overall accuracy on
the slide level in Table 7.

Table 4. Comparison of the classification performance of each single-scale classifier and the proposed
multiscale ensemble of classifiers.

Classification Performance of the Multiscale Classifiers on the Patch-Level

Fold CNN1 CNN2 CNN3 Decision Fusion
Accuracy % Accuracy % Accuracy % Accuracy %

1 89.10 90.54 95.05 99.77
2 73.33 80.45 76.60 97.42
3 67.28 68.52 66.05 87.42
4 54.20 73.07 67.61 95.52
5 58.18 69.76 55.68 88.66

Mean 68.42 76.47 72.20 93.76

Table 5. Comparison of the classification performance of each single-scale classifier and a single-scale
ensemble of classifiers.

Classification Performance of the Single-Scale Classifiers on the Patch-Level

Fold Resnet18 Resnet50 MobileNetV2 Decision Fusion
Accuracy % Accuracy % Accuracy % Accuracy %

1 88.29 90.54 87.84 96.59
2 81.73 80.45 82.05 93.67
3 51.85 68.52 74.07 76.85
4 71.02 73.07 66.48 92.29
5 56.36 69.76 54.55 78.35

Mean 69.85 76.47 73.00 87.55

Table 6. Comparison of the classification performance on the patch level.

Classification Performance Patch-Level

Method Class Accuracy % Sensitivity % Specificity %

Proposed

Clear Cell 89.0 87.7 93.1
CC Papillary 92.8 99.8 89.5
Parenchyma 90.3 77.7 99.9

Fat 100.0 100.0 100.0
Mean ± SD 93.0 ± 4.9 91.3 ± 10.7 95.6 ± 5.2

Resnet-50

Clear Cell 82.1 67.4 92.4
CC Papillary 82.6 89.7 75.9
Parenchyma 96.8 60.0 98.0

Fat 96.2 80.0 97.4
Mean ± SD 89.4 ± 8.2 74.3 ± 13.2 90.9 ± 10.3

Table 7. Comparison of the classification performance on the slide level.

Classification Performance WSI-Level

Method Class Accuracy %

Proposed

Clear Cell 92.0
CC Papillary 93.3
Parenchyma 85.7

Fat 100
Mean ± SD 92.8 ± 5.9

Resnet-50

Clear Cell 84.0
CC Papillary 66.7
Parenchyma 71.4

Fat 80
Mean ± SD 75.5 ± 7.9
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6. Discussion

Our experimental results demonstrate the high accuracy of the proposed classification
system on both the patch and slide levels. Implementing multiple algorithms such as
multiscale CNNs and the final decision fusion led to these promising results. Color normal-
ization was an essential step at the beginning of the overall system pipeline; without it, the
system could not differentiate between renal tumor tissues and non-tumor tissues due to
color variations. Our system accurately distinguished fat tissue slides with a 100% accuracy
due to the distinct features of the fat tissues from other renal tissues such as parenchyma
and RCC cells. On the other hand, ccRCC and ccpRCC have similar morphological features,
leading to a more challenging classification task. However, our proposed system could
differentiate between these two types of RCC with an accuracy of 92% to 93.3%.

Table 5 shows a comparison of the classification performance of each single-scale
classifier and a single-scale ensemble of classifiers. In that table, Resnet50 outperformed
Resnet18 and MobileNetV2 in terms of mean accuracy. On the other hand, our proposed
decision fusion provides the best mean accuracy.

Table 6 shows a comparison of the classification performance on the patch level.
For our proposed technique, we obtained the best classification metrics from the fat class.
In other words, our system was optimal with a 100% classification accuracy for the fat
class. Furthermore, we obtained the lowest performance from class ccRCC with a 89%
classification accuracy. For Resnet50, we obtained the best classification accuracy (96.8%) in
the parenchyma class and the lowest classification accuracy (82.1%), again for ccRCC class.

Table 7 shows a comparison of the classification performance on the slide level.
Our proposed technique provides the best classification accuracy in the case of the fat
class. On the other hand, the lowest accuracy has resulted from parenchyma class. For
Resnet-50, the best performance was obtained from ccRCC class, while the lowest perfor-
mance was obtained from ccpRCC class. Furthermore, it is shown in the table that our
proposed system surpassed Resnet-50 in terms of classification accuracy.

Our proposed method uses an ensemble of three CNNs with different input sizes to
allow the learning from multiple viewpoints for the underlying slide image. Using an
ensemble of three CNNs boosts the classification accuracy and achieves better metrics
than using only one CNN such as in the case of existing methods. We compared our
proposed method with well-known state-of-the-art networks to provide the reader with
a fair judgment of the superiority of our method over other existing techniques that are
nowadays used heavily due to their high performance.

The developed system presents an advanced computational pathology technique for
WSI analysis. RCC treatment highly depends on distinguishing the tumor sub-type and the
grade of the tumor cells. Future development of this work might integrate the proposed
classification approach for RCC grading for a complete CAD system that provides the full
diagnostic and prognostic details of a given renal tissue.

7. Conclusions

This paper proposes an automated deep learning-based classification system for RCC
subtyping from histopathology images. Our proposed weakly-supervised approach does
not require precise annotations on the patch level, reducing the pathologists’ annotations
burden. We developed a multiscale classification framework to extract the local features
in the renal cells and the global features in the tissue connectivity. The proposed deci-
sion fusion approach outperforms the single CNN classifier’s performance to present a
rigorous diagnosis decision. The proposed algorithm addresses the main challenges in
computational histopathology using deep learning. The RCC-subtype classification system
achieved an overall classification accuracy of 93.0% ± 4.9%, a sensitivity of 91.3% ± 10.7%,
and a high classification specificity 95.6% ± 5.2% in distinguishing ccRCC from ccpRCC
or non-RCC. Our results confirm the approach’s robustness in identifying and classifying
renal cancer subtypes on the WSI level.
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