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Abstract: Gilliamella and Snodgrassella, members of core gut microbiota in corbiculate bees, have high
species diversity and adaptability to a wide range of hosts. In this study, we performed species
taxonomy and phylogenetic analysis for Gilliamella and Snodgrassella strains that we isolated in
our laboratory, in combination with published whole-genome. Functional effects of accessory and
unique genes were investigated by KEGG category and pathway annotation in pan-genome analysis.
Consequently, in Gilliamella, we inferred the importance of carbohydrate metabolism, amino acid
metabolism, membrane transport, energy metabolism, and metabolism of cofactors and vitamins in
accessory or unique genes. The pathway mentioned above, plus infectious disease, lipid metabolism,
nucleotide metabolism as well as replication and repair exert a pivotal role in accessory or unique
genes of Snodgrassella. Further analysis revealed the existence of functional differentiation of accessory
and unique genes among Apis-derived genomes and Bombus-derived genomes. We also identified
eight and four biosynthetic gene clusters in all Gilliamella and Snodgrassella genomes, respectively. Our
study provides a good insight to better understand how host heterogeneity influences the bacterial
speciation and affects the versatility of the genome of the gut bacteria.

Keywords: corbiculate bees; pedigree diversity; evolution; pan-genomics

1. Introduction

Corbiculate bees, including honeybees, bumblebees, and stringless bees, are important
pollinators [1]. The pollination of these species could ensure the stability of local ecosystems
and the income of bee farmers through increasing plant diversity and crop yields [2].
However, because of the destruction of the environment and the abuse of antibiotics, the
number of these insects decreased sharply, and they were on the edge of extinction [3]. The
intestinal microflora in the social bees could benefit the health and fitness of the host by
facilitating the host to degrade toxic substances, absorb polysaccharides, and stimulate the
immune response [4]. The gut of social bees, such as bumblebees and honeybees, harbors
simple and host-specific bacterial phylotypes. Hence, these types of insects could serve as
ideal models to study evolution of gut microorganisms and interaction between the host
and gut microorganisms [5]. Gilliamella and Snodgrassella are the dominant genus in the
gut of bees. Gilliamella grows on top of the Snodgrassella layer to form a dense biofilm. It
is proved that Gilliamella could degrade polysaccharides, forming a nutritional network
with other symbionts and the host. By contrast, Snodgrassella behaves as the oxidant of
carboxylic acid and triggers a host-beneficial immune response [6,7].

Knowledge about the taxonomy of Gilliamella and Snodgrassella is key to the study of
the evolution of these two genus. In the beginning, research classified the above genus based
on the 16S rRNA gene [8]. Nevertheless, the deficiencies of this method, such as mismatch
of primers and chimerism of PCR products, usually led to low classification characterized
with low resolution [9]. By contrast, the taxonomy constructed by the multiple genes and
even the whole genome sequence could largely improve the accuracy [10]. For example, the
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GTDB (Genome Taxonomy Database) of reconstructing the life tree based on 120 single-copy
marker genes improves the classification level of uncultured bacteria [11]. Genome-wide
ANI (Average Nucleotide Identity) analysis of 9000 prokaryote genomes, through the 95%
ANI threshold to define the classification of species, answers the existence of continuity of
genetic diversity and clear species boundaries between microbial genomes [12]. Recently,
researchers published the systematic classification of Gilliamella and Snodgrassella based
on the whole genome sequences [13]. However, the evolutionary position of the bacterial
sequence obtained from newly isolated strains remains unknown.

On the other hand, sociality maintains and promotes host-specific intestinal bacte-
ria specialization. For example, the forager honeybees derived from two colonies in the
Agricultural University contained different microbiota. Firmicutes (Lactobacillus), actinobac-
teria (Bifidobacterium), and Cyanobacteria were dominant in one of the colonies, while
γ-proteobacteria (Orbales, Gilliamella), α-proteobacteria (Rhizobiales, Bartonella), and Firmi-
cutes (Lactobacillus) were dominant in another colony [14]. The additional possible evidence
to support this explanation is that the species differentiation of corbiculate bees is consistent
with the pedigree of core intestinal bacteria [15]. Host-associated intestinal bacteria will
make changes to adapt to different hosts in their own genomic structure and function.
Additionally, the coexistence with other bacteria could also promote the differentiation of
functionality niche in the intestinal environment of the same host [16,17]. For example,
Gilliamella shows diversity in the metabolism of polysaccharides and the ability to utilize
sugar substrates [18]. Recent studies have found that Gilliamella lives in different intestinal
locations and utilizes different nitrogenous waste capabilities of the host [19]. However, we
still do not know enough about the functional diversity in genome evolution.

The pan-genome, which was first proposed by Tettlin, is the whole genomic repertoire
of a specific species [20]. Specifically, it consists of a core genome, a dispensable genome,
and strain-specific genes, where the core genome includes genes that are shared by all
members in a given species and the dispensable genome contains accessory genes absent in
some strains [21,22]. Generally, core genes are responsible for essential traits of a species. By
contrast, accessory genes and unique genes are thought to contribute to species functional
diversity based on their influence on species survival in different environment niches
(e.g., distinct bacterial host) [23]. At present, pan-genome analysis is the key step to
exploring species evolution as well as adaptation given the continuous accumulation of
high-throughput genomic sequences. In our study, combined with published Gilliamella
and Snodgrassella genomes, we explored the evolutionary position of six Gilliamella strains
and five Snodgrassella strains that we isolated in our lab and investigated the genomic
functional diversity via pan-genomic analyses, carbohydrate enzyme genes annotation, and
biosynthesis gene clusters (BGC) analyses. Firstly, it was found that there were 27 different
potential species branches for Gilliamella and 7 different clades species for Snodgrassella,
based on ANI and GTDB classification. Secondly, at the genus level, we illustrated the
functional diversity of the core genes, accessory genes, and unique genes of the genomes of
Gilliamella and Snodgrassella. Additionally, for both of the above two genus, we revealed the
functional differentiation underlying the accessory genes and unique genes between Apis-
derived genomes and Bombus-derived genomes. Finally, we showed the differences in the
distribution of biosynthesis gene clusters in genomes of Gilliamella and Snodgrassella. Taken
together, our study showed how host heterogeneity influences the bacterial speciation and
affects the versatility of the genome of the gut bacteria.

2. Materials and Methods
2.1. Bee Sample Collection, Culture, and Identification of Gut Bacteria

A total of seven bees, including one queen, two workers, and one drone of Bombus ter-
restris, as well as one worker of Bombus lantschouensis, one worker of Apis mellifera, and one
worker of Apis cerana were collected from different colonies in the Institute of Apicultural
Research, Chinese Academy of Agricultural Sciences. The guts of the bee samples were
extracted with sterile forceps and then homogenized in Ringer’s solution with a sterile
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grinding rod. The homogenates were serially diluted to 104 in physiological saline (0.7%
NaCl) and plated on heart infusion agar HIA (HIA; Difco BD) and tryptic soy agar TSA
(TSA; Difco BD). Then, the plates were incubated at 37 ◦C in a microaerobically sealed
container which was supplied with atmospheres containing 79% N2, 6% CO2, and 15%
O2 atmosphere. After 3 days of incubation, visible colonies were picked up. To quickly
identify the target strains belonging to Gilliamella and Snodgrassella, the genus-specific
primer sets were designed based on the genomes of corresponding type strains (Gilliamella
apicola and Snodgrassella alvi) to amplify 16S rRNA genes (Gilliamella: the forward primer is 5′-
GACGGGTGAGTAATGTATGG-3′ and the reverse primer is 5′-AGGTCGCCTCCCTTTGTAT-
3′; Snodgrassella: the forward primer is 5′-AATACCGCATACGCCCTGAG-3′ and the re-
verse primer is 5′-TACGGCTACCTTGTTACGAC-3′). Finally, eleven strains, including
six Gilliamella and five Snodgrassella, were isolated from the intestines of seven bees and
identified in the NCBI (National Center for Biotechnology Information) database (Table S1).

2.2. Isolates DNA Extraction, Library Preparation, and Sequencing

The genome DNA was extracted from 6 isolates of Gilliamella and 5 isolates of Snod-
grassella according to the protocol of Wizard® Genomic DNA Purification Kit [24]. A total
amount of 0.2 ug DNA of each sample was used for the preparation of the DNA library. As
recommended by the manufacturer, we used the NEB Next® Ultra™ DNA Library Prep
Kit for Illumina (NEB, USA) to generate a sequencing library and added an index code
to each sample. In short, the genomic DNA sample was crushed to 350 bp by ultrasound.
Then, the DNA fragment was polished, A-tailed, and connected with the full-length con-
nector for Illumina sequencing, followed by further PCR amplification. After the PCR
products were purified by a AMPure XP system (Beckman Coulter, Beverly, CA, USA),
the concentration of DNA was measured by a Qubit 3.0 Flurometer (Invitrogen, Waltham,
MA, USA). The size distribution of the library was analyzed by an Agilent 2100 biological
analyzer and quantified by real-time PCR. The DNA library was sequenced on the Illumina
platform according to the manufacturer’s instructions, and a paired-end reading of 150 bp
was produced.

2.3. Genomic Data Collection and Bioinformatics Analysis

The raw data successively underwent quality control and was assembled using the
spades.py -1 forward paired-end reads -2 reverse paired-end reads command with the
-t 40 and –isolate options (SPAdes v3.15.4) [25]. The assembled genomes of high quality
were accessed by QUAST (v5.02) using the quast -l “Genome A, Genome B, Genome C”
command with the -t 20 option [26] and CheckM (v1.13) using the checkm lineage_wf
command with -t 20 and -x fasta options (Table S2) [27]. In addition to the genomes of
intestinal bacteria collected in our laboratory (6 Gilliamella, 5 Snodgrassella), we collected
the published genomes (141 Gilliamella, 83 Snodgrassella) from the NCBI database for
subsequent bioinformatics analysis (Tables S3 and S4). The average nucleotide identity
was calculated using the fastANI -ql query.list -rl ref.list command (FastANI v2.0.11) [12].
Then, the cluster analysis was carried out using the bactaxR package [28] in the R v4.1.0
(https://www.r-project.org/, accessed on 1 June 2022). The GTDB-TK toolkit was applied
to assign taxonomic classifications to all acquired genomes using the gtdbtk classify_wf
command with the –extension fa and –cpus 20 options [29].

Orbus hercynius DSM 22,228 (Accession: GCA_003634275.1) and Frischella perrara PEB0191
(Accession: GCA_000807275.1) were selected as outgroups for Gilliamella, while Alysiella crassa
NCTC10283 (Accession: GCA_900445245.1) and Kingella denitrificans NCTC10995 (Accession:
GCA_900451365.1) were incorporated as outgroups for Snodgrassella. Single-copy ortho-
logue genes were identified and aligned, respectively, by OrthoFinder (v2.5.4) [30] using
the orthofinder command with the -t 20 option and MAFFT (v7.505) [31] using the mafft
command with the -op 1.53 and -t 2 options. The IQ-TREE (v 1.6.12) was applied to con-
struct a phylogenic tree using the iqtree command with the -m JTT + F + R10, -bb 1000,
-alrt 1000, and -nt AUTO options. The BPGA (Bacterial Pan Genome Analysis v 1.3.0) [32]

https://www.r-project.org/
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tool was used to perform pan-genome analysis with the default options and parameters
according to the user manual (http://sourceforge.net/projects/bpgatool/, accessed on 1
January 2022). From this process, the KEGG (Kyoto Encyclopedia of Genes and Genomes)
pathway was identified at the similarity threshold of 0.5.

The structural and functional annotation was processed using the prokka command
with default options and parameters (Prokka v1.14.6) [33]. Specific CAZyme genes annota-
tion was conducted using the run_dbcan.py command with default options and parameters
(dbCan2 v2.0.11) [34], and we used algorithms of HMMER [35], DIAMOND [36], and Hot-
pep [37] with default e values for precise CAZyme annotations. Secondary metabolite BGCs
(biosynthetic gene clusters) identification was carried out using the antismash command
with the –cb-general, –cb-knownclusters, –cb-subclusters, –asf, –pfam2go, –smcog-trees,
–cpus 20, –taxon bacteria, and –genefinding-tool prodigal options (antiSMASH v6.0.1) [38].
The antiSMASH software uses some abbreviations internally to refer to the different types
of secondary metabolite clusters (Table S5).

3. Results
3.1. Population Delimitation within Gilliamella Genus and Snodgrassella Genus Based on ANI and
GTDB Analysis

To explore the population diversity within genus Gilliamella and Snodgrassella, we
calculated the genomic similarity based on ANI score and used the GTDB-Tk software
toolkit to assign taxonomic classifications for 147 Gilliamella isolates and 88 Snodgrassella
isolates, respectively. Apart from three unclassified genomes of Gilliamella isolates, the
GTDB database defined the remaining genomes as 25 species. At the intra-species ANI
cutoff (>95%), Gilliamella genomes were assigned to 27 clades (Gilliamella 1–27) whose
compositions were identical to the taxonomic classifications of GTDB, except for Gilliamella
22 and 24. According to the NCBI database, P62G, wkB1, R-53144, R-53248, bombi isolate
1, and mensalis isolate 2 were the six type strains. These type strains belonged to distinct
ANI clades, of which, strains P62G, wkB1, and bombi isolate 1 were included in the top-
populated clades Gilliamella 2, Gilliamella 7, and Gilliamella 13, respectively. Strain R-53248
belonged to Gilliamella 19 and strain R-53144 and mensalis isolate 2 were involved in the
one-branch-based clades Gilliamella 9 and Gilliamella 17. In addition to type strains, our
laboratory strains G_xinjiangQ and G_xinjiangM which belonged to queen and drone,
respectively, of Bombus terrestris, as well as G_xinjiangW and G_ouzhouW which belonged
to the worker of Bombus terrestris, were involved in Gilliamella 13. Strain G_lanzhouW
which isolated from Bombus lantschouensis was contained in Gilliamella 13 as well. Strain
G_zhongW which isolated from Apis cerana was contained in Gilliamella 24. These results
suggest that strain G_zhongW might represent a new species different from the above type
strains (Figure 1A).

For Snodgrassella, seven clades (Snodgrassella 1–7) were clustered based on both ANI
score and GTDB database. This number was consistent with the previous classification,
although the dataset of our study and the previous study were not totally identical. The
type strain wkB2 and our isolates, S_yiW from Apis mellifera, were contained in the most
populated clade, Snodgrassella 6. In addition, our isolated strains, S_xinjiangQ, S_xinjiangM,
S_xinjiangW, and S_ouzhouW, which derived from Bombus terrestris, were contained in the
second most populated clade, Snodgrassella 5, which hints that these strains might belong
to another new species different from wkB2 (Figure 1B).

Furthermore, for Gilliamella, the host of the strains within one clade was totally derived
from the same genus but not exactly from the same species, especially for bumblebee-
derived strains. Specifically, almost all clades derived from honeybees contained strains of
the same host species; however, six clades (Gilliamella 12, 13, 15, 19, 20, and 21) derived from
bumblebees contained strains belonging to diverse host species. For Snodgrassella, most of
the strains classified as one clade belonged to the host of the same genus. However, the
host of strain from Snodgrassella 1 and Snodgrassella 4 belonged to honeybees or bumblebees.
Except for Snodgrassella 2, the strains of the remaining clades that belonged to the same host

http://sourceforge.net/projects/bpgatool/
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genus derived from more than one host species. For example, Snodgrassella 5 contained 23
strains that were from hosts Bombus lapidaries, Bombus hypnorum, Bombus terrestris, Bombus
pascuorum, Bombus lucorum, Bombus occidentalis, Bombus fervidus, Bombus impatiens, Bombus
rufocinctus, Bombus griseocollis, Bombus vagans, and Bombus bimaculatus(Figure 1A,B).
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strains isolated from our lab.

3.2. Phylogeny Reconstruction for Gilliamella Genus and Snodgrassella Genus

The phylogeny tree of Gilliamella and Snodgrassella were constructed based on single-
copy orthologous genes. For Gilliamella, strains from the same host genus were more strictly
clustered, which is consistent with the results of previous studies. Our isolates G_xinjiangQ,
G_xinjiangM, and G_xinjiangW clustered together. In addition, these three strains were
closely related to Bombus occidentalis-derived strain Occ 3-1 and Bombus impatiens-derived
strain Imp 1-6. Isolate G_ouzhouW was grouped with G_lanzhouW. The above two
strains were adjacent to ESL0232 sampled from Bombus_terrestris and isolate1 sampled from
Bombus lapidaries, respectively. Isolates G_zhongW and ESL0405 which belonged to host
Apis cerana stemmed from the same branch point (Figure 2A). For Snodgrassella, the majority
of bumblebee-derived strains and honeybee-derived strains tended to separate from each
other. Our isolates S_xinjiangW, S_xinjiangM, S_xinjiangQ, and S_ouzhouW were grouped,
of which, S_xinjiangW and S_ouzhouW were neighboring Bombus pascuorum-derived R-
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53633 and Bombus lucorum-derived R-54678, respectively. Isolate S_yiW was flanked by
Apis mellifera-derived N9 and E1. Overall, the phylogenic relationship of our laboratory
strain samples reflected the host phylogeny in the genus level but not in the species level
(Figure 2B).

3.3. Pan-Genome Analysis of Gilliamella and Snodgrassella

We conducted pan-genome analysis at different levels for 147 Gilliamella genomes and
88 Snodgrassella genomes using BPGA software. At the genus level, the pan-genome of
Gilliamella contained 250 core genes, 7503 accessory genes, and 6071 unique genes (Table S6).
In addition, the pan-genome of Snodgrassella contained 314 core genes, 4262 accessory genes,
and 764 unique genes (Table S7). According to the equations of the core–pan-genome curve,
we speculated that the pan-genome of Gilliamella is still open and that of Snodgrassella is
open but may close in the near future (Figure 3A,B).
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Functional annotation analysis revealed that the core genes of all the strains of
Gilliamella were mainly presented in carbohydrate metabolism, cell motility, amino acid
metabolism, energy metabolism, metabolism of cofactors, and vitamins. The first five
annotated pathways for accessory genes and unique genes were carbohydrate metabolism,
amino acid metabolism, membrane transport, energy metabolism, and metabolism of
cofactors and vitamins. Genes in pathways of carbohydrate metabolism and membrane
transport were more abundant as accessory genes and unique genes than as core genes,
while cell motility contained a much larger number of core genes than the other two gene
types. These results suggest that, although cell motility plays a vital role for general isolates
to survive, functional divergence might not have occurred in this aspect, as Gilliamella
diversified into distinct lineages. In contrast, the ability of some basic biological processes,
especially carbohydrate metabolism and membrane transport, might differentiate across
Gilliamella through a generate series of accessory genes and unique genes (Figure 3C). For
Snodgrassella, the function of core genes of the strains was mainly annotated in carbohydrate
metabolism, amino acid metabolism, nucleotide metabolism, metabolism of cofactors and
vitamins, replication and repair, and energy metabolism. The first five annotated path-
ways for accessory genes were carbohydrate metabolism, amino acid metabolism, energy
metabolism, metabolism of cofactors and vitamins, and membrane transport. The unique
genes were apparently involved in infectious disease, metabolism of cofactors and vitamins,
amino acid metabolism, lipid metabolism, nucleotide metabolism as well as replication and
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repair, of which, the ratio for infectious disease and metabolism of cofactors and vitamins
were largest among all pathways annotated by three types of genes. These results indicated
that, at the genus level, Snodgrassella isolates may differ in metabolism of cofactors and
vitamins, amino acid, and in the ability to respond to the environment of gut community
(Figure 3D).
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Figure 3. Pan and core genome plot of the analyzed 147 Gilliamella genomes (A) and 88 Snodgrassella
genomes (B). Graphs shows equations fitting total gene families and core gene families. Distributions
of KEGG pathways annotated in core, accessory, and unique genes of 147 Gilliamella genomes (C) and
88 Snodgrassella genomes (D).

3.4. Pan-Genome Analysis of Gilliamella and Snodgrassella with Different Genus Hosts

Sometimes, the pan-genome size of strains derived from different host can vary
because of the differences in the population size and the niche versatility [39]. For
Gilliamella, the pan-genome of honeybee-derived strains is open, whereas, the pan-genome
of bumblebee-derived strains will probably be closed soon (Figure S1A,B). For Snodgras-
sella, both the honeybee-derived strains and bumblebee-derived strains tended to close
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their pan-genomes (Figure S1C,D). Furthermore, we explored whether the functional dif-
ferentiation among Gilliamella isolates and Snodgrassella isolates is associated with host
species. Through pan-genome analysis for Apis-derived genomes and Bombus-derived
genomes, we found that for Gilliamella, Apis-derived isolates possessed more abundant
accessory genes or unique genes in energy metabolism and replication and repair, as well
as in signal transduction and xenobiotic biodegradation and metabolism, while Bombus-
derived isolates consisted of more of these two types of genes in membrane transport
(Figure 4A,B). For Snodgrassella, Apis-derived isolates contained many more unique genes
in infectious disease and signal transduction, while Bombus-derived isolates involved many
more unique genes in carbohydrate metabolism and replication and repair, as well as
in nucleotide metabolism. These results suggested that functional differentiation among
Gilliamella isolates and Snodgrassella isolates might associate with host species (Figure 4C,D).
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3.5. Distribution of Genes Related to Carbohydrate Metabolism

We identified the pectin digestion-related genes in the genomes of our isolated
Gilliamella strains in order to investigate their ability to digest pectin compared with other
Gilliamella strains. For the pectin lyase gene, isolates G_xinjiangW and G_zhongW pos-
sessed the genes CEL12, PL1, PL9, and PL22, while G_xinjiangQ, G_xinjiangM, G_ouzhouW,
and G_lanzhouW lost these genes. For galacturonic acid digestion-related genes, isolates
G_xinjiangQ, G_xinjiangM, G_xinjiangW, and G_zhongW contained the genes eda, kdgk,
uxaA, uxaB, and uxaC, while G_ouzhouW, G_lanzhouW possessed only the eda and kdgk
genes. Furthermore, we explored the gene distribution at the species level based on previ-
ous ANI analysis. We found gene distribution was different for strains in clades Gilliamella
1, 2, 4, 6, 8, 12, 13, 18, and 19, although strains in the each of the above clades were defined
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as the same species. These results indicated that the ability of pectin degradation could be
different among individuals in the same species (Figure 5).
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Figure 5. The distribution of key pectin-degrading genes in 147 Gilliamella strains. The size of the
bubble denotes the gene copy number. The red text marks the strains that were isolated in our lab.
The background color of text denotes different ANI clades. The color of the left bar indicates the
genus of the host.

3.6. Secondary Metabolite Analysis for Gilliamella Genus and Snodgrassella Genus

We explored the distribution of BGCs (Biosynthetic Gene Clusters) in Gilliamella and
Snodgrassella. For Gilliamella, eight BGCs were identified in the genomes of 147 strains
(arylpolyene, butyrolactone, CDPS, NRPS, thiopeptide, phenazine, RRE-containing, and
siderophore). The distribution of the above BGCs was varied among strains of differ-
ent host species and even among strains defined as the same species in ANI analysis.
Arylpolyene, as well as NRPS and thiopeptide, were the most abundant types and they
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were mainly contained in Apis-derived genomes, while CDPS tended to be distributed
in Bombus-derived genomes. Our isolate G_ouzhouW possessed none of these BGCs;
G_xinjiangQ, G_xinjiangM, G_xinjiangW, and G_lanzhouW contained arylpolyene and
G_zhongW consisted of both arylpolyene and thiopeptide (Figure 6A).
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Figure 6. The distribution of biosynthetic gene clusters in the genomes of (A) 147 Gilliamella strains
and (B) 88 Snodgrassella strains. The red text marks the strains that were isolated in our lab. The
background color of text denotes different ANI clades. The color of the left bar indicates the genus of
the host.

For Snodgrassella, four BGCs were identified in the genomes of 88 strains (arylpolyene,
acyl.amino_acids, butyrolactone, and terpene). As Gilliamella, the distribution of these
BGCs was different among all the strains. Specifically, arylpolyene was frequently located
in Snodgrassella genomes; terpene was possessed by almost all the strains; butyrolactone
was contained only in the genomes of strains belonging to clade Snodgrassella 7 which was
defined as one independent species in the ANI analysis. Furthermore, we found that all of
our isolates, S_ouzhouW, S_xinjiangQ, S_xinjiangM, S_xinjiangW, and S_yiW, contained
arylpolyene and terpene (Figure 6B).

4. Discussion

Given the development of high-throughput sequencing technologies, analysis of the
DNA sequence has become an integral part of the field of bacterial classification. On the
basis of the 16S rRNA gene, five species of Gilliamella and one species of Snodgrassella
have been defined (Gilliamella: Gilliamella apicola, Gilliamella intestini, Gilliamella bombicola,
Gilliamella bombi, and Gilliamella mensalis; Snodgrassella alvi) [8,40]. In our study, alignment
of the whole genome sequence (ANI and GTDB) classified Gilliamella to 27 species and
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Snodgrassella to 7 species. The number of species we defined was more than the classification
of the 16S rRNA gene, indicating a higher degree of speciation of these two dominant genus
under long-term nature selection. On the basis of pan-genome analysis, we predicted that
the pan-genome of Gilliamella is still open. In contrast, the pan-genome of Snodgrassella may
close in the near future. The openness of the pan-genome might illustrate the prerequisite
of genomic adaptation and evolution when coping with a wide range of environments [41];
thus, it usually results in high species diversity. We speculated that the difference in the
potential number of species between two, Gilliamella and Snodgrassella, is probably due to
the discrepancy in the degree of openness of their pan-genomes.

This work found that the species’ taxonomic information of our laboratory isolates and
that of strains derived from other labs both indicated that strains from different caste and
different host species within one genus could belong to the same species; however, strains
from the host belonging to different genus tended to be classified as distinct species. These
results were consistent with previous findings and might reflect the transmission trend of
intestinal bacteria in bees [13,19]. The lineages of Gilliamella strains isolated from different
castes of the host of the same species in bumblebees were the closest in the results regarding
species classification and phylogenetic relationship; the situation in Snodgrassella strains
isolated from different castes of the host of the same species in bumblebees was the same
as that of Gilliamella. The above phenomenon was mainly due to the vertical transmission
of bumblebees (from queen to unmated queen) and social division of labor, which leads
to frequent communication of intestinal bacteria among three types of bumblebees and
results in convergence of gut microbiota composition. In fact, there was hardly any gene
flow between Apis and Bombus gut bacteria [16]. Nevertheless, horizontal gene transfer
occurred among strains within a host genus [42].

The divergence of species could result from a series of functional differentiation
of genomes. In the field of molecular biology, accessory genes and unique genes are
considered to have crucial influence on genome evolution and on the interplay between the
environment and the genome, being further involved in functional diversification [43,44].
On the basis of the ideas described above, our study illuminated the functional diversity
of bacterial strains in Gilliamella and Snodgrassella based on pan-genome analysis. As
core genes, the accessory genes or unique genes of the above genus were significantly
involved in “carbohydrate metabolism”, “amino acid metabolism”, “energy metabolism”,
and “metabolism of cofactors and vitamins”. Consider “carbohydrate metabolism” in
Gilliamella as an example: during the long-term co-evolution between host and Gilliamella,
the efficiency of carbohydrate consumption by different strains correlated with their ability
of growth and development. In addition, these strains could degrade the monosaccharides
that are difficult for the host to digest and even harmful to the host [6]. In our study,
the “carbohydrate metabolism” contained far more accessory genes and unique genes
than core genes (Table S8). More importantly, the majority of accessory genes and unique
genes in the pan-genomes were aligned to this function (Table S8). These results, on the
one hand, were consistent with previous findings that Gilliamella is the major bacteria to
degrade carbohydrate contained in nectar and pollen, and strains from both the same and
different host species differ in their ability to degrade carbohydrates [6,19]. On the other
hand, through identifying the variability of the distribution of pectin digestion-related
genes among the isolates belonging to the same ANI clades, we emphasized that ability of
carbohydrates degradation could be different even among the individuals belonging to the
same species of Gilliamella. As for synthesis of amino acids, genes related to this function
benefit the colonization of Snodgrassella by supporting its growth and survival [45]. In our
study, the number of accessory genes was much larger than core genes in the category
“amino acids metabolism” (Table S9), indicating the function of the degradation and
synthesis of amino acids might be due to selection driven by the host. In vivo, Snodgrassella
utilizes acetate as its energy source, which promotes changes of the methionine biosynthetic
pathway [6]. Actually, not only methionine but many other amino acids participate in the
production of acetate. For instance, acetate is the major product of histidine deamination. In
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addition, the breakdown of the basic amino acids arginine and the dissimilatory metabolism
of cysteine could also yield acetate [46]. In our data, we noticed the distribution of accessory
genes in the metabolism of distinct acetate-forming amino acids. For example, there were
26 and 24 accessory genes in the pathway “Cysteine and methionine metabolism” as well
as “Arginine and proline metabolism” (Table S9). For Snodgrassella, another source of
acetate is TCA cycle in which lipolate and thiamine are two important cofactors required
by the key enzyme [47,48]. In our study, there were 10 and 1 accessory genes in “Thiamine
metabolism” and “Lipoic acid metabolism”, respectively (Table S9), indicating the selection
of utilization of these two cofactors. Based on the above findings, the changes of the gene
content related to the metabolism of a series of amino acids and cofactors might be in
parallel with the energy niche differentiation process that occurred in the adaptation phase.

For Gilliamella and Snodgrassella, the accessory genes or unique genes were also clearly
annotated in the KEGG sub-category named “membrane transport”, which included the
KEGG pathway associated with “ABC transporters”. This pathway contained 131 accessory
genes and 113 unique genes derived from Gilliamella and 50 accessory genes derived
from Snodgrassella (Tables S8 and S9). Previous studies revealed that the ABC transporter
plays an important role in bacterial biofilm formation [49]. For instance, the quality of
biofilm formed by the ABC transporter-deletion mutant strain of Streptococcus mutans was
apparently decreased compared with the control strain. In bee gut, biofilm synthesis could
exert a critical effect on the colonization of the bacteria [45]. Type strain of Snodgrassella
adhered to the wall of ileum via biofilm [8]. We speculated that biofilm formation might be
involved in niche differentiation and adaptation of strains from Gilliamella and Snodgrassella
through changes in genes aligned as ABC transporters.

In addition, in Snodgrassella, approximately 18% of unique genes and 50 accessory
genes were assigned to “infectious diseases” (Table S9). This category was involved in a
series of pathways related to the infection of pathogens. Snodgrassella possesses protec-
tive ability against pathogens. For example, S. alvi could assist the host in challenging
S. marcescens through activating the expression of antimicrobial peptides [7]. The above
protection of Snodgrassella against pathogens might be represented as evidence of the exis-
tence of specific Snodgrassella and host recognition network. In nature, the situation of the
susceptibility to infectious disease is different for the host in different areas. For instance,
honeybees in the Natural History Museum were infected with Nosema ceranae. However,
N. ceranae and neogregarines were detected in those collected from Marchamalo. Such
susceptibility to infectious diseases is, to some extent, associated with host specificity [14].
In our study, accessory or unique genes of Snodgrassella were contained in “Pertussis”,
“Epithelial cell signaling in Helicobacter pylori infection”, “Legionellosis”, “Salmonella
infection”, “Vibrio cholerae infection”, “Vibrio cholerae pathogenic cycle”, “Tuberculosis”,
and “Epstein-Barr virus infection” (Table S9). These genes might be possible determi-
nants of host specificity while also representing functional diversity of distinct strains
in Snodgrassella. In this study, the pan-genome analysis also revealed the differences in
the annotation pattern of core genes, accessory genes, or the unique genes across Apis-
derived genomes and Bombus-derived genomes. Consider again “infectious diseases” as
an example: two core genes of Gilliamella derived from bumblebees were annotated in
“Epithelial cell signaling in Helicobacter pylori infection”. However, this term was not
included in the pathways annotated by core genes of Gilliamella derived from honeybees.
Likely, in Snodgrassella, the core genes of this bacteria derived from honeybees annotated
only in “Epithelial cell signaling in Helicobacter pylori infection”. By contrast, those of
Snodgrassella-derived bumblebees annotated in many other pathways belonging to the
“infectious diseases” category. These results suggest that the Gilliamella and Snodgrassella
derived from the host of different genus might have different representative genes coping
with “infectious diseases”. For Snodgrassella, Apis-derived isolates contained many more
unique genes in infectious disease, while Bombus-derived isolates involved many more
accessory genes. This result hints that the strategies coping with “infectious diseases”
might be involved in environmental adaptation of different strains from both honeybees
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and bumblebees. Taken together, we illustrated a series of functional differentiation in the
genomes of Gilliamella and Snodgrassella.

The BGCs were identified in the genomes Gilliamella and Snodgrassella. Arylpolyene
was abundant in both of the above two genus. Previous work proposed that this molecule
could protect bacteria from the damage of reactive oxygen species [50]. It was found
that the gut immune and epithelial cells could perform anti-bacterial function through
releasing reactive oxygen species to the lumen of the host [51,52]. This reactive oxygen
species-mediated killing is an important mechanism in pathogen clearance. However,
after long-term selection, some bacteria have evolved to respond to such anti-microbial
strategies. For example, Escherichia coli could express distinct regulators to defend oxidative
stress [53]. In bees, Gilliamella and Snodgrassella are dominant bacteria. It is possible that
the distribution of arylpolyene in the genomes might empower the above genus with
the property to tolerate oxidative stress. In Gilliamella, butyrolactone, thiopeptide, and
NRPS were another three dominant biosynthetic gene clusters, of which, butyrolactone is a
signaling molecule in quorum sensing and could mediate host–bacteria interaction [54]. It
is proved that butyrolactone suppresses the expression of IL-6 in the murine macrophage
cell line (Raw 246.7) and decreases the secretion of IL-8 in the human intestinal epithelial
cell line (Caco-2/TC7) [55]. These previous findings confirmed the anti-inflammatory effect
of butyrolactone on the host and hint that this metabolite may assist Gilliamella in regulating
the immune response of the host under inflammatory conditions. Thiopeptide is known as
a natural-product antibiotic and has been thought to exert an anti-microbial function in
diverse bacteria historically [56]. However, it recently has been proven to stimulate biofilm
formation. Specifically, thiopeptide could regulate the expression of biofilm-matrix genes
and then lead to an expansion of matrix-producing cells in bacterium Bacillus subtilis [57].
This research illustrated that thiopeptide could mediate intraspecies and interspecies
bacterial interaction. For gut bacteria in bees, genes related to biofilm formation and
extracellular interaction have been identified as a host colonization determinant [45]. Our
previous findings make it conceivable that thiopeptide in Gilliamella may act as a signal
in bacterial communication with other microbes and the host. The NRPS encodes non-
ribosomal peptide synthetases, and these gene clusters exhibit diverse biological activities
including antimicrobial and iron acquisition [58,59]. In bees, multiple systems for iron
uptake also facilitate the colonization of gut bacteria [45]. Therefore, we speculate that
NRPS might act as a signaling molecule similar to thiopeptide. In Snodgrassella, terpene is
another abundant gene cluster. This type of compound has been reported to exhibit multiple
biological activities, including antibacterial, antioxidant, and anti-inflammatory [60,61].
Thus, terpene may promote Snodgrassella to interact with host and other microbes. Taken
together, our study showed how host heterogeneity influences the bacterial speciation and
affects the versatility of the genome of the gut bacteria.
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