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Abstract: Hematologic malignancies, including leukemia, lymphoma, myeloproliferative disorder
and plasma cell neoplasia, are genetically heterogeneous and characterized by an uncontrolled
proliferation of their corresponding cell lineages in the bone marrow, peripheral blood, tissues or
plasma. Although there are many types of therapeutic drugs (e.g., TKIs, chemotherapy drugs)
available for treatment of different malignancies, the relapse, drug resistance and severe side effects
due to the lack of selectivity seriously limit their clinical application. Currently, although antibody–
drug conjugates have been well established as able to target and deliver highly potent chemotherapy
agents into cancer cells for the reduction of damage to healthy cells and have achieved success
in leukemia treatment, they still also have shortcomings such as high cost, high immunogenicity
and low stability. Aptamers are ssDNA or RNA oligonucleotides that can also precisely deliver
therapeutic agents into cancer cells through specifically recognizing the membrane protein on cancer
cells, which is similar to the capabilities of monoclonal antibodies. Aptamers exhibit higher binding
affinity, lower immunogenicity and higher thermal stability than antibodies. Therefore, in this review
we comprehensively describe recent advances in the development of aptamer–drug conjugates
(ApDCs) with cytotoxic payload through chemical linkers or direct incorporation, as well as further
introduce the latest promising aptamers-based therapeutic strategies such as aptamer–T cell therapy
and aptamer–PROTAC, clarifying their bright application, development direction and challenges in
the treatment of hematologic malignancies.

Keywords: ApDCs; chemical linker; hematologic malignancy; target therapy

1. Introduction

Hematologic malignancies are commonly classified into three main types: leukemia,
lymphoma and myeloma [1]. Of note, leukemia is primarily bone marrow and peripheral-
blood-based processes, whereas lymphomas are lymphatic system based and myeloma is
predominantly bone-marrow-based diseases. Mechanistically, in hematopoietic progenitor
cells, the genetic aberrations (i.e., point mutation, deletion or amplification of genetic
material and gain, loss or translocation of chromosomal materials) frequently occur and are
thought to be the main causes of hematologic malignancies [2–4]. These genetic aberrations
can induce proto-oncogenes activation along with inactivation of tumor suppressor genes,
which results in abnormal proliferation and self-renewal of hematopoietic progenitor cells,
leading to an accumulation of immature blood cells in the bone marrow, tissues and
peripheral blood [5].

Bioengineering 2022, 9, 635. https://doi.org/10.3390/bioengineering9110635 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9110635
https://doi.org/10.3390/bioengineering9110635
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0003-0799-2340
https://doi.org/10.3390/bioengineering9110635
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9110635?type=check_update&version=1


Bioengineering 2022, 9, 635 2 of 16

Although, recently, many therapeutic options for hematologic malignancy treatment,
such as tyrosine kinase inhibitors (TKIs) [6,7], chemotherapy and bone marrow transplan-
tation, have significantly improved prognosis and survival of patients, some refractory
(e.g., intrinsic resistance) and relapsed patients respond poorly to all current, available
therapeutics [8–10]. Moreover, some potent cytotoxic chemotherapeutics can effectively
kill cancer cells, but their severe side effects and systemic toxicity often limit their uses in
broad terms due to lack of selectivity [11,12].

Several studies showed that targeted delivery of therapeutic agents into cancer cells
through monoclonal antibodies (antibody–drug conjugates, ADCs) is considered as a
promising strategy to tackle cancer and to increase therapeutic efficacy and reduce toxic-
ity [13,14] because mAbs can recognize the biomarkers of a cancer cell and precisely deliver
anticancer drugs into cells as drug carrier [15]. To date, more than ten ADCs have been ap-
proved for clinical applications, and about 80 ADCs are being evaluated in different phases
of clinical trials [16]. Mylotarg (gemtuzumab ozogamicin), a CD33-targeted monoclonal
antibody conjugated with cytotoxic drug calicheamicin, was approved for CD33-positive
acute myeloid leukemia (AML) treatment. It represents a successful achievement for the
site-specific delivery of cytotoxic agents into target leukemia cells through antibody-antigen
recognition [17]. Beyond doubt, monoclonal antibodies (mAbs) have many advantages as
a targeted molecule for cancer treatment, but they also have some shortcomings such as
low stability owing to the protein natural properties, high immunogenicity, high cost and
others [18–20]. Thus, novel, targeted drug delivery systems urgently need to be explored to
overcome these disadvantages.

On the other hand, nucleic-acid-based drugs such as antisense oligonucleotides
and aptamers are emerging as potential therapeutics for different diseases including
leukemia [21,22]. Among them, aptamers, a special class of single-stranded DNA or
RNA oligonucleotides discovered in nature as well as in laboratory, are beginning to be
investigated for clinical use [23]. Similar to monoclonal antibodies, aptamers can precisely
recognize and bind to membrane proteins on cancer cells through their unique spatial
structure with high affinity [24]. In particular, aptamers indeed do possess advantages such
as high thermal/chemical stability, low immunogenicity and cheaper, easier and faster
engineering, as well as rapid tissue penetration [23].

In addition, aptamers can serve in aptamer–drug conjugates (ApDCs) to precisely
deliver a wide range of therapeutic agents (e.g., cytotoxic agents and others) to targeted
cancer cells [25]. In this review, we primarily focus on the different strategies and the latest
advances in the construction of aptamer-based drug delivery systems for targeted therapy.

2. CD Markers Are Great Therapeutic Targets for Hematologic Malignancy

Cell membrane proteins are currently extremely attractive targets for precision medicine
in the treatment of hematologic malignancies. In a series of landmark studies, some unique
surface antigens (i.e., membrane proteins) were found to be expressed much more in hema-
tologic malignancies than in normal hematopoietic progenitor cells [26]. It means that the
differences between the membrane proteins of cancer cells and normal cells are merely
in expression levels [26]. Thus, membrane proteins indeed can serve as great therapeutic
targets for targeted therapy [27].

Cluster of differentiation (CD) is a special class of membrane protein utilized for the
identification of the differentiation lineage of leukemia cells [28,29]. Notably, as shown in
Figure 1A, there are a number of unique CD markers more abundantly found in hematologic
malignancies than in normal hematopoietic progenitor cells, indicating their potential
in the development of targeted therapeutics [26]. Recently, several CD markers have
been dominantly used as therapeutic target for mAbs-based immunotherapy in leukemia;
therefore, we summarize the current available CD markers as potential targets for leukemia
treatments (Table 1), and some CD markers targeted drugs have already been approved for
clinical applications.



Bioengineering 2022, 9, 635 3 of 16Bioengineering 2022, 9, x FOR PEER REVIEW 3 of 16 
 

 
Figure 1. Scheme of targeted therapy for hematologic malignancies by ApDCs. (A) Certain CD 
markers are preferentially expressed in blood cancer cells, with low or no expression in normal he-
matologic progenitor cells. (B) Aptamer–drug conjugates consist of an aptamer targeting the unique 
membrane protein in blood cancer cells, a potent cytotoxic agent and a linker attaching the drugs to 
the aptamer. Created with BioRender.com. 

For example, CD33 is a single-chain, trans-membrane glycoprotein, a myeloid differ-
entiation antigen broadly expressed on AML blast cells; therefore, it is an excellent thera-
peutic target for AML treatment [30,31]. In the light of this target, Mylotarg, a CD33-spe-
cific antibody–calicheamicin conjugate was first approved for CD33-positive pediatric 
AML treatment in 2000, while it was unfortunately withdrawn from the market in 2010 
due to safety concerns such as those relating to the incidence of hepatic veno-occlusive 
disease, increased mortality and others [32]. Through continuous efforts to explore, 
Mylotarg was approved again for treatment of new indications extended to relapsed or 
refractory (R/R) CD33-positive AML in pediatric and older patients in 2017 [33]. On the 
other hand, CD20 is a B cell differentiation antigen located only in pre-B cells and mature 
B cells which can act as the diagnostic target in CLL and ALL [34–38]. Based on this target, 
MRG001, another ADC drug composed of chimeric anti-CD20 mAbs with anti-microtu-
bulin agent monomethyl auristatin E (MMAE), is currently being evaluated in a phase I 
study in patients with CD20-positive relapsed or refractory B-cell non-Hodgkin lym-
phoma (NHL) [39].  

Meanwhile, CD19 is a trans-membrane protein specifically expressed on most B cell 
malignancies; therefore, it can serve as an attractive biomarker for targeted therapy 
[40,41]. Loncastuximab tesirine is an CD19-targeted antibody–drug conjugate used for 
treatment of the relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL); it has 
proven to be a promising treatment for R/R DLBCL which is efficacious, has durable re-
sponses and is safe in this patient population [42,43]. Furthermore, anti-CD19 and/or 
CD21 chimeric antigen receptor (CAR) therapies utilizing human peripheral blood T lym-
phocytes can effectively eradicate R/R large B-cell lymphoma (LBCL) and aggressive 
forms of leukemia [44,45].  

Another B lineage differentiation antigen, CD22, was also found to be highly ex-
pressed in more than 90% patients of pre-B-cell ALL and has been utilized as a therapeutic 
target for the construction of antibody drugs [46,47]. Inotuzumab ozogamicin is a CD22-
targeted monoclonal antibody linked with cytotoxic agent calicheamicin. It has been ap-
proved for the treatment of CD22-positive relapsed or refractory B-ALL due to its superi-
ority in improving the progression-free survival and overall survival of B-ALL patients 
[48,49]. Moreover, Fry et al. reported a phase I study of CD22-targeted CAR-T therapy in 
relapsed or refractory B-ALL patients. The results showed that anti-CD22 CAR-T cells can 
mediate similar potent antineoplastic effects to anti-CD19 CAR-T cells in pre-B ALL pa-
tients, and they also exhibit great efficacy in anti-CD19 immunotherapy-resistant patients 
with loss of or diminished surface expression of CD19 [50,51], indicating that CD markers 
are extremely important targets (biomarkers) for targeted therapy to eradicate hemato-
logic malignancies. In addition to these, there are also many other sorts of targets, such as 
CD44 [52], CD47 [53], CD117 [54], CD123 [55] and CD134 [56] in acute leukemia, as well 

Figure 1. Scheme of targeted therapy for hematologic malignancies by ApDCs. (A) Certain CD
markers are preferentially expressed in blood cancer cells, with low or no expression in normal
hematologic progenitor cells. (B) Aptamer–drug conjugates consist of an aptamer targeting the
unique membrane protein in blood cancer cells, a potent cytotoxic agent and a linker attaching the
drugs to the aptamer. Created with BioRender.com.

For example, CD33 is a single-chain, trans-membrane glycoprotein, a myeloid differen-
tiation antigen broadly expressed on AML blast cells; therefore, it is an excellent therapeutic
target for AML treatment [30,31]. In the light of this target, Mylotarg, a CD33-specific
antibody–calicheamicin conjugate was first approved for CD33-positive pediatric AML
treatment in 2000, while it was unfortunately withdrawn from the market in 2010 due to
safety concerns such as those relating to the incidence of hepatic veno-occlusive disease,
increased mortality and others [32]. Through continuous efforts to explore, Mylotarg was
approved again for treatment of new indications extended to relapsed or refractory (R/R)
CD33-positive AML in pediatric and older patients in 2017 [33]. On the other hand, CD20 is
a B cell differentiation antigen located only in pre-B cells and mature B cells which can act as
the diagnostic target in CLL and ALL [34–38]. Based on this target, MRG001, another ADC
drug composed of chimeric anti-CD20 mAbs with anti-microtubulin agent monomethyl
auristatin E (MMAE), is currently being evaluated in a phase I study in patients with
CD20-positive relapsed or refractory B-cell non-Hodgkin lymphoma (NHL) [39].

Meanwhile, CD19 is a trans-membrane protein specifically expressed on most B cell
malignancies; therefore, it can serve as an attractive biomarker for targeted therapy [40,41].
Loncastuximab tesirine is an CD19-targeted antibody–drug conjugate used for treatment of
the relapsed or refractory diffuse large B-cell lymphoma (R/R DLBCL); it has proven to be a
promising treatment for R/R DLBCL which is efficacious, has durable responses and is safe
in this patient population [42,43]. Furthermore, anti-CD19 and/or CD21 chimeric antigen
receptor (CAR) therapies utilizing human peripheral blood T lymphocytes can effectively
eradicate R/R large B-cell lymphoma (LBCL) and aggressive forms of leukemia [44,45].

Another B lineage differentiation antigen, CD22, was also found to be highly expressed
in more than 90% patients of pre-B-cell ALL and has been utilized as a therapeutic target
for the construction of antibody drugs [46,47]. Inotuzumab ozogamicin is a CD22-targeted
monoclonal antibody linked with cytotoxic agent calicheamicin. It has been approved
for the treatment of CD22-positive relapsed or refractory B-ALL due to its superiority in
improving the progression-free survival and overall survival of B-ALL patients [48,49].
Moreover, Fry et al. reported a phase I study of CD22-targeted CAR-T therapy in relapsed
or refractory B-ALL patients. The results showed that anti-CD22 CAR-T cells can mediate
similar potent antineoplastic effects to anti-CD19 CAR-T cells in pre-B ALL patients, and
they also exhibit great efficacy in anti-CD19 immunotherapy-resistant patients with loss of
or diminished surface expression of CD19 [50,51], indicating that CD markers are extremely
important targets (biomarkers) for targeted therapy to eradicate hematologic malignancies.
In addition to these, there are also many other sorts of targets, such as CD44 [52], CD47 [53],
CD117 [54], CD123 [55] and CD134 [56] in acute leukemia, as well as CD20 [57] in chronic
leukemia, which are used as specific targets for leukemia treatment, and several clinical
trials are currently ongoing to assess their safety and efficacy in various clinics.
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Table 1. CD markers as therapeutic target for leukemia treatment.

Classification Biomarker Description Agent Ref.

CD33
Belongs to Siglecs family;
in approximately 85% to

90% AML patients.

Gemtuzumab ozogamicin
CAR-T (phase 1) [32]

CD44 Strongly expressed on all
AML cells.

RO5429083 with
cytarabine (phase 1),
CAR-T (phase 1/2)

[52,58]

CD47

Overexpressed in
leukemic blasts and

progenitors, a macrophage
immune checkpoint,
protects cells from

phagocytosis.

Lemzoparlima
(phase 1/2a), magrolimab

(5F9) with azacitidine
(phase 1b)

[53,59,60]

Acute Myeloid
Leukemia (AML) CD117

Also named C-kit, a
tyrosine kinase receptor,
expressed in more than

90% of AML patients with
physiological HSPC and

leukemic blasts.

MGTA-117 (phase 1) [54,61]

Acute Leukemia CD123 Mainly expressed on AML
leukemic stem cells.

CSL362 (phase 1),
flotetuzumab (phase 1)

CAR-T (phase 2)
[32,55]

CD134

Also named OX40,
belongs to NGFR/TNFR

superfamily, mainly
expressed on Teffs and

Tregs. OX40–OX40L
interaction promotes NK

cells in AML.

n.a. [56]

CD170

Also named siglec-5,
upregulated during

granulocyte maturation,
overexpressed on the

AML non-M3 phenotypes.

n.a. [62]

Acute
Lymphocytic

Leukemia (ALL)

CD19
80% of ALL

expressed moderate
to high levels of CD19.

Blinatumomab [63,64]

CD22
Highly expressed on

leukemic cells from most
R/R B-ALL patients.

Inotuzumab ozogamicin
(phase 2),

moxetumomab
pasudotox-tdfk

[65,66]

Chronic Leukemia
Chronic

Lymphocytic
Leukemia (CLL)

CD20
Expressed in

B-cell-derived tumor cells,
such as CLL.

Ofatumumab (phase 2),
obinutuzumab (phase 2) [57,67,68]

3. Aptamer-Mediated Precision Therapy for Hematologic Malignancy

In fact, ADCs have achieved success in targeted therapy of hematologic malignancies,
while their productions are costly as well as time consuming, and they can induce severe
immune response due to the high immunogenicity [69]. As we mentioned above, aptamers
(termed as chemical antibodies) are a class of single-stranded nucleic acid (ssDNA or RNA)
which can precisely recognize their corresponding target molecules through their complex
spatial structure with high binding affinity and have a similar function to mAbs [21]. Ap-
tamers are generally screened from a randomized ssDNA or RNA library by an in vitro
selection method called systematic evolution of ligands by exponential enrichment (SE-
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LEX) [70]. Currently, there are a few approaches (protein-, cell- and animal-model-based
SELEX, as well as protein real-structure-based automatic design of aptamers by compu-
tational method) for screening aptamers with high specificity and high binding affinity
(Kd values of nM to pM) [71]. More importantly, aptamers can also be screened without
any knowledge of target molecules, which also makes them more attractive and promising
tools for the discovery of unknown biomarkers [23,72].

Owing to aptamers’ unique chemical and biological properties, they have been widely
used in cancer diagnosis and exhibit great potential for clinical treatment (i.e., targeted
therapy) [73]. More importantly, aptamers can be easily conjugated with toxic agents,
including chemotherapeutic molecules and toxins, as aptamer–drug conjugates (ApDCs)
for target therapy of cancers not only enhance therapy efficacy, but also reduce adverse side
effects in cancer patients, similar to ADCs [72]. Here, we summarize reported ApDCs for
cancer treatments in Table 2. In view of the aforementioned advantages, aptamer-mediated
precision therapy is deemed to be considerably efficient in the treatment of hematologic
malignancies. Here, we introduce in depth a few vital cleavable and non-cleavable linkers
as well as drug incorporation methods for constructing aptamer–drug conjugates.

Table 2. Aptamer–drug conjugates for cancer treatment.

Aptamer Target Drug Cancer Reference

AS1411 Nucleolin
Dox Liver Cancer [74]

Pacitaxel Ovarian Cancer [75]

Gemcitabine Pancreatic Cancer [76]

P19 PANC-1 cell
MMAE Pancreatic Cancer [77]

DM1 Pancreatic Cancer [77]

E07 EGFR
MMAE Pancreatic Cancer [78]

MMAF Pancreatic Cancer [78]

Gemcitabine Pancreatic Cancer [79]

Waz Transferrin
MMAE Pancreatic Cancer [78]

MMAF Pancreatic Cancer [78]

S30-T1 CD33 Dox Acute Myeloid
Leukemia [80]

Sgc8 PTK7
Dox Acute Lymphoblastic

Leukemia [81]

5-FU Colorectal Cancer [82]

EpDT3 EpCAM Dox Colorectal Cancer [83]

AP-1 CD133 Dox Anaplastic Thyroid
Cancer [84]

HB-5 HER-2 Dox Breast Cancer [85]

MA-3 MUC-1 Dox Lung CancerBreast
Cancer [86]

3.1. Synthesis of Aptamer–Drug Conjugates through Chemical Linkers

Synthesis of ApDCs depends on several vital research areas including the choice
of an appropriate antigen target, discovery of novel, highly potent cytotoxic drugs and
conjugation technology [87,88]. Importantly, the major approach for the synthesis of ApDCs
is to utilize appropriate chemical linkers as a bridge to connect the aptamers and cytotoxic
payloads through covalent bonds, which are key components for ApDCs to control the
release of payloads to blood cancer cells, expressing the target antigen rather than to healthy
cells, as shown in Figure 1B [89]. In brief, linkers require high stability in the circulation



Bioengineering 2022, 9, 635 6 of 16

so that the payload stays connected to the aptamers when it is distributed to the tissue.
Once ApDCs are precisely internalized and transported into cellular organelles of cancer
cells, the linkers release the attached cytotoxic drug through the dissociation properties.
Upon release, the cytotoxic drug can interfere with various cellular mechanisms, eventually
leading to cell death.

Since the development of ADC drug construction, different types of linkers have
been well established for the conjugation of biomacromolecules and chemical compounds.
Additionally, given their dissociation properties, linkers can be divided into two categories,
cleavable linkers and non-cleavable linkers. Cleavable linkers are designed to be easily
cleaved enzymatically (e.g., cathepsin B, etc.) or chemically (e.g., acid-sensitive linkers and
reduction-sensitive linkers), leading to the release of their payload in targeted cells [90].
Among them, cathepsin B cleavable linkers/peptide linkers are commonly used in ADCs
for various payloads, including MMAE, MMAF, pyrrolobenzodiazepines (PBD) and dox-
orubicins (DOX) [91,92]. Currently, the valine–citrulline (Val–Cit), phenylalanine–lysine
(Phe–Lys) and valine–alanine (Val–Ala) peptides are the most widely employed cathepsin
B cleavable linkers due to their high stability in serum and efficient drug release toward
the lysosomes of target cancer cells [93]. For instance, a Val–Cit linker with MMAE is used
in brentuximab vedotin and polatuzumab vedotin for targeting CD30-positive Hodgkin
lymphoma, systemic anaplastic large cell lymphoma and CD79b-positive R/R DLBCL, re-
spectively [94,95]. Another ADC drug loncastuximab tesirine-lpyl, composed of anti-CD19
mAb conjugated with cytotoxin PBD through peptide linker Val–Ala, has been approved
for the clinical treatment of large B-cell lymphoma [96,97]. Similar to cathepsin B, newly de-
signed enzymatically cleavable linkers, such as the phosphatase cleavable linker, sulfatases
cleavable linker, β-galactosidase cleavable linker and β-glucuronidases cleavable linker,
have also emerged as effective linkers for drug conjugations (Figure 2).

There are a few typical chemical linkers, including cleavable and non-cleavable linkers,
for connecting aptamers and anticancer drugs, for instance, cleavable linkers, such as
phosphtase, cathepsin B, surfatases, β-galactosidase and β-glucuronidase cleavable linkers
and non-cleavable linkers succinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate
(SMCC) and maleimidocaproyl (MC).

Until now, there have been numerous chemically cleavable linkers designed to use
in ADC drugs for hematologic malignancies. For example, Mylotarg, which consists of
an anti-CD33 antibody and calicheamicin through an acid-cleavable hydrazone linker
(i.e., chemically cleavable linker), is used for AML therapy [98]. Similarly, a hydrazone
linker is also used to connect anti-CD22 mAbs to cytotoxins such as calicheamicin (ino-
tuzumab ozogamicin) and pasudotox-tdfk (moxetumomab pasudotox-tdfk) for treatment of
CD22-positive ALL and relapsed hairy cell leukemia in clinics, respectively [49,66,99,100].

Non-cleavable linkers maintain the coupling integrity of the aptamer and drugs
throughout the entire drug action process and usually rely on complete degradation of the
aptamer (or antibody) within the lysosomes to release the attached payload [90]. Mecha-
nistically, non-cleavable linkers are unable to degrade by proteolysis and do not influence
the activity of the payload after conjugation [92]. Currently, several non-cleavable alkyl
and polymeric linkers are being explored in ADC development. In particular, the most rep-
resentative linker is the succinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate
(SMCC) crosslinker, which is a heterobifunctional protein crosslinker with a sulfhydryl-
reactive maleimide group and an amine-reactive N-hydroxysuccinimide (NHS) ester
group [101,102] (Figure 2). It is applied in trastuzumab emtansine for the conjugation
of an-HER-2 antibodies and DM1, which has been approved for the treatment of HER-2-
positive breast cancer [103]. In addition, CD37-antigen-targeted naratuximab emtansine,
which consists of anti-CD37 mAbs and cytotoxin DM1 through an SMCC linker, is be-
ginning to be investigated for diffuse large B-cell lymphoma and follicular lymphoma
treatment in clinical trials [104,105].
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On the other hand, B-cell maturation antigen (BCMA) is found to be highly expressed
on the surface of neoplastic plasma cells and plays a critical role in the proliferation,
survival and tumor progression in multiple myeloma (MM). Recently, an anti-BCMA
monoclonal antibody was designed to conjugate with MMAE through a non-cleavable
maleimidocaproyl (MC) linker to synthesize a BCMA-targeted ADC (e.g., belantamab
mafodotin-blmf) for multiple myeloma treatment [106].

In the light of these successes, aptamer–drug conjugates can be more easily synthesized
by using these linkers and payloads due to their superior chemical properties. Zhang et al.
conjugated a nucleolin target aptamer (named AS1411) with paclitaxel (PTX) through a
cathepsin B–labile dipeptide linker Val–Cit [75]. As the aptamer is highly water soluble, this
conjugate dramatically improved the water solubility of PTX and specifically delivered PTX
into nucleolin-positive ovarian cancer cells through nucelolin-mediated micropinocytosis,
resulting in notable improvement of antitumor activity and reduction of systemic toxicity.
The same linker was also used for the conjugation of MMAE and MMAF with aptamers
targeting EGFR or transferrin [78]. These conjugates exhibit greater anticancer activity in
EGFR- and TfR-positive pancreatic cancer cells than in negative cells. Moreover, Huang et al.
synthesized an aptamer–drug conjugate consisting of PTK7-targeted aptamer sgc8c linked
with Dox through an acid–labile hydrazone linker [81]. This ApDC (sgc8c–Dox) effectively
inhibited nonspecific uptake of Dox into non-target cells and selectively delivered Dox into
targeted cancer cells. All these findings indicate that aptamers can also be conjugated with
cytotoxic payload through chemical linkers to synthesize ApDCs in a similar manner to the
construction of ADCs; therefore, ApDCs are promising as a supplement for ADCs in the
clinical treatment of leukemia.
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3.2. Direct Synthesis of Aptamer–Drug Conjugates

Except conjugation through chemical linkers, certain chemotherapeutic agents can
be directly incorporated into aptamers to form the aptamer–drug physical conjugate due
to their unique chemical properties [107,108]. Dox, a chemotherapy agent, is widely used
for the treatment of a variety of malignancies such as leukemia, lymphoma, myeloma
and others through intercalating into the DNA’s double helix, especially in the CG-rich
region [108]. Since aptamers are able to form tertiary conformations with double-stranded
regions, Dox can be physically intercalated within the CG-rich, double-stranded region of
aptamers to form an aptamer–Dox conjugate [109,110]. Moreover, based on the properties
of the CG-rich region, newly designed CG cargo, which contains 10~16 base pair CG
repeated sequences, can be used for the linkage with aptamers as drug-intercalating sites
to improve the capacity of Dox loading [111]. Yang et al. synthesized a CD33-targeted
aptamer–Dox conjugate for CD33-positive AML treatment. In this study, CG-rich cargo
was added into the 5′ end of aptamer S30-T1 to synthesize a S30-T1–Dox conjugate which
could precisely recognize the CD33 antigen on HL-60 cells and be rapidly internalized into
cells and then release the Dox, finally inducing CD33-positive AML cell death (but not
CD33-negative cell death), implying that the ApDC has excellent therapeutic potential for
leukemia treatment [80].

It has been reported that nucleoside analogs, such as gemcitabine and 5-fluorouracil
(5-FU), are able to incorporate into the skeleton of aptamers directly due to their similar
structure to that of natural nucleotides [112]. Therefore, DNA aptamers containing gem-
citabine or 5-FU are considered to be chemically synthesized by using solid-phase DNA
synthesis techniques [113]. Wang et al. reported that five copies of 5-FU-linked phospho-
ramidite can be site-specifically loaded onto the aptamer by automated, solid-phase DNA
synthesis, which has proven to be highly effective for delivering 5-FU into targeted cancer
cells, indicating that such conjugates can also have therapeutic potential in clinical appli-
cations for leukemia treatment [82]. Additionally, gemcitabine is also able to incorporate
into RNA aptamers through transcription reactions catalyzed by special RNA polymerase,
such as a mutant T7 RNA polymerase (Y639F), which efficiently utilizes non-canonical
NTP for synthesizing RNAs [79,113]. Likewise, Ray et al. successfully synthesized an
EGFR-targeted aptamer–gemcitabine polymer (Gem–E07 polymer) through an enzymatic
reaction by taking advantage of mutant T7 RNA polymerase in which seven cytosine
sites of aptamer E07 are actually enzymatically replaced by gemcitabine monophosphates.
Moreover, the Gem–E07 conjugate also showed a strong inhibition effect on growth of
EGFR-positive pancreatic cancer cells after internalization through clathrin-mediated endo-
cytosis [79]. Taken together, ApDCs can be rapidly synthesized with a nucleoside analog
and chemically modified with diverse functional groups at either the 5′ or the 3′ end to
facilitate site-specific conjugation, as well as increase the drug loading capacity.

4. Aptamer–T Cell (AP–T) Targeted Therapy for Hematologic Malignancy

Engineering immune T cells for cancer treatment is a rapidly emerging area in cell-
based immunotherapy [114,115]. The most remarkable success is the use of CD19 and/or
CD21 chimeric antigen receptor T (CAR-T) cells for treating hematologic malignancies.
In clinic, CAR-T cell therapies have shown superior antitumor efficacy in patients with
refractory B cell malignancies, including ALL and non-Hodgkin lymphoma [116,117].
However, due to the integration of DNA into the host cell genome by retroviral elements, as
well as severe cytokine storm symptoms and potential carcinogenicity in patients, the clinical
use of CAR-T cells for cancer immunotherapy is largely restricted [118]. Thus, development
of a non-protein antigen receptor and non-viral new T cell therapy is indeed required.

Since the aptamer has similar properties to mAbs, it is supposed to replace the antigen
receptor on the surface of CAR-T cells for targeting cancer cells [119]. Notably, unnatural
sugars can be rationally designed to enable preferential metabolic labeling of cancer cells
and protein for the development of tumor-targeted therapy [120,121]. Liu et al., for the
first time, generated aptamer–CD3+ T cells by using N-azidomannosamine (ManNAz)
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sugar metabolic labeling and click chemistry (i.e., a non-viral method) against cancer [120].
In brief, they initially conjugated azide onto the cellular surface of human CD3+ T cells
through glycol-metabolic labeling, and a dibenzocyclooctyne (DBCO)-labeled DNA ap-
tamer could conjugate with azide through a bio-orthogonal copper-free click reaction,
finally generating aptamer–CD3+ T cells. As anticipated, synthesized aptamer–T cells
specifically bound to tumor cells and exhibited stronger antitumor effects with less cy-
totoxicity as well as non-carcinogenicity in vitro and in vivo, suggesting that aptamer–T
cell therapy can be used as a potential new immunotherapy strategy for the treatment of
hematologic malignancies.

Unlike the aptamer–T cell therapy, bi-specific aptamers that consist of two aptamers
(as bivalent or multivalent structures) can concurrently bind to two different targets on
the same cells or different cells [122]. Bi-specific aptamers are designed to specifically
target two different antigens, one is multidrug-resistance-associated membrane protein 1
(MRP1), which is highly expressed in chemotherapy-resistant tumor cells, while another is
CD28 on T lymphocytes, which functions to provide the co-stimulatory signals required
for T cell activation and survival [123]. The engineered, bi-specific, therapeutic, chimeric
aptamers (MRP1-CD28) could activate the tumor-infiltrating lymphocyte (TILs) against
melanoma tumors and showed strong antitumor activity through inducing an immune
response in vivo [114,123,124]. Similar work was also performed by using bi-specific
aptamers to form junctional T cell and cancer cell complexes [125], and T cells were
further activated in situ by CD3/CD28 T cell activator beads. Such aptamer–guided T cell
immunotherapy showed strong antitumor immunity against multiple tumor models with
high therapeutic efficacy. Therefore, activation of the immune system against cancer by
bi-specific aptamers provides a smart approach through which personalized cancer therapy
seems to be plausible.

5. Aptamer–PROTAC Conjugates (ApPCs)

It is worth noting that certain subtypes of leukemia are caused by the formation
of abnormal oncogenic proteins (e.g., PML-RARα, BCR-ABL, BET) [126,127], while the
emergence of several small molecules, such as arsenic trioxide (As2O3) and imatinib, suc-
cessfully cures such types of leukemia. However, drug resistance resulting from mutations
in oncoproteins leads to treatment failure in some relapsed patients. Moreover, there are
also numerous leukemia oncoproteins that cannot be handled by kinase inhibitors or small
molecule degraders [128–130].

Fortunately, an important advance that is likely to have a major impact on targeting
such targets is the advent of proteolysis-targeting chimeras (PROTACs) [131]. PROTACs
are bivalent and bi-functional small molecules that facilitate degradation of oncogenic
protein through the ubiquitin–proteasome system (UPS) [132]. Mechanistically, PROTACs
contain an E3 ligase-recruiting ligand, a linker and a target-protein-binding ligand [132,133].
Currently, a number of PROTACs are being developed for the degradation of leukemia
oncogenic proteins such as BCR-ABL, CDK, BTK, BET and FLT3 [134]. However, conven-
tional PROTACs are limited due to poor cell membrane permeability and lack of tumor
specificity. He et al. recently developed a novel aptamer–PROTAC conjugate to improve
the specificity of PROTACs [135]. Here, a BET-targeted PROTAC-PRO was conjugated
with a nucleolin-targeted aptamer (named AS) through a cleavable ester–disulfide linker.
This designed aptamer–PROTAC conjugate (named APR) could be selectively internalized
into nucleolin-overexpressed tumors cells through receptor-mediated endocytosis, and
PRO molecules were intracellularly released after the ester and disulfide bond was bro-
ken. Moreover, APR improved tumor targeting ability and BET degradation, leading to
increased antitumor activity as well as decreased toxicity in vitro and in vivo, indicating
that aptamer–PROTAC conjugates are an effective approach for enhancing the clinical
value of PROTAC drugs.

On the other hand, for some undruggable transcription factors such as Ras and Myc,
there is no small molecule available for specific binding due to their intrinsic structural
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disorder and lack of small molecule binding pockets [128–130]. Additionally, owing to
remarkable specificity and binding affinity, aptamers can also be utilized as target molecules
for the construction of PROTAC that is able to degrade these oncoproteins [136]. Zhang et al.
designed a conjugate of nucleolin-targeted aptamer AS1411 and a small molecule ligand
of E3 ligase VHL via a DBCO–azide click reaction [137]. This PROTAC molecule ZL216
is able to promote the formation of a nucleolin–ZL216–VHL ternary complex, resulting
in potent nucleolin degradation in breast cancer cells as well as in xenograft models.
Collectively, aptamer-based PROTAC seems to be a reasonable approach for the treatment
of undruggable transcription-factor-driven hematologic malignancies, through precisely
degrading their oncogenic proteins, and the curing of the diseases.

6. Conclusions and Perspective

In this review, we comprehensively discussed aptamers in clinic application for hema-
tologic malignancies therapy. Especially, we described in depth the aptamer–drug con-
jugates (ApDCs) and the importance of chemical linkers (non-cleavable and cleavable)
for connecting aptamers and cytotoxin agents to synthesize ApDCs. Actually, ApDCs are
efficient means of delivering therapeutic cytotoxin to targeted blood cancer cells through
recognition of their targets and release of their cytotoxin payloads to kill cancer cells. Com-
pared with ADCs, aptamers can be conjugated with drugs through diverse approaches
(i.e., linker-based and non-linker-based approaches), implying that ApDCs have a broader
range of choice of payload. Furthermore, aptamers are easier to chemically modify, and
their production cost is much lower than ADCs, indicating that ApDCs have greater com-
mercial prospects. More importantly, aptamers have lower immunogenicity and do not
induce severe immunoreaction in vivo. Although certain aptamers are beginning to be
investigated for clinical use and be assessed for their safety and efficacy, the barriers to the
translation of aptamers into the clinic are still challenges. For instance, due to the low serum
stability and fast renal excretion of aptamers, proper chemical modifications are necessary
to improve their weakness. In addition, novel aptamer screening platforms are urgently
needed to be developed for the high-throughput selection of aptamers with high binding
affinity and specificity. On the other hand, other novel therapeutic approaches, such as
aptamer–T cell therapy and aptamer–PROTAC conjugates, are also very exciting new ideas,
and personalized hematologic malignancies therapy seems to be plausible through these
strategies in the near future.
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