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Abstract: The 3D reconstruction of an accurate face model is essential for delivering reliable feedback
for clinical decision support. Medical imaging and specific depth sensors are accurate but not suitable
for an easy-to-use and portable tool. The recent development of deep learning (DL) models opens
new challenges for 3D shape reconstruction from a single image. However, the 3D face shape
reconstruction of facial palsy patients is still a challenge, and this has not been investigated. The
contribution of the present study is to apply these state-of-the-art methods to reconstruct the 3D face
shape models of facial palsy patients in natural and mimic postures from one single image. Three
different methods (3D Basel Morphable model and two 3D Deep Pre-trained models) were applied to
the dataset of two healthy subjects and two facial palsy patients. The reconstructed outcomes were
compared to the 3D shapes reconstructed using Kinect-driven and MRI-based information. As a
result, the best mean error of the reconstructed face according to the Kinect-driven reconstructed
shape is 1.5± 1.1 mm. The best error range is 1.9± 1.4 mm when compared to the MRI-based shapes.
Before using the procedure to reconstruct the 3D faces of patients with facial palsy or other facial
disorders, several ideas for increasing the accuracy of the reconstruction can be discussed based on
the results. This present study opens new avenues for the fast reconstruction of the 3D face shapes of
facial palsy patients from a single image. As perspectives, the best DL method will be implemented
into our computer-aided decision support system for facial disorders.

Keywords: 3D morphable model; 3D pre-trained model; deep learning; fast 3D face reconstruction;
Kinect-driven reconstruction; MRI; single image

1. Introduction

The patients, who are involved in facial palsy or facial transplantation, experience
facial dysfunctionalities and abnormal facial motion due to altered facial nerves and facial
muscle systems [1,2]. This leads to unwanted facial movements, such as dysfunctionalities
of speaking, eating, and the unnatural relaxation of mouth corners drop, eyelid closure,
and asymmetrical facial expressions [3,4]. Recently, computer-aided decision systems have
been developed to provide objective and quantitative indicators to better diagnose and to
optimize the rehabilitation program [5]. The 3D reconstruction of an accurate face model
is essential for providing reliable feedback. This is currently achieved by using medical
imaging [6] and different sensors, such as Kinect or 3D scanners [7,8]. Thus, this allows
for the analysis of the face with external (i.e., face deformation) and internal (i.e., facial
muscle mechanics) feedback for the diagnosis and rehabilitation process of facial palsy
and facial transplantation patients [9].In the past few decades, facial analysis has attracted
great attention due to its numerous exploitations in human-computer interaction [10,11],
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animation for entertainment [12–14], and healthcare systems [15,16]. Facial analysis from
images remains a challenge due to variation poses, expressions, and illumination. 3D
information can be used in order to cope with these variation problems. 3D facial data can
be acquired from medical imaging [17,18], 3D scanners [7,8], stereo-vision systems [19], or
RGB-D devices, such as Kinect. The use of medical imaging leads to a very accurate 3D
model, but this is not appropriate for an easy-to-use, cheap, and portable system. The use
of a depth camera, such as Kinect, can lead to a reasonable accuracy level while keeping
the cheap cost, easy-to-use, and portable requirements, but the developed system depends
strongly on the selected sensors. In fact, this could alter the future applicability due to
stopped production, such as in the case of the Kinect V2 camera. Thus, it is necessary
to have a more flexible and open method for building 3D information rather than using
specific scanning devices.

Numerous applications have been developed to perform 3D shape reconstruction from
2D images, such as in the computer animation field when creating 3D avatars from images
or in entertainment fields (e.g., virtual reality or gaming applications) where it is necessary
to embed the user avatar into the system [20]. Chien-Hsu Chen et al. [20] (2015) proposed
the use of an augmented reality-based self-facial modeling system. The system overlays
3D animation of participant faces for six basic facial expressions, allowing them to practice
emotional assessments and social skills. The virtual avatars’ 3D head and face models were
created to suit patients, and then the system was applied for patients to practice emotional
and social skills by allowing the virtual avatar models to perform six fundamental facial
expressions. Additionally, a reconstructed 3D face provides biometric features for security
purposes, such as human identification [21,22] and human expression recognition [23].
In fact, the face of a person can be used as particular biometric evidence, along with
other biometric information, such as what a person has (e.g., iris, fingerprint, retina, etc.)
or produces (e.g., gait, handwriting, voice, etc.) [21]. Biometric facial recognition is an
appealing biometric technique because it relies on the same identifier that people use to
differentiate one person from another: the face.

Various methods have been developed to estimate 3D face shapes from one image or
multi-views images [24]. Three different approaches have been applied to reconstruct the
3D shape from 2D information. The first approach uses the statistical model fitting with
a prior 3D facial model to fit the input images [25–27]. The second approach is based on
photometric stereo, which is suitable for multiple images, and combines a 3D template face
model with photometric stereo methods to compute the surface normal of the face [28,29].
The third approach uses deep learning to learn the shape and appearance of the face by
training 2D-3D mapping functions [30,31].

The first approach uses a prior statistical 3D facial model to fit the input images [25–27].
In fact, 3D face reconstruction from 2D images is an ill-pose problem. It needs some types of
previous knowledge. In order to find the solution, statistical 3D face models are preferred
methods for incorporating this previous knowledge since they encode facial geometric
variations. The 3D morphable model is a statistical 3D face model built from a set of 3D
scans of heads. This model includes both the shape and the texture of the face. There are
several existing 3D statistical models from the last few decades. For example, Blanz and
Vetter (1999) created a 3DMM in UV space from 200 young adults, including 100 females
and 100 males [32]. The well-established Basel Face Model (BFM) [33] was built from
200 subjects (100 males and 100 females with an average age of 24.97 years old, from 8 to
62) with most of the subjects being Caucasian. Several examples are the FaceWarehouse
model [34], FLAME model [35], and BFM 2017 model [36]. In particular, the FaceWarehouse
model was built by Cao et al. [34] (2014) from depth images of 150 participants. Each has
20 different expressions, and the age range is between 7 and 80 years old. Afterward, by
identifying parameters of the linear combination of 3D statistical model bases that best
matches the provided 2D image, a new 3D face can be reconstructed from one or more
images. For example, Wood, Erroll, et al. [37] fit a morphable model to dense landmarks
covering the entire head, including the eyes and teeth to a wild image to reconstruct
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monocular 3D face. This method is effective for predicting dense landmarks for a real-time
system at over 150FPS.

The second approach is based on the photometric stereo. The method is suitable for
multiple images. The method combines a 3D template face model with photometric stereo
algorithms to compute the surface normal of the face [28,29]. Kemelmacher-Shlizerman and
Basri [28] reconstructed the 3D face of a person based on a template model. This method
estimated each of the three elements, including the surface normal, albedo, and depth map
alternatively by fixing the two remaining. In particular, the spherical harmonic parameters
γ were estimated by fixing the albedo and the normal of the template model, while fitting
the reference shape into the input image. The depth map from the input image is computed
by using pre-computed γ and albedo parameters. Finally, the albedo was recovered using
pre-computed γ and the depth map. Without the assumption of uniform surface albedos, a
robust optimization approach was developed to accurately calibrate per-pixel illumination
and lighting direction [38]. The input images are then semantically segmented using a
customized filer along with the geometry proxy to adjust hairy and bare skin areas.

The third approach uses deep learning to learn the shape and appearance of the face by
training 2D-3D mapping functions. The method encodes prior knowledge of the 3DMM into
the weights of the deep neural network. Several examples can be mentioned. Kim et al. [39],
for example, rendered synthetic images using parameters predicted based on the trained
neural network from a real image. Then these synthetic images were added to the training
set in each iteration. As the result, after each iteration, the training dataset was augmented
by combining the data generated by the training network. Li et al. [40] and Pan et al. [41]
used encoder-decoder architecture. The encoder part makes the dimensional reduction of the
input image to find new representative features, while the decoder part makes use of the new
representative features to reconstruct the 3D facial geometry of a person.

Even if these approaches lead to very good accuracy levels for 3D face reconstruction
and are able to reconstruct 3D subject-specific face reconstruction, the 3D face shape
reconstruction of facial palsy patients is still a challenge, and this has not been investigated.
In fact, the reconstruction of patient-specific 3D face models may be useful for assessing the
severity degree of facial palsy patients, such as their symmetry. Additionally, merging a 3D
face model reconstructed from the patient with an animation of practicing rehabilitation
exercises can generate a realistic animation. This may help patients learn facial motion and
practice rehabilitation exercises more effectively [42]. The objective of the present study
was to apply these state-of-the-art methods to reconstruct the 3D face shape models of
facial palsy patients in natural and mimic postures from one single image. Besides, several
ideas for increasing the accuracy of the reconstruction can be discussed based on the results.
Then, based on the outcomes, the best method will be selected and implemented into our
computer-aided decision support system of the facial disorders.

2. Materials and Methods

The general framework for reconstructing the 3D face of an individual is illustrated
in Figure 1. To begin with, a 3D morphable face model is generated from a set of 3D face
scans. Then, from the input 2D image, the learned model extracts features and estimates
the corresponding parameters of the 3D morphable model.

2.1. Materials

In order to reconstruct the 3D face from a 2D image, we used a dataset of two healthy
subjects (one male and one female) and two facial palsy patients (two females) collected
from CHU Amiens (France). Each healthy subject or patient signed an informed consent
agreement before the data acquisition process. The protocol was approved by the local
ethics committee (no2011-A00532-39). The subject performed several trials with neutral po-
sitions and facial mimic positions, such as smile, [e], and [u] pronunciation. Our developed
Kinect-based computer vision system [5] was used to capture the high density (HD) point
clouds of the face as well as the RGB image from Kinect sensors. The images were captured
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where each subject was positioned in front of the camera with a distance of about 1 m. The
RGB image was used for 3D shape reconstruction with the deep learning models. The HD
point cloud was used to reconstruct the 3D shape for validation purposes. Moreover, 3D
face scans using an MRI were also available for validation purposes.

Figure 1. The general framework for reconstructing a 3D face of an individual.

Two other datasets were collected in order to test more patients with facial palsy.
The first dataset of 8 patients was collected in an unconstrained condition [43]. The
second dataset of 12 patients was obtained from the Service Chirurgie Maxillo-Faciale CHU
Amiens (Prof. Stéphanie DAKPE, Dr. Emilien COLIN) from a pilot study « Etude pilote
d’évaluation quantitative de l’attention portée aux visages présentant une paralysie faciale
par oculométrie (eye-tracking) » with clinical trial registered (ClinicalTrials.gov Identifier:
NCT04886245-Code promoteur CHU Amiens-Picardie: PI2019_843_0089-Numéro ID-RCB:
2019-A02958-49).

2.2. Method 1: Fitting a 3D Morphable Model

The information processing pipeline of the 3D morphable modeling approach [25] to
reconstruct the 3D face shape from a single image is illustrated as in Figure 2. Firstly, a set
of 2D facial landmarks are detected from the input image by existing face detectors [44,45].
Secondly, the scaled orthographic projection projects another set of landmarks from the 3D
model to obtain 2D points in the image plane corresponding with those points obtained
from the 2D image. This step results in an equation that parameterizes the pose and shape
parameter. During the next step, a cost function is built to minimize the error between the
2D facial landmarks from the 3D model and 2D facial landmarks from the 2D facial image.

2.2.1. 3D Basel Morphable Model

In the present study, the Basel 3D Morphable model (3DMM) was used [33]. This model
was built from a set of 3D faces from a scan of 100 females and 100 males by presenting the
face model in terms of trained vector spaces as shape vector spaces. Each face is parameterized
in the form of angular meshes with 53,490 vertices. The S = (x1, y1, z1, . . . , xm, ym, zm)

t is the
shape vector for m = 53, 490 vertices. Each vector is in 53, 490× 3 = 106, 470 dimensions.

ClinicalTrials.gov
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Figure 2. Pipeline to estimate the shape parameters of the 3DMM.

During the next step, all shape vectors of all 200 subjects were concatenated to obtain
the matrix of shape S (106, 470 × 200 dimensional matrix). The principal component
analysis (PCA) was utilized to decompose the shape matrix resulting in a set of linear
combinations of shape bases and texture bases. The PCA is usually a technique for reducing
the dimension of the high dimensional data and still remains the largest information source.
The constitutive equation of this approach is given in the following equation:

S = S0 + Siαi (1)

where S (106, 470 × 200 dimension matrix) is the shape matrix of 200 subjects and
S0 (106, 470× 200 dimensional matrix) is the mean shape matrix with a mean shape vector at each
column. Si(106, 470× 106, 470 dimensional matrix) is the principal component of the eigenvector
of the covariance matrix from the shape matrix, and αi (106, 470× 200 dimensional matrix) is
the eigenvalue, which stands for the coefficients of the shape. The number of the Si column and
the αi row can be reduced by choosing the large value of the eigenvalue and dropping out the
smaller value of the eigenvalue.

In the PCA decomposition, the mean shape and the shape bases are shared for every
specific individual, as presented in Figure 3. This means that the mean shape S0 and the
shape bases (Si) are the same for every subject in the training set; those can be assumed
as the population and can be used for other subjects that are different from the subject in
the training set. Therefore, from a given facial image, the 3D face can be reconstructed by
finding the coefficients of the specific shape.

Figure 3. Patient-specific 3D face model was reconstructed using mean face, eigenfaces, and coefficients.
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2.2.2. Model Fitting
Facial Landmark Detection

Based on the input image, facial landmarks were detected using the pre-trained facial
landmark detector (dlib library) for the iBUG300-W database [44] from “300 Faces In-the-Wild
Challenge” for automatic facial landmark detection. The method detects 68 facial landmarks
using the Active Orientation Model, which is a variant of an Active Appearance Model [46].

Pose from Scaled Orthographic Projection

The rotation matrix and translation vector of the face were used to transform a 3D
face from the space coordinate system into the camera system. The scaled orthographic
projection assumes that the depths from every point in the face to the camera are not
various from one another, therefore, the mean depth of the face can be the same for every
point on the face. The projection of the 3D face to the image plane can be estimated using
rotation R ∈ R3×3, translation t ∈ R2, and the scale factor S ∈ R. This is expressed in the
following equation:

SOP[f, R, t, s] = s
[

1 0 0
0 1 0

]
Rf + st (2)

where SOP[f, R, t, s] are the 2D points of the 3D face in the image plane by scaled ortho-
graphic projection; f. represents the 3D facial points.

Additionally, the f in the projection equation can be expressed using the shape equation
as follows:

f = f0 + fiαi (3)

where f is several points in the 3D face, f0 is the corresponding points of the mean shape
face, fi corresponds to the shape bases and αi is the shape coefficients that can be used to
reconstruct the 3D face.

Fitting Correspondences

Optimizing the difference between 2D facial landmarks detected from the input image
and corresponding 2D facial landmarks projected from the 3D model could result in the
pose parameter, including rotation, translation, and scale factor, along with the shape
parameter (shape coefficients) as follows:

E[α, R, t, s] =
1
L

s ∑L
i=1 xi ‖ −SOP[v, R, t, s] ‖ (4)

This problem can be solved by the iterative algorithm POSIT (POS with iteration) [47].
The solution is able to estimate the rotation R, translation t, and scale factor s of the input
face and the shape parameter αi for reconstructing the 3D face of the specific image.

2.3. Method 2: 3D FLAME (Faces Learned with an Articulated Model and Expressions) Model

The second method reconstructs the 3D face using the approach of Yao et al. [48], in which
the coefficients of the FLAME model [49] were learned from the pre-trained model ResNet50 [50].

2.3.1. The Principle

The geometry shape method used an established 3D statistical head model, namely
FLAME [49], which can generate the face with different shapes, expressions, and poses. The
model is a linear combination of identity β ∈ R|β|, expression ψ ∈ R|ψ| with linear blend
skin, and pose θ ∈ R3k+3 (k = 4 includes the neck, jaw, and two eyeballs). The FLAME
model is defined as follows:

M(β, ψ, θ ) = W(TP(β, ψ, θ ), J(β), θ,W) (5)

TP(β, ψ, θ ) = T + BS(β, S) + BP(θ,P) + BE(ψ, E) (6)
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where W(T, J, θ,W) is the blend skinning function rotating a set of vertices in T ∈ R3n

around joints J ∈ R3k, which is smoothed by the blend weightsW ∈ Rk×n.
The appearance model was converted from the Basel Face Model and generated a UV

albedo map A(α) ∈ Rd×d×3, where albedo parameter α ∈ R|α|.
The camera model aims to project 3D vertices onto the image plane v = sΠ(Mt) + t,

where Mt ∈ R3 is a vertex in M, Π ∈ R2×3 is the orthographic projection matrix from 3D
to 2D, and S ∈ R and t ∈ R2 represent the isotropic scale and 2D translation, respectively.

The illumination model finds the shaded face image based on spherical harmon-
ics [51], and texture rendering is based on the geometry parameters M(β, ψ, θ ), albedo,
and camera information.

2.3.2. Model Learning

Reconstructing the face of the patients based on two steps: coarse reconstruction and
detail reconstruction.

A coarse reconstruction was performed by training an encoder Ec consisting of
ResNet50, which minimizes the variation between the input image I and the synthesis
image Ir, which is generated by decoding the latent code of the encoded input image. The
latent code contains a total of 236 parameters of the face model, such as geometric informa-
tion (100 shape parameters of β, 50 expression parameters of ψ, and pose parameters θ),
50 parameters of appearance information α, camera and lighting conditions.

The loss function for the Ec network computes the differences between the input image
I and the synthesis image Ir, and consists of the (1) landmark loss (Llandmark) of 68 2D key
points on the face; (2) eye closure loss (Leye), penalizing the relative variation between
landmarks on the upper and lower eyelid; (3) photometric loss (Lphotometric), comparing
between input image I and the synthesis image Ir; (4) identity loss (Lidentity), computing
the cosine similarity which presents the fundamental properties of the patient’s identity;
(5) shape consistency loss (Lshape), computing the differences between the shape parameters
(β) from different images of the same patient; and (6) regularization (Lregularization) for shape,
expression, and albedo as follows:

Lcoarse = Llandmark + Leye + Lphotometric + Lidentity + Lshape + Lregularization (7)

Then, the detail reconstruction assists in augmenting the coarse reconstruction with the
different details, such as wrinkles and facial expressions, using a detailed UV displacement
map. The detail reconstruction trains an encoder Ed, which is the same architecture Ec
to output 128 latent codes δ relating to the patient-specific details. The loss function for
the Ed network contains (1) photometric detail loss (Lphotometric detail) based on a detail
displacement map, (2) implicit diversified Markov random field loss (Lmr f ) [52] related
to geometric details, (3) soft symmetry loss (Lsymmetry) to cope with self-occlusions of face
parts, and (4) detail regularization (Lregularization detail) to reduce noise as follows:

LdEtail = Lphotometric detail + Lmr f + Lsymmetry + Lregularization detail (8)

2.4. Method 3: Deep 3D Face Reconstruction

The third method relates to the deep 3D face reconstruction approach of Yu et al. [53],
in which the coefficients of the 3D morphable model of the face were learned from the
pre-trained model ResNet50 [50].

2.4.1. 3D Morphable Model

The shape S and the texture T of the 3DMM were presented as follows:

S = S(α, β) = S + Bidα + Bexpβ (9)

T = T(δ) = T + Btδ (10)
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where S and T are the mean shape and texture of the face model; Bid, Bexp, and Bt are the
principal component vectors based PCA presenting for identity, expression, and texture;
and respective coefficients vectors are α, β, and δ.

The scene illumination was modeled using spherical harmonics coefficients γb ∈ R9.
The radiosity of a vertex Si was computed as C(ni, ti) = ti·∑B2

b=1 γbΦb(ni), where ni and ti
are the surface normal and skin texture of the vertex si, and Φb is the spherical harmonics
basis function.

The pose p of the face is represented by rotation R and translation t. All of the unknown
parameters (e.g., x = (α, β, δ, γ, p) ∈ R239) are the output of the modified RestNet-50, with
the last layer including 239 neurons.

2.4.2. Model Learning

The coefficients are the output of the ResNet-50 model, as illustrated in Figure 4,
which is modified based on the last fully collected layer and was trained by estimating
a hybrid-level loss of image-level loss and perception-level loss, instead of using ground
truth labels.

Figure 4. The network architecture for learning the parameters of the face model. The output
of models, including coefficients that represent identity (α), expression (β), texture (δ), pose (p),
lighting (γ), and identity confidence (c).

Image-level losses integrate photometric loss for each pixel and landmark loss for
sparse 2D landmarks detected from the input image. The photometric loss between the
raw (I) and the reconstructed (I′) images is defined as follows:

Lphoto(x) =
∑i∈M Ai·‖ Ii − I′i (x) ‖2

∑i∈MAi
(11)

where, with each pixel index i,M denotes the re-projected face region, A is skin color, and
‖ · ‖2 is the l2 norm.

Landmark loss is computed on 68 landmarks
{

qn
}

detected from an input image [54]
and landmarks projected of the reconstructed shape onto the image

{
q′n

}
as follows:

Llan(x) =
1
N ∑N

n=1 ωn‖ qn − q′n) ‖
2 (12)

where ωn is the landmark weight and is set to 20 for the mouth and nose points, while it is
set to 0 for others.
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Perception-level loss tackles the local minimum issue for CNN-based reconstruction
by extracting deep features from the images of the pre-trained FaceNet model for deep face
recognition [55] and uses it to estimate perception loss.

Lper(x) = 1− 〈 f (I), f (I′(x))〉
‖ f (I) ‖ · f (I′(x) ‖ (13)

where f (·) represents the deep feature and 〈·, ·〉 is the vector inner product.
Two regularization losses involving coefficients and textures are added to avoid shape

and texture degeneration. The coefficients loss invokes the distribution close to the mean face:

Lcoe f (x) = ωα ‖ α) ‖2 +ωβ ‖ β) ‖2 +ωγ ‖ δ) ‖2 (14)

The weights are set to ωα = 1.0, ωβ = 0.8, and ωγ = 0.0017. The texture loss is
computed by flattening constrain

Ltex(x) = ∑c∈{r,g,b} var
(

Tc,R(x)

)
(15)

whereR is a pre-defined region of the skin at the cheek, nose, and forehead.

2.5. Validation versus Kinect-Driven and MRI-Based Reconstructions

The reconstructed outcomes from the above three methods were compared to the
3D shape reconstructed from the Kinect-driven and MRI-based shapes. The 3D Kinect-
driven shape was reconstructed by using our computer vision system; please refer to
the [56] for detailed information on the processing method. Specifically, the MRI (magnetic
resonance imaging) images were segmented using the semi-automatic method with the
3D Slicer software, as shown in the Figure 5. 3D shapes were saved in the STL format
for further comparison. The Hausdorff distance [57] was used to estimate the error of the
reconstructed face compared with ground truth data from MRI and Kinect devices. The
CPU with configuration core i9-9800H CPU, 2.30 GHz, 32.0 GB RAM, and 16GB NVIDIA
Quadro RTX 5000 GPU was used to predict 3D faces.

Figure 5. Reconstructed 3D face shape from the MRI images and segmentation. The 3D face shape
was finally registered to the coordinate system of the image-based reconstructed face model before
calculating the Hausdorff distances.
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3. Computational Results

The input images of the frontal face of the two facial palsy patients and two healthy
subjects are used to reconstruct the corresponding patient-specific face. The reconstructed
3D face shapes are shown in Figure 6 with three applied methods. Comparing the
three methods, the second method can reconstruct wrinkles with a full head instead of the
cropped face, compared with methods one and three. The second and third methods were
able to reconstruct the shape detail parameters, such as shape, pose, and expression, while
the first method only reconstruct the subject in the neutral position.

Figure 6. 3D face reconstruction from an input image.

The performance was then quantified by comparing it with the 3D face obtained from
the 3D camera Kinect and the MRI image. The 3D face from the MRI-based method can be
treated as the ground-truth data of the person, while the 3D face from the Kinect-based
method reconstructs the face with an error of about 1mm. Figure 7 demonstrates the
smallest error of the 3D face reconstructed from the input image and the 3D face from the
MRI-based method for the first method (fitting a 3DMM). Only three subjects (two normal
subjects and one patient) were estimated because the MRI data of the second patient is
not available. The average error of the three subjects is from 2.020 mm to 6.310 mm. The
smallest error is observed in the center of the face area, while the performance suffers
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heavily at the jaw. This is because the input image is in the frontal area of the face, while
the jaw part is occluded from the frontal face image.

Figure 7. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow)
using the first method (fitting a 3DMM).

Figures 8 and 9 show the comparison of 3D face reconstruction (grey) and 3D face
reconstruction from MRI (yellow) using the second and third methods, respectively. The
average error of the three subjects is from 1.7 mm to 2.5 mm. These errors for the third
method range from 1.1 mm to 1.6 mm.

Figure 8. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow)
using the second method (DECA).
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Figure 9. Comparison of 3D face reconstruction (grey) and 3D face reconstruction from MRI (yellow)
using the third method (deep 3D face reconstruction).

The best prediction of the third method compared with the MRI ground truth data
is 1.1 mm with a maximum error of 3.7 mm, while the worse prediction is 2.8 mm with a
maximum error of 9.1mm, as shown in Figure 10.

Figure 10. The error of the best and the worst prediction cases of the third method compared with
MRI ground truth data.

All comparison mean error ranges are reported in Table 1 for all subjects and patients
in the neutral position. The mean error of all subjects from the third method is smaller than
that in the second and the first methods.
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Table 1. Reported error ranges of 3D faces reconstructed using the methodology compared to the 3D
faces reconstructed by Kinect and MRI techniques for the validation study.

Method Subject Error (mm) Method Subject Error (mm)

Fitting—Kinect comparison

1 2.3± 2.9

Fitting—MRI comparison

1 2.0± 2.5

2 6.3± 7.6 2 6.3± 7.3

3 2.4± 2.9 3 3.1± 3.8

Mean 3.7± 4.5 Mean 3.8± 4.5

Deca—Kinect comparison

1 2.6± 1.9

Deca—MRI comparison

1 2.9± 2.1

2 1.5± 1.5 2 2.6± 2.1

3 1.5± 1.4 3 2.2± 2.0

4 2.2± 1.7 4 1.7± 1.6

Mean 1.8± 1.6 Mean 2.3± 1.9

Deep3Dface—Kinect comparison

1 1.7± 1.3

Deep3Dface—MRI comparison

1 1.6± 1.1

2 1.8± 1.3 2 2.3± 1.6

3 1.3± 1.0 3 1.8± 1.4

4 1.4± 1.0 4 1.8± 1.5

Mean 1.5± 1.1 Mean 1.9± 1.4

The reconstruction errors of a healthy subject in various mimic positions are shown in
Figure 11. In the neutral position, the medium reconstruction error is 1.4 mm, while this
error is 1.3 mm and 1.7 mm in smile, and [e] and [u] pronunciations, respectively. Similarly,
the reconstruction errors of a facial palsy patient in various mimic positions were shown
in Figure 12. The medium reconstruction error is 1.1 mm, 1.4 mm, 1.3 mm, and 0.9 mm in
neutral, smile, and [e] and [u] pronunciations, respectively.

Figure 11. The error of the reconstructed face in mimic position of a healthy subject.
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Figure 12. The error of the reconstructed face in mimic position of a facial palsy subject.

Several examples of 3D face reconstruction were illustrated in Figure 13 using method
3 (deep 3D face reconstruction) for facial palsy patients from 2D images collected in open
access.

Figure 13. The 3D face reconstruction of facial palsy patients using method 3 (deep 3D face recon-
struction) using collected images in open access dataset.
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The reconstructed faces of 12 patients in neutral and smiling poses from 2D images
obtained at CHU Amiens were illustrated in Figure 14.

Figure 14. The 3D face reconstruction of the last six facial palsy patients using method 3 (deep 3D
face reconstruction) using images from CHU Amiens.

For all patients with their face in a neutral position (Figures 13 and 14), the output
reconstructed 3D face has quite a close appearance to the individual in the input 2D image.
The asymmetric feature of the mouth of all patients can be observed in the reconstructed
3D faces. In the eye region, this asymmetric feature seems less noticeable. In the patients
of the second dataset, the asymmetry is not much observed for both positions including



Bioengineering 2022, 9, 619 16 of 21

neutral and smiling. This is probably due to the degree of severity of the facial palsy, which
seems to be less important than the first dataset. This demonstrates the limitation of using
the database with normal faces instead of facial palsy.

4. Discussion

Fast reconstruction of the 3D face shape plays an important role in the suitable use
of computer-aided decision support systems for facial disorders. This allows us to track
the normal and abnormal facial deformations in static and dynamic postures, leading
to the improved diagnosis and rehabilitation of the involved patients [9,58]. The facial
analysis for diagnosis and treatment has mainly been based on 2D images [59–61], which
remains a challenge due to variation poses, expressions, and illumination. However, the
3D information collected from scanners and other stereo devices is time-consuming and
expensive [7,49,62]. Recently, effective data science and deep learning methods have been
developed for reconstructing 3D face information from a single image or from multiple
images [24]. This opens new avenues for the 3D face shape reconstruction for facial palsy
patients. In the present study, we applied three state-of-the-art methods (a morphable
model and two pre-trained deep learning models) to reconstruct the 3D face shape in the
neutral and facial mimics postures from a single image. Obtained results showed a very
good reconstruction error level by using a well pre-trained deep learning model applied
for healthy subjects as well as facial palsy patients. The reconstruction is very fast, and this
solution is very suitable to be included into a computer-aided decision support tool.

Regarding the comparison with ground truth data from Kinect depth sensor and MRI
data, the best mean errors range from 1.5 to 1.9 mm for static and facial mimic postures.
These findings are in agreement with the accuracy level reported in the literature. An
accuracy comparison for heathy subjects revealed that, in the neutral position, the error
range is less than 2mm when comparing the Basel Face Model (BFM), FaceWarehouse
model, and FLAME model [49]. Moreover, the error ranges from 5 to 10mm for positions
with a large movement amplitude (mouth opening, facial expressions) [49]. In particular,
all three methods estimate the 3D face model parameters without any paired ground truth
data requirement. For the near frontal view image, all of the methods can reconstruct the
3D face of the patient well in the central face area; however, the first method turns out
badly when attempting to keep a low error at the jaw where it is occluded, while two other
methods can handle the occlude part in a relatively stable way. This is because both the
second and third methods were trained with the loss function associated with the pose
change. Interestingly, the first method reconstructs the second healthy subject, who is
Asian, with a large error (~6.3 mm), while these errors are relatively smaller (2–3 mm) for
other subjects, who are French. The reason for this is that the first method is based on a
3DMM model which was built from mostly Caucasian subjects. While the second and third
methods, which were based on the 3DMM model, were trained based on subjects with more
diversity in ethnicity, there is not much of a difference in error between each subject when
reconstructing the 3D face of all subjects (1.7–2.9 mm and 1.6–2.3 mm for the second and
third methods respectively). This might prove that with more diversity in ethnicity when
building the 3DMM model, the result of the reconstruction can be better. Method 3 was
also applied to reconstruct 3D faces of facial palsy patients from unconstrained conditions
(images were captured by any devices) since it has the lowest reconstruction error. The
method is good at capturing asymmetric features in the mouth area, but less so in the eyes.
This is due to the method’s usage of the FLAME model, which includes various expressions
but does not include any patients with facial palsy.

In the present study, the first method fits a 3DMM to a single image based on a
scale orthographic projection [25]. The method first detects facial landmarks detected on
the input image, then projects the set of corresponding 3D points from the 3D model to
obtain 2D points, and finally estimates the shape and pose parameters of the face model
by minimizing the error between the 2D facial landmarks from the 3D model and 2D
facial landmarks from the 2D facial image. The second used method reconstructs the
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3D face based on an established FLAME head model [48]. The method is based on a
resNet-50 deep learning model to learn the shape parameters, such as shape, expression,
pose, and detail, and appearance parameters, such as albedo and lighting. The model is
trained by minimizing the loss function estimated from the input image and the synthesized
image generated by decoding the latent code of the encoded input image. The third applied
method reconstructs the 3D face of the patient with weakly-supervised learning to regress
the shape and texture coefficients from a given input image [53]. This method was also
based on a hybrid-level loss function to train the resNet-50 deep learning model.

Regarding the 3D shape reconstruction, our findings confirmed the high accuracy
level of the 3D pre-trained deep learning models for facial palsy patients. In particular,
the third method was able to reconstruct the geometric details, such as shape, pose, and
expression, while the second method reconstructs the face with the wrinkle detail. The
findings also revealed that the morphable model provided a lower accuracy level. The
second and third methods result in better accuracy due to integrating the loss of both
geometric information (e.g., the landmark loss) and appearance information (e.g., the
photometric loss), while the first method only counts the landmark loss and ignores
the appearance information. Another reason for being lower accuracy is that the first
method estimates the shape parameters from the Basel 3D Morphable model [33]. This
was only modeled based on the face database of mostly Caucasian subjects with neutral
expressions. The second and third methods were based on the 3D face models with a higher
diversity in ethnicity and variations in facial expressions, such as the FLAME model [49]
and FaceWarehouse [34], respectively. The FLAME model was trained from sequences
of 3D face scans that can generalize well to the novel facial data of the different subjects,
which is more reliable and flexible for capturing patient-specific facial shapes.

One important limitation of the present study deals with a small number of subjects
and patients used for prediction. Another limitation deals with the lack of facial palsy
patients in the learning database. This results in the reduction of several facial palsy patients’
features (e.g., asymmetric face, dropping mouth corner, cheek) while reconstructing their 3D
face. Thus, a larger and diverse 3D facial database, including facial palsy subjects, should
be acquired to confirm our findings and contribute toward a potential clinical application.
Moreover, another limitation of the study relates to the usage of the 3D statistical facial
model. The first method used a 3DMM which was based on the PCA basis vectors so
that the reconstruction of more detailed information, such as expression and wrinkles,
can become a hard task. The second and third methods improve that by building a more
diverse model with subtler information, such as expression and wrinkles, but still use a
linear model which could generate more error due to facial shape variations, which cannot
be modeled perfectly using a combination of linear components, as noted in [24,63,64].
Improving the existing 3D face models can be a potential suggestion for future works.
Furthermore, the reconstruction result has not been statistically analyzed for each region
of the face. This could tackle the uncertainty of the predicted models. Another limitation
relates to the effect of the variation of the 2D input images, such as the pose and lighting
conditions, which have not been investigated. A variation, along with the larger quantity,
of facial palsy patients are needed for improving the result of the reconstruction and should
be performed in future work.

5. Conclusions

The 3D reconstruction of an accurate face model is essential for providing reliable
feedback for clinical decision support. Medical imaging and specific depth sensors are
accurate but not suitable for an easy-to-use and portable tool. The recent development
in deep learning (DL) models opens new challenges for 3D shape reconstruction from a
single image. However, the 3D face shape reconstruction of facial palsy patients is still a
challenge, and this has not been investigated.

In this present study, the 3D face shape was reconstructed from a single image for
facial palsy patients. The methodology could be used for a single 2D image from any device
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for reconstructing the 3D face of patients with facial palsy. The methodology used several
methods to reconstruct the 3D face shape models of the facial palsy patients in natural
and mimic postures from one single image. Three different methods (3D Basel Morphable
model and two 3D Deep Pre-trained models) were applied to the dataset of two healthy
subjects and two facial palsy patients. Reconstructed outcomes showed a good accuracy
level compared to the 3D shapes reconstructed using Kinect-driven reconstructed shapes
(1.5± 1.1 mm) and MRI-based shapes (1.9± 1.4 mm).

This present study opens new avenues for the fast reconstruction of the 3D face shapes
of facial palsy patients from a single image. As perspectives, reconstructed faces could be
used for the further analysis of the face in terms of expression and symmetry. Furthermore,
the best DL method will be implemented into our computer-aided decision support system
for facial disorders.
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