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Abstract: An important means for preventing and managing cardiovascular disease is the non-
invasive estimation of blood pressure. There is particular interest in developing approaches that
provide accurate cuffless and continuous estimation of this important vital sign. This paper proposes
a method that uses dynamic changes of the pulse waveform over short time intervals and calibrates
the system based on a mathematical model that relates reflective PTT (R-PTT) to blood pressure. An
advantage of the method is that it only requires collecting the photoplethysmogram (PPG) using one
optical sensor, in addition to initial non-invasive measurements of blood pressure that are used for
calibration. This method was applied to data from 30 patients, resulting in a mean error (ME) of
0.59 mmHg, a standard deviation of error (SDE) of 7.07 mmHg, and a mean absolute error (MAE) of
4.92 mmHg for diastolic blood pressure (DBP) and an ME of 2.52 mmHg, an SDE of 12.15 mmHg, and
an MAE of 8.89 mmHg for systolic blood pressure (SBP). These results demonstrate the possibility of
using the PPG signal for the cuffless continuous estimation of blood pressure based on the analysis of
calibrated changes in cardiovascular dynamics, possibly in conjunction with other methods that are
currently being researched.

Keywords: cuffless blood pressure estimation; noninvasive blood pressure measurement; cardiovascular
dynamics; photoplethysmogram (PPG); reflective pulse transit time (R-PTT); artificial neural network;
blood pressure mathematical model

1. Introduction

Cardiovascular disease (CVD) is one of the major contributors to human mortality
worldwide [1]. A primary risk factor for CVD is high blood pressure (BP) or hypertension,
which is also called the silent killer because, in preliminary stages, it mostly develops
with patients unaware of their condition [2]. Hypertension is not limited only to the
older age group; 1 in 8 adults aged between 20 and 40 years suffers from high blood
pressure [3]. The number of people affected by hypertension is expected to increase based
on trends in lifestyle and behavior (such as low physical activity, poor eating habits, the
high consumption of animal fat) and the lowering of the threshold for the diagnosis
of hypertension [3]. In 2017, the American College of Cardiology and the American
Heart Association introduced new definitions of hypertension, considering it present if
the systolic blood pressure (SBP) or diastolic blood pressure (DBP) exceeds 130 mmHg or
80 mmHg, respectively. At the same time, an SBP between 120 and 129 mmHg is considered
elevated [4].

People who are diagnosed with hypertension take medication in an effort to keep
their BP under control. Any undiagnosed or untreated hypertension in early stages can
potentially result in myocardial infarction, ischemic and hemorrhagic stroke, heart failure,
chronic kidney disease, cognitive decline, and early death [5]. Blood pressure is a dynamic
vital sign that varies over time due to age, physical activity, mental stress, etc. Therefore, the
continuous monitoring of blood pressure could reveal information on these dynamic char-
acteristics [6] and thus plays an important role in the diagnosis and effective management
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of hypertension [2]. Despite the importance of continuous blood pressure monitoring, at
the present time, there are no consumer devices on the market that are medically approved
for measuring blood pressure non-invasively and continuously [7]. Currently, the gold
standard method for continuous BP monitoring is the direct (intra-arterial) method. This
technique is mostly used in a clinical setting for patients with an unstable condition or
patients who are under vasoactive treatments. While it allows for continuous BP mea-
surement with a high accuracy, this method requires the invasive insertion of an arterial
line into the patient’s artery [8]. Due to the setting limitation and the risk of severe bleed-
ing upon accidental disconnection as well as infection for patients, this technique is not
suitable for long-term BP monitoring [8]. Therefore, blood pressure is typically measured
using non-invasive cuff-based methods which rely on the inflation and deflation of a cuff
either manually or automatically. However, these methods cannot provide continuous
monitoring, and applying pressure through a cuff wrapped around a limb can cause dis-
comfort and potentially disturb sleep during nocturnal measurements [4]. Furthermore,
the cuff-based method cannot be used on people with several pre-existing conditions such
as lymphedema [9]. As a result, the development of cuffless BP measurement methods is
in demand.

The most common physiological signals used in cuffless BP measurements are the
electrocardiogram (ECG) and the photoplethysmogram (PPG). The ECG reflects the elec-
trical excitation of the heart, while the PPG indicates blood volume changes in peripheral
circulation [10]. These two signals are used in several of the major methods that are cur-
rently being researched for cuffless continuous blood pressure estimation, which are based
on pulse transit time (PTT), pulse arrival time (PAT), pulse wave velocity (PWV), and pulse
wave analysis [11].

PTT is defined as the time that the pressure wave takes to travel between two arterial
sites [10], and it can be measured using photoplethysmogram (PPG) sensors placed at
two sites on the body [6]. It can be calculated in different ways, such as the time delay
between the proximal and distal PPG waveforms [6], the time difference from the mid-
point of the falling edge of the proximal PPG to the peak of the peripheral PPG [12], or the
time difference from the dicrotic notch of the proximal PPG to the peak of the peripheral
PPG [13].

PAT is defined as the time interval between electrical activation of the heart and the
arrival of the blood to the periphery from the aorta [14], and it is usually measured as the
time interval between the R-peak in the ECG and the pulse waveform in the PPG recorded
at a peripheral site [11]. Both PTT and PAT vary inversely with BP due to the physical
properties of arteries [11]. It is also worth mentioning that many studies incorrectly refer to
PAT as PTT, and the use of the true PTT is not greatly researched [6].

PWV is the speed of the pulse wave moving along the arterial vessels, and it is
inversely related to PTT and PAT but is directly related to BP [15]. PWV is often used as
the basis for cuffless methods to estimate blood pressure and is founded on the theory
of fluid wave propagation through elastic pipes [16]. PWV can be measured using a few
different methods such as high-fidelity pulse pressure measuring devices, Doppler, and
phase contrast magnetic resonance imaging (MRI) [17]. However, the main concept behind
this measurement is to calculate the velocity as the distance the pulse wave travels divided
by the time of travel [11].

In addition to methods based on PAT, PTT, and PWV, there has been some work on BP
estimation based on pulse wave analysis. In these methods, features are extracted from
the pulse waveform, typically obtained with a single PPG sensor, which are then used in
various machine learning estimation models. Most such features are generated from pulse
morphology within individual beats [11]. In particular, data from a single PPG sensor have
been used in some studies within a deep learning framework [18,19]. A detailed review of
different PPG-based methods can be found in [20].

Some of the methods for the cuffless estimation of BP rely on mathematical models,
which are usually established through the use of a transfer function [21], Windkessel
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models [22], the application of the Moens–Korteweg (M-K) equation, heuristic modeling
with regression techniques, or predictive modeling with data-driven methods [23].

In previous work, we used a calibration-free method to estimate blood pressure using
information from dynamic changes of the pulse waveform over brief time intervals [24].
In this work, we added a model-based calibration stage. To implement this process, we
used data from a single PPG sensor to calculate reflective PTT (R-PTT) and calibrate a
mathematical model derived from the Moens–Korteweg and Bramwell–Hill equations to
estimate blood pressure values. The estimated values, along with some characteristics
of cardiovascular dynamics expressed in the arterial pulse waveform oscillation, were
then used to improve the cuffless blood pressure estimates. The latter was done because
PTT by itself or features derived from the morphology of individual pulses have not
yet been shown to be sufficient for accurate blood pressure estimation, and there is likely
important information related to BP contained in the dynamics of the human cardiovascular
system [25]. In this work, we use mean point-to-point pairing calibration (mPTP) to develop
our model. This is a novel approach in model-based BP estimation based on reflective PTT.
Furthermore, to the best of our knowledge, there has been no work done previously on
combining R-PTT-based modeling and information from cardiovascular dynamics for the
cuffless estimation of blood pressure.

2. Methods

Figure 1 shows a high-level block diagram of the proposed methodology for cuffless
blood pressure estimation, which uses information related to cardiovascular dynamics
extracted from PPG signals along with a mathematical model based on Bramwell–Hill [26]
and Moens–Korteweg equations [27].
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2.1. Data Collection

In this study, the bio-signal data from the University of Queensland Vital Signs
Dataset [28] is used. This dataset is the result of recording in four operating rooms from
32 patients, with a duration ranging from 13 min to 5 h and a median of 105 min. The
32 recorded cases consist of 25 under general anesthetics, 3 under spinal anesthetics, and
4 sedation cases. The unique characteristic of this dataset, which does not exist in data
collected from intensive care units, is that it includes entire cases of patients undergoing
anesthesia for surgery, which results in rapid and dynamic vital sign changes during the
induction and emergence phases of anesthesia and surgery [28]. For all patients, ECG, PPG,
and noninvasive arterial BP waveforms are recorded, while signals such as capnographs,
airway flows, and others are collected on a case-by-case basis under the discretion of the
anesthesiologist. The waveforms are sampled at 100 Hz.

In our work, we used only the PPG and noninvasive arterial BP signals from the dataset.
Reference [28] does not specify the method used to collect the noninvasive arterial BP, but
this signal is calibrated in mmHg. Of note, our method can make use of any calibrated BP
measurements during an initial interval as inputs to the mathematical model (described
below), including those obtained using a cuff-based method. We visually inspected all data
and chose our dataset by selecting the ones with minimal or no interruption. As a result,
our final selection consisted of data from 30 patients.

2.2. Peak/Trough Detection

To detect peaks and troughs of the PPG signals, we used a modified version of Pan
and Tompkins’ QRS detection algorithm [29]. In this process, first, the PPG is filtered in two
stages: a low-pass filter and a high-pass filter. The combination of these two filters forms a
band-pass filter which reduces the effect of muscle noise, 60 Hz interference, and baseline
wander. The filters used in this work are fourth-order low-pass with a cut-off frequency of
10 Hz and third-order Butterworth high-pass with a cut-off frequency of 0.05 Hz.

After filtering, the signal goes through a moving average filter of length 38. A threshold
is then set for the output of the moving average filter to determine the peaks of the
signal based on the local maxima within a preset time interval. These maxima mark the
locations of the arterial pulse waveform peaks or the PPG peaks. The troughs of the arterial
pulse waveform or the PPG are detected by inverting the original signal and finding the
peaks for the inverted waveform. Figure 2 shows the different stages of this process, and
Figure 3 illustrates a sample of peak and trough detection for a typical PPG signal using
the proposed algorithm.
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2.3. Feature Extraction

We extracted features linked to cardiovascular dynamics from inter-beat intervals (IBIs)
of the PPG signals through time domain, frequency domain, and nonlinear analysis. The
analysis was performed on the last ten minutes of each of the thirty signals. For collecting
IBI features, we used the open-source heart rate variability analysis software (HRVAS) [30].
The time series containing IBI are the inputs to the analyzer, and the extracted features are
the outputs.

For the IBI time domain analysis, both statistical and geometric measurements are
considered. Statistical measurements are calculated directly from the IBI series and include:
the mean IBI, the standard deviation for the IBI series (SDANN), the pulse rate variability
triangular index (PRVti), the triangular interpolation of IBI (TINN), the root mean square of
successive differences of the IBI series, the number of successive differences that are greater
than a user-defined threshold (NNx) in milliseconds (for our analysis, the threshold was
set to 10 ms), and the percentage of NNx over the duration of the signal.

To compute SDANN, first, the IBI series is divided into an equal number of segments
with no overlaps; then, the mean IBI for each segment is calculated, and the standard
deviation of all the means is determined. The following equation represents the above
steps for calculating SDANN [31].

SDANN =

√√√√ 1
M− 1

M

∑
i=1

[
mean IBI(i)−mean IBI

]2 (1)

In this equation, mean IBI(i) represents the mean IBI value of the ith IBI segment, and
M is the total number of segments.

Geometrical measurements are calculated based on the IBI histogram [30]. The mea-
sured parameters are the pulse rate variability triangular index and the triangular interpo-
lation of the IBI histogram. Figure 4 shows the histogram for a typical IBI time series with a
density distribution of D(t). Y on the graph represents the maximum value for D(t) at t = x.
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The pulse rate variability triangular index is calculated by dividing the area integral of D(t)
by the value of Y. If distribution D(t) is based on a discrete horizontal scale, the area integral
is then the total number of IBIs, and the pulse rate variability triangular index (PRVti) can
be calculated as:

PRVti =
NIBI

Y
(2)

where NIBI is the total number of IBIs and Y is the maximum value for D(t).
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To obtain triangular interpolation of the IBI histogram, a triangular function q(t) is
established in a way that the vertices of the triangle are Y, M, and N, where M and N are
selected such that q(t) = 0 for M ≤ t ≤ N and by minimizing:∫ +∞

0
(D(t)− q(t))2dt (3)

The triangular interpolation of the IBI histogram (TINN) is then calculated as:

Triangular interpolation of IBI = M− N (4)

The IBI frequency domain analysis is performed by using the Lomb–Scargle peri-
odogram (LSP) [32]. In the LSP method, the frequency spectrum is estimated by performing
a least squares fitting of data by sinusoids. The LSP of non-uniformly sampled data is
defined as:

PLS(f) =
1

2σ2


[
∑N

n=1
(
X(tn)− X

)
cos(2πf(tn − τ))

]2

∑N
n=1 cos2(2πf(tn − τ))

+

[
∑N

n=1
(
X(tn)− X

)
sin(2πf(tn − τ))

]2

∑N
n=1 sin2(2πf(tn − τ))

 (5)

where X is a real valued data sequence of length N for arbitrary times tn, X is the mean and
σ is the variance of the time series, and τ is the frequency-dependent time delay defined as:

τ =
tan−1

(
(∑N

n=1 sin(4πftn))/(∑N
n=1 cos(4πftn))

)
4πf

(6)
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to make the periodogram insensitive to the time shift.
In this method, the power spectral density of an IBI signal is calculated and divided

into three sections labeled as very low frequency (VLF, 0.098–0.05 Hz), low frequency (LF,
0.05–0.15 Hz), and high frequency (HF, 0.15–0.5 Hz). The resistance to errors from data
removal and resampling makes LSP a preferred method for power spectrum calculation for
IBI signals [33].

A Poincaré plot, sample entropy, and detrended fluctuation analysis are used to
analyze the nonlinear behavior of IBI signals. The Poincaré plot or return map is used to
quantify self-similarity by mapping two consecutive IBIs in relation to each other [34]. An
ellipse is fitted to this map, with the major and minor semi-axes of the ellipse referred to as
SD2 and SD1, respectively. SD1 represents the standard deviation of instantaneous beat-to-
beat variability, and SD2 characterizes the standard deviation of continuous beat-to-beat
variability. These two axes are defined as

SD1 =

√
2

2
SD(xn − xn−1) (7)

SD2 =

√
2SD(xn)

2 − 1
2

SD(xn − xn−1)
2 (8)

where xn and xn−1 are two consecutive data points, and SD represents the standard devia-
tion of the time series.

Sample entropy is a measure used to quantify signal complexity [35]. It is represented
by SampEn(m.r, N) and is defined as the negative logarithm of the conditional probability
that, for a dataset with N number of data points, if two sets of simultaneous data points
of length equal to embedding dimension m have a distance smaller than tolerance r, then
two sets of simultaneous data points of length m + 1 also have a distance smaller than r.
A value of zero for the sample entropy indicates that the two consecutive sequences are
identical, while a larger value represents higher complexity.

Detrended fluctuation analysis (DFA) [36] is another method that is used for the
nonlinear analysis of IBI. DFA is a method to determine the statistical self-similarity of
a signal and is based on the idea of the signal being similar to part of itself. For DFA
processing, a bounded time series of IBIs is converted to an unbounded process through:

y(k) =
k

∑
i=1

[
IBI(i)− IBI

]
(9)

where y(k) is cumulative sum or profile, IBI(i) is the ith inter-beat interval, and IBI is the
average inter-beat interval over the entire time series. The cumulative sum then is divided
into segments of length N, and the square error for each part is minimized to fit a local
least square straight-line to the data and define the local trend yn(k). The fluctuation is
then considered as the root mean square deviation from the trend:

F(n) =

√√√√ 1
N

N

∑
k=1

(y(k)− yn(k))
2 (10)

where N represents the window size.
The above-mentioned process is repeated over different ranges of window sizes; then,

the linear relationship between F(n) and n is plotted to obtain the scaling exponents α1
(short term scaling) and α2 (long term scaling) for the inter-beat interval time series. Table 1
summarizes extracted IBI features for our analysis.
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Table 1. List of considered features related to the cardiovascular dynamics used in this study.

Type of Signal Used Measure Description

IBI Time-Domain Mean IBI Mean of IBI
IBI Time-Domain SDANN Standard deviation of IBI
IBI Time-Domain RMSSD Root mean square of successive differences of the IBI series

IBI Time-Domain NNx Number of successive IBIs that are longer than a user-defined threshold
in milliseconds

IBI Time-Domain pNNx Percentage of NNx over the duration of the signal
IBI Time-Domain PRVti Pulse rate variability triangular index
IBI Time-Domain TINN Triangular interpolation of the IBI histogram

IBI Frequency-Domain VLF Power of very-low-frequency band
IBI Frequency-Domain LF Power of low-frequency band
IBI Frequency-Domain HF Power of high-frequency band
IBI Frequency-Domain LF/HF Ratio between low- and high-frequency band powers
IBI Nonlinear-Domain SD1 Standard deviation of instantaneous beat to beat variability (Poincaré plot)
IBI Nonlinear-Domain SD2 Standard deviation of continuous beat to beat variability (Poincaré plot)
IBI Nonlinear-Domain SampEn Sample entropy
IBI Nonlinear-Domain α1 Short-term fluctuation slope in Detrended Fluctuation Analysis
IBI Nonlinear-Domain α2 Long-term fluctuation slope in Detrended Fluctuation Analysis

2.4. Mathematical Model

To create a mathematical model for the estimation of blood pressure, we used the
Bramwell–Hill and Moens–Korteweg equations. The blood pressure can be calculated
based on the theory of pulse wave velocity using the following equation:

PWV =

√
V
ρ

∆P
∆V

(11)

where V is the volume of blood in the artery, ρ is the blood density, ∆P is the difference
between SBP and DBP, and ∆V is the corresponding blood volume change [26]. Since, for
each individual, the blood density, the blood volume in the artery, and the change in the
blood volume are near constant, (11) can be simplified as:

SBP−DBP =
ρ∆V

V
(PWV)2 =

ρ∆V
V

(
L

PTT

)2
= Ka

1
PTT2 (12)

where PTT is the pulse transit time it takes the pressure wave to travel between two arterial
sites separated by a distance L, and Ka is a parameter that needs to be calibrated for an
individual by experiment [13].

In this study, we used a particular type of PTT called reflective PTT (R-PTT), whose
main advantage is that it can be determined from the PPG signal obtained with a single
optical sensor placed on the skin at a peripheral site, such as at the wrist. R-PTT is the
duration that the pulse wave takes to travel from the radial artery to the end of the limb
and reflect back to the radial artery again [13], and it can be measured by calculating the
duration between the first and the second peaks of a single PPG pulse [37]. Substituting
R-PTT in (12), we can obtain the SBP value using:

SBP = DBP + Ka
1

R− PTT2 (13)

PWV can also be measured using the Moens–Korteweg equation [27]:

PWV =

√
Einh
2ρr

(14)
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where Ein is the incremental elastic modulus of the artery, h is the thickness of the artery,
r is the radius of the artery, and ρ is the density of the blood. Based on the experimental
results obtained by [38], the elastic modulus of an artery can be represented as [13]:

Ein = E0eγ×MBP (15)

where E0 is the elastic modulus at zero pressure and γ is the coefficient depending on
the particular vessel. The values of these two parameters are taken as 1428.7 and 0.031,
respectively, which are the average values obtained in the study carried out by [38] for
the brachial artery and have been used in a number of studies [13,39,40]. MBP is the mean
blood pressure and can be derived by:

MBP ≡ 1
3

SBP +
2
3

DBP = Kb +
2

0.031
ln
(

Kc

R− PTT

)
(16)

while Kb and Kc are parameters that need to be calibrated for an individual by experiment [13].
By substituting (13) into (16), the DBP value can be calculated using:

DBP = Kb +
2

0.031
ln
(

Kc

R− PTT

)
− Ka

3(R− PTT)2 (17)

The peak of the reflected wave can be located using the second derivative of the PPG
signal (diastolic peak) [41]. The separation between the systolic and diastolic peaks on the
time axis marks the reflective PTT [40]. Figure 5 shows the PPG waveform, its first and
second derivatives, and the R-PTT.
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An open-source software, PulseAnalyse [42], was used in this work to compute the
R-PTT values. In previous works, where the reflective pulse transit time was used to
estimate blood pressure [13,39,40], the R-PTT was utilized in the context of one point-
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to-point (oPTP) calibration. However, studies that were conducted on PTT-based BP
estimation have shown that the oPTP method is not robust [43]. One way to make it more
robust is to use mean point-to-point pairing calibration (mPTP) [43], which is what we did
in this work. We calculated the average R-PTT over the first 30 s of the waveform pulse
(i.e., mPTP) instead of in a single pulse, in addition to the average values of non-invasive
SBP and DBP during this interval, and used this information to calibrate the Ka, Kb, and
Kc parameters in our model for each individual using (13) and (17).

We then considered the last ten minutes of the dataset for each of the 30 patients to
estimate the blood pressure using the developed mathematical model. Using this segment
of the signals for estimation gave us the most separation from the calibration interval and
thus provided a more realistic performance result of the model for real applications. For the
estimation segment (last ten minutes of the waveform), we substituted the earlier calculated
and calibrated parameters (Ka, Kb, and Kc from the first 30 s of the waveforms) and R-PTT
values using the mPTP method (from the last 10 min of the waveforms) into (13) and (17)
and calculated the SBP and DBP values for this segment. These model-based values of
SBP and DBP obtained based on the initial calibration are in turn fed as features into the
machine learning model, as described below.

2.5. Feature Selection

We used wrapper subset evaluation with the forward greedy stepwise search method [44]
to determine two separate feature sets. For the first set, we only used features from car-
diovascular dynamics that were generated using the IBI series. This provided us with
four features for the estimation of systolic blood pressure (NNx, α1, LF, and HF) and five
features for the estimation of diastolic blood pressure (SDNN, RMSSD, SD1, LF, and α1).
These are the feature sets that were used with the Artificial Neural Network model to
generate an estimation baseline. The estimation result from this baseline (cardiovascular
dynamics features) is compared with the result obtained from the second set of the features
to investigate the effect of incorporating the mathematical model on the estimation accuracy.
For the second set, we used the estimated blood pressure values from the mathematical
model in addition to the features from cardiovascular dynamics. This provided us with
three features for the estimation of systolic blood pressure (SampleEn, α1, and systolic esti-
mation from the mathematical model) and also three features for the estimation of diastolic
blood pressure (SampleEn, HF, and diastolic estimation from the mathematical model).

2.6. Partitioning

In order to partition data to obtain the baseline estimation, we used the leave-one-
out method. The same method was also considered to evaluate the performance of the
new estimator that incorporates the mathematical model. The collected data were from
30 patients. For both feature sets, all of the above-mentioned features from one patient
were set aside to be used as the test data, while the remaining features were split into 85%
training and 15% validation. This process was repeated 30 times to cover the entire dataset.
To avoid overfitting, validation data with the early stopping technique were used [45].

2.7. Artificial Neural Network

An Artificial Neural Network (ANN) from the Deep Learning Toolbox version 13.0 in
Matlab R2019b was used for regression. An ANN with a two-layer feed-forward network
structure, a sigmoid layer followed by a linear output layer, was used. We tested different
numbers of neurons to find the best structure for the network and chose a hidden layer
with ten neurons based on the performance. To train the network, we used a Bayesian
Regularization backpropagation algorithm and fixed the structure of the network prior to
applying it to the test data. A separate network was trained for each of the two feature sets
for SBP and DBP.
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2.8. Model Evaluation

The estimation performance was evaluated based on the mean error (ME), the mean
absolute error (MAE), and the standard deviation of error (SDE) obtained with the test data.
The ME and MAE are calculated using the following equations:

ME =
∑n

i=1 yi − xi

n
(18)

MAE =
∑n

i=1|yi − xi|
n

(19)

where yi is the prediction and xi is the true value for the SBP or DBP from the dataset.
The true values are determined by averaging the SBP or DBP values that were measured
non-invasively over the whole 10 min test interval.

The SDE was calculated based on the following equation:

SDE =

√
∑n

i=1|ei − e |2

n
(20)

where ei is the error between the prediction and the true value (ei = yi − xi) for each
estimation, and e is the average of ei.

2.9. Sensitivity Analysis of the Mathematical Model

Sensitivity analysis (SA) predicts the level of sensitivity of a model output to changes in
parameter values [46]. Models with a high uncertainty and high sensitivity may experience
a large variation in the output with a small change in the inputs [46]. SA is used to evaluate
the relative importance of each input parameter and rank the model parameters from
most to least influential [46]. In general, SA methods can be divided into local and global
methods. Local SA is usually derivative-based and works by changing one variable at a
time while keeping all the other variables constant and measuring changes in the output.
This method is relatively simple to use; however, it provides information only at the central
point and not the whole parameter space [46]. On the other hand, global SA covers the
whole input parameter space, since all the input parameters are changed together, but at
the expense of a higher computational cost [47].

In this work, we used an open-source toolbox in Matlab called Sensitivity Analysis
For Everyone (SAFE) [48] to analyze the sensitivity of the calibration parameters in our
mathematical model. This toolbox takes advantage of variance-based sensitivity analysis
in order to determine the global SA.

For a generic model, Y = f(X1, X2, X3, . . . , Xk), where Y is a scalar, a variance-based
first-order effect for a generic factor Xi can be shown as:

VarXi(EX∼i(Y|Xi )) (21)

where VarXi is the variance taken over all possible values of Xi, Xi is the i-th factor, X∼i
is the matrix of all factors except Xi, and EX∼i is the expected value of Y over all possible
values of X∼i. The first-order sensitivity that estimates the single contribution of each input
parameter on the output variance and sensitivity can be measured as:

Si =
VarXi(EX∼i(Y|Xi ))

Var(Y)
(22)
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where Si is a normalized index, as VarXi(EX∼i(Y|Xi )) varies between zero and Var(Y). The
total sensitivity index that measures the total contribution of each input parameter to the
output variance and sensitivity can be calculated as:

STi =
EX∼i(VarXi(Y|X∼i ))

Var(Y)
= 1−

VarX∼i(EXi(Y|X∼i ))

Var(Y)
(23)

where STi is the total sensitivity index and VarX∼i is the variance taken over all possible
values of X∼i [47].

2.10. Computational Complexity

Table 2 summarizes the computational complexity analysis that was performed on
every step of this work using the Matlab profiling capability. The computational complexity
was determined based on the execution time and the amount of allocated memory for
each part.

Table 2. Computational complexity based on execution time and memory allocation. The CPU clock
speed during this process was 2.501 GHz. The execution time was measured with a precision of
1.00 × 10−7 s. The data for the peak/trough detection, feature extraction, and mathematical model
are from a single sample file. These values are the same for both the training and test data. For ANN,
the numbers correspond to a set of 30 measurements (our complete dataset).

Total Execution Time (s) Total Allocated Memory (Mbytes)

Peak/trough detection 183.72 941.66
Feature extraction 59.80 261.33

Mathematical model 218.30 2051.61
ANN training 509.31 8.48
ANN testing 11.65 4.63

It is to be noted that, although training the model can be somewhat time-consuming,
testing is not, especially because, in a real-world application, testing would be done on a
single set of measurements and not 30, as was done here (i.e., the execution time would be
divided by 30).

3. Results

In this work, we proposed a model-based approach to calibrate estimates of blood
pressure using PPG signals. In this process, we estimated both systolic and diastolic blood
pressure with the 30 patients using the following three methods:

• Information from cardiovascular dynamics was used to estimate blood pressure. This
is a calibration-free method that we developed in our previous work [24]. The blood
pressure estimation results based on this method are shown in Table 3. This table
shows the error for the SBP and DBP attained using an ANN model on five extracted
IBI features for DBP and four extracted IBI features for SBP;

• Calibrated mathematical model to estimate blood pressure, as was described in the
methodology section. The blood pressure estimation based on this method is presented in
Table 4. This table shows the error for the SBP and DBP obtained using this methodology;

• Information from cardiovascular dynamics, in addition to the calibrated mathematical
model, is used for blood pressure estimation. The estimation results using this method
are shown in Table 5. This table shows the error for the SBP and DBP obtained through
an ANN model and based on three extracted IBI features for both SBP and DBP. This
result can also be evaluated in reference to the IEEE 1708-2014 Standard for Wearable
Cuffless Blood Pressure Measuring Devices [49]. This standard requires a number of
conditions to be met and includes grading of the devices based on the obtained MAE.
Solely based on the MAE criteria of the standard, our proposed method achieves a
passing grade of A for DBP.
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Table 3. Blood pressure estimation performance using IBI features from 30 PPG waveforms. Five
features are used for DBP and four are used for SBP. Estimation is carried out using the ANN
described in the text, and the results are averaged over the 30 patients.

Dynamics

ME (mmHg) SDE (mmHg) MAE (mmHg)

Diastolic BP 0.14 10.97 7.54
Systolic BP −0.39 22.16 15.26

Table 4. Blood pressure estimation performance using reflective PTT in a calibrated mathematical
model with 30 PPG waveforms. The results are averaged over the 30 patients.

Modeling

ME (mmHg) SDE (mmHg) MAE (mmHg)

Diastolic BP 0.45 8.36 5.47
Systolic BP 3.18 12.49 9.11

We also performed sensitivity analysis for the proposed mathematical model to de-
termine the stability of the model and evaluate the relative importance of each of the
calibration parameters in the system. This analysis provided a ranking for the model
parameters based on their influence on the system. Figure 6 shows the ranking result from
the sensitivity analysis for the SBP model, and Figure 7 presents the ones for the DBP model.
Rankings are based on first-order sensitivity indices, Si (contribution of each individual
input to changes in the model output), and total effect sensitivity indices, STi (the first-order
sensitivity plus all the interactions involving that parameter). For both the systolic and
diastolic models, Ka and Kc were the most and the least influential parameters, respectively.
Therefore, according to the results from the sensitivity analysis, the Ka parameter is mainly
responsible for the variation in model predictions. Since the mathematical model was
found to be sensitive to this parameter, effort should be made in carefully choosing its
value during experimentation.
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Table 5. Blood pressure estimation performance using IBI features and estimation from a calibrated
mathematical model from 30 PPG waveforms. Three features are used for SBP and DBP. Estimation is
carried out using the ANN described in the text, and the results are averaged over the 30 patients.

Dynamics + Modeling

ME (mmHg) SDE (mmHg) MAE (mmHg)

Diastolic BP 0.59 7.07 4.92
Systolic BP 2.52 12.15 8.89
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4. Discussion

The results of this research indicate that the proposed approach based on IBI dynamics
over short intervals in conjunction with a mathematical calibration model using only a
single photoplethysmogram signal could be used for cuffless blood pressure estimation.
This approach may be used on its own or as a complement to other cuffless BP estimation
methods. The advantage of this method is that, since the IBI dynamics of PPG signals rely
only on the timing variation between the peaks or troughs of the signals, it is likely less
sensitive to changes in sensor placement or to different skin colors. This may make blood
pressure estimation using this method more favorable compared to methods, including
those based on deep learning, that rely on within-beat PPG pulse morphology.

In this work, we looked into both a calibrated model as well as a calibration-free model
for the cuffless estimation of BP. We collected 16 features from PPG IBI variability which
were examined in our previous work [24]. We used wrapper subset evaluation with the
forward greedy stepwise search technique to select a subset of these features as inputs to
the ANN. For the calibration-free approach, five features for DBP estimation and four for
SBP estimation were selected.

We also used a mathematical model for calibration based on the reflective PTT and
initial non-invasive blood pressure measurements. Sensitivity analysis and parameter
ranking showed that one of the parameters was dominant in terms of the sensitivity of the
model to it. Considering this model, we selected three features to be used with the ANN for
both SBP and DBP estimation using the wrapper subset evaluation with the forward greedy
stepwise search method. It is seen that adding the mathematical calibration model led to a
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substantial reduction in most of the error measures, particularly the critical measures of
SDE and MAE. These measures were reduced by 45% and 42% for SBP and 36% and by
35% for DBP, respectively.

The lower errors found for DBP vs. SBP may be partly explained by the strong relation
that has been found between HRV indices and both SBP and DBP in females, while for
males, there was no relation between these indices and SBP [50]. For the dataset that we
used, there was no information provided regarding the gender composition; however, it
is safe to assume that the number of male and female participants is likely to be close.
Therefore, this could result in BP estimation based on IBI dynamics that is less accurate for
SBP than for DBP. In addition, [51] found that changes in IBI are more clearly present in
DBP compared to SBP. Therefore, the closer relationship between IBI dynamics and DBP
could have contributed to the higher estimation accuracy of DBP.

In our previous work, we estimated blood pressure based on features from cardiovas-
cular dynamics without calibration [24]. In the current study, features from cardiovascular
dynamics were also considered for BP estimation; however, a mathematical calibration
model was also added to investigate if it provided an improvement in performance. The
selected features related to IBI dynamics in the two studies were different for both SBP and
DBP estimation. In the previous study, five IBI-related features for the estimation of SBP
(mean IBI, NNx, pNNx, SD2, and α1) and six features for the estimation of DBP (mean IBI,
NNx, pNNx, PRVTi, SampleEn, and the IBI ratio of LF/HF) were selected, while in this
work, we ended up using four features for the estimation of SBP (NNx, α1, LF, and HF) and
five features for the estimation of DBP (SDNN, RMSSD, SD1, LF, and α1). The discrepancy
in IBI-related feature selection may be due to the different target data in the two studies.
In our previous work, the target for the estimation model was the invasive arterial blood
pressure, whereas, in this study it was noninvasive arterial blood pressure. As noted in the
literature, not only are there differences in BP readings between invasive and noninvasive
methods, but substantial differences in BP measurements are also observed when different
devices are used [52]. Another reason for the divergence in feature selection could be due
to the choice of datasets. In our previous study, the dataset was collected in the intensive
care unit (ICU), where the patient was possibly under the influence of medications or other
interventions that could cause abnormal blood pressure dynamics. Additionally, some
medications such as inotropes could result in BP measurement differences between invasive
and noninvasive methods, and the difference increases with the amount of medication
used [53]. We used signals from patients undergoing anesthesia for surgery, which results
in rapid and dynamic vital sign changes during the induction and emergence phases of
anesthesia. This study also had some limitations. First, some useful information such as
the age, height, weight, and gender of the participants was missing from the dataset. These
basic variables could provide valuable information for the estimation process. Second, the
quality of the PPG signals was inspected manually, which is not an ideal practice in real-life
scenarios. An automated replacement for this step that evaluates the quality of signals in
a preprocessing stage would be useful. Third, the loss of blood volume during surgical
procedures was not recorded. This would be of interest to us since our mathematical model
assumes a near constant blood volume in arteries, and this could be affected by blood
loss. Fourth, the size of the dataset imposed a limitation on providing a separate and
independent test dataset to validate the accuracy of the model. A larger database would
provide the flexibility to set aside a portion of the data solely for testing purposes and
offer a larger training set for the network that can ultimately increase the accuracy of the
estimation, as was found in some previous studies such as the ones in [18] and [19], where
a larger dataset was used. However, there could be other reasons behind their reported
better performance, such as:

• Reference blood pressure values were taken invasively, whereas, in our study, these
values are collected through noninvasive methods.
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• In [18], because of the large dataset, the authors could afford to apply a BP range
constraint, meaning that, whenever the output was beyond a certain threshold, it was
eliminated and not considered for performance evaluation.

• The input in those studies was based on segmented windows of the collected data
with overlaps. This could cause the network to be exposed to the test data during
training and result in a higher reported accuracy.

Regardless of these limitations, we showed that changes in IBI dynamics extracted
from the photoplethysmogram (PPG) can be used to estimate BP. The estimation accuracy
was further improved with the use of a mathematical calibration model. Even greater
improvement might be achieved by combining the method proposed in this study with
other approaches for cuffless BP estimation.

5. Conclusions and Future Work

The concept of blood pressure estimation based solely on cardiovascular dynamics is
different from current prevalent approaches that use pulse transit time or pulse morphology
within individual beats. It is understood that the cardiovascular dynamics carry useful
information that can help to recognize conditions such as hypertension [54]. This was
demonstrated in the study by [51], where it was concluded that there are differences
in the short-term oscillation in blood pressure (BP) between normotensive, borderline
hypertensive and hypertensive individuals [51]. Inspired by the above findings, our
proposed method to estimate blood pressure is to use information from dynamic changes
(that are collected over short intervals of a few minutes) and incorporate a mathematical
calibration model based on the initial measured values of blood pressure.

In this paper, we compared the estimated values for both SBP and DBP using a
calibration-free model and the proposed calibrated model. The overall estimation results
were in line with the expectation that the cardiovascular dynamics contain valuable infor-
mation for the estimation of blood pressure. In addition, the result also showed that the
calibration stage improved the accuracy in both SBP and DBP estimation. However, to
further improve cuffless BP accuracy measurement, in future work, this approach may be
combined with widely used methods based on the pulse morphology within beats or the
pulse transit time.
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