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Abstract: Sediment microbial fuel cells (MFCs) were developed in which the complex substrates
present in the sediment could be oxidized by microbes for electron production. In this study, the
functional prediction of microbial communities of anode-associated soils in sediment MFCs was
investigated based on 16S rRNA genes. Four computational approaches, including BugBase, Func-
tional Annotation of Prokaryotic Taxa (FAPROTAX), the Phylogenetic Investigation of Communities
by Reconstruction of Unobserved States (PICRUSt2), and Tax4Fun2, were applied. A total of 67,
9, 37, and 38 functional features were statistically significant. Among these functional groups, the
function related to the generation of precursor metabolites and energy was the only one included in
all four computational methods, and the sum total of the proportion was 93.54%. The metabolism of
cofactor, carrier, and vitamin biosynthesis was included in the three methods, and the sum total of
the proportion was 29.94%. The results suggested that the microbial communities usually contribute
to energy metabolism, or the metabolism of cofactor, carrier, and vitamin biosynthesis might reveal
the functional status in the anode of sediment MFCs.

Keywords: sediment microbial fuel cell; functional prediction; 16S rDNA; microbial communities

1. Introduction

Microbial fuel cells (MFCs) can grow microorganisms from organic matter supplied
by sediments or wastewater to achieve the two goals of bioremediation and energy produc-
tion [1]. The anodic electron transfer mechanisms can be attributed to the direct transfer
via redox-active proteins, direct transfer via conductive pili, indirect transfer via electron
shutters, and indirect transfer via reduced metabolites [2]. The exoelectrogenic bacteria
Shewanella oneidensis, Geobacter metallireducens, and Geobacter sulfurreducens can use cy-
tochromes as electron transfer proteins or as oxidoreductive enzymes that catalyze the
reduction in reactive substrates; such species are responsible for the power produced in
MFCs [3,4].

Different sediments might contain different exoelectrogens, and other microorganisms
might provide supporting materials, such as oxidized mediators, oxygen-removing species,
or nutrients, for the microbial community to adapt to the power output. Geobacteraceae [5]
and Desulfobulbaceae [6] have been shown to predominantly interact in anodic biofilms and
were positively correlated with electricity generation efficiency. This syntrophic interaction
suggested that Geobacter might cooperate with other microorganisms to generate electricity.
For example, Sporomusa can convert methanol into acetate, which is then utilized by
Geobacter [7,8]. The electron transfer could be due to quorum-sensing chemicals, minerals as
mediators, or cell-cell communication; for instance, the oxidation of methane by anaerobic
methanotrophic archaea is linked to sulfate reduction by sulfate-reducing bacteria [3,4].
Methane has been discussed as the substrate for MFCs by the syntrophic association
between Geobacter and methanotrophs [9]. On the other hand, the power density could be
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reduced by the presence of nonexoelectrogenic bacteria or nonactive cells that disrupt the
electrical conductivity of the biofilm [3]. Knowledge about the metabolic states of bacteria
in microbial fuel cells is helpful for a macroscopic understanding of the mechanism of
electricity production, but such research is currently lacking.

In this study, we applied functional status prediction using the program BugBase [10],
the Functional Annotation of Prokaryotic Taxa (FAPROTAX) [11], Phylogenetic Investi-
gation of Communities by Reconstruction of Unobserved States (PICRUSt2) [12], and
Tax4Fun2 [13]. The 16S rDNA sequences derived from different soils of the sediment
MFCs were aligned to a databank for taxonomic annotation and then functional predic-
tion. This study aims to provide functional information correlated to the power output in
sediment MFCs.

2. Materials and Methods
2.1. Sediment MFCs and Sequence Processing

The single-chamber, mediator-free sediment MFCs and sequence processing of soil
samples D1, D2, D3, D4, D5, S1, S2, S3, S4, and S5 [14] and soil samples D, DA, RF, and
RFA [15] were described previously. Briefly, the soil was placed in a transparent plastic
container (23 × 14 × 12 cm) with a 5 cm depth, and carbon fiber cloth was buried in the
sediment soil as an anode and a carbon rod or a carbon fiber cloth was used under the
water level as the cathode. The reason we selected these soil samples is that the soils were
all applied as sediment for sediment MFCs. The soil samples Nr1, Nr2, and Nr3 from
rice paddy fields of traditional farming were part of the study regarding the soil micro-
bial communities comparison between organic and traditional farming, and the bacterial
genomic DNA (gDNA) was extracted from 0.5 g of soil by using a NucleoSpin Soil DNA
isolation kit (MACHEREY-NAGEL, Dueren Germany) according to the manufacturer’s
instructions, and DNA sequencing was performed at BIOTOOLS Co., Ltd. (New Taipei,
Taiwan) (manuscript in preparation). The study information includes sample numbers, soil
types, voltage outputs, and groups for program calculation, which are listed in Table 1. The
soils used in this study were all collected near the campus in Dacun Township, Changhua
County, Taiwan.

Table 1. Metadata. Study information includes sample numbers, soil types, voltage outputs, and
groups for program calculation.

Samples Soil Type Location Voltage, mV Groups * References

D1 nonhydric

24◦00′ N,
120◦36′ E

none L

[14]

D2 nonhydric 40.92 H2
D3 ** nonhydric 105.88 H1

D4 nonhydric 0.2908 H2
D5 nonhydric 328.89 H1

S1 hydric

24◦00′ N,
120◦36′ E

none L
S2 hydric 64.605 H1

S3 ** hydric 16.573 H2
S4 hydric 153.11 H1
S5 hydric 179.6 H1

D drainage ditch 24◦00′ N,
120◦33′ E

49 H2

[15]
DA*** drainage ditch 37 H2

RF rice paddy field 24◦00′ N,
120◦34′ E

76 H1
RFA *** rice paddy field 22 H2

Nr1 rice paddy field
23◦58′ N,
120◦35′ E

None L Manuscript in
preparationNr2 rice paddy field None L

Nr3 rice paddy field None L
* There are three groups based on the soils without MFC processing (L), voltage output larger than 50 mV (H1),
and voltage output lower than 50 mV (H2). The voltage output selection of 50 mV is arbitrary. ** Glucose solution
(0.1 g/mLs) was applied. *** Soils were previously sterilized for one hour by autoclave.
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2.2. Functional Prediction of Microbial Communities

The 16S rDNA sequences were demultiplexed, joined, and denoised, as the clean
data were dereplicated with the qiime vsearch dereplicate-sequences command [16]. The
derived sequences were considered amplicon sequence variants (ASVs), and the derived
table indicated the number of times each ASV was observed in each sample. The table
was further filtered with a minimum of 4 reads and 1 sample for a sequence by the qiime
feature-table filter-features command to remove the rare sequences for less memory [16].
The filtered sequences were then used at the start of the bioinformatic analyses. Hierarchical
clustering was generated in R version 4.0.3 with the scale, dist, and hclust functions [17].
Table 2 lists the sequence references and pathway databases of the four tools.

Table 2. Overview of four computational programs and the functional features.

Program Reference Database Metabolic Pathway
Database

Functional
Features *

BugBase Greengenes KEGG module 67 (574)
FAPROTAX Silva 9 (92)
PICRUSt2 IMG MetaCys 37 (440)
Tax4Fun2 Ref99NR (NCBI RefSeq) KEGG pathway 38 (374)

KEGG: Kyoto encyclopedia of genes and genomes [18]. MetaCyc Metabolic Pathway Database [19]. Integrated
microbial genomes (IMG) [20]. Silva ribosomal RNA database [21]. Greengenes databases [22]. * Numbers in
brackets indicate the total features in the metabolic pathway database.

BugBase is a bioinformatic method for the organism-level coverage of functional
pathway prediction [10]. The filtered sequences were subjected to closed-reference clus-
tering at a 97% similarity against the Greengenes 13_8 97% OTUs (operational taxonomic
units) reference database [22] with the QIIME vsearch cluster-features-closed-reference
command [16] to obtain the OTU table with taxonomy. The table was uploaded to the
BugBase website (https://bugbase.cs.umn.edu/upload.html (accessed on 20 April 2022))
for functional prediction. Instead of the default of biologically interpretable trait prediction,
the 574 KEGG (Kyoto encyclopedia of genes and genomes) modules [18] were applied for
the calculation.

FAPROTAX predicts microbial metabolic functions based on marine culturable mi-
crobe functional annotations in a database [11]. The filtered sequences were assigned taxon-
omy at 99% similarity against the Silva 138 99% OTUs full-length sequences database [21]
with the qiime feature-classifier classify-sklearn command [16] for the ASV table with
taxonomy. The collapse_table.py script was applied to obtain the function tables.

PICRUSt2 predicts the functions of microbial communities based on marker gene
sequencing profiles [12]. The picrust2_pipeline.py command runs the default pipeline
with the filtered sequences and table input for pathway analyses. The reference database
and pathway database were in the integrated microbial genomes (IMG) [20] and MetaCyc
Metabolic Pathway Database [19].

Tax4Fun2 is an R package for the functional prediction of microbial communities from
16S rDNA gene sequences [13]. The default database was applied. First, the runRefBlast
command was performed to run the reference blast of Ref99NR with the filtered sequence
input, followed by the makeFunctionalPrediction command to predict functional profiles
with the filtered table input. KEGG pathways [18] were used as the reference.

2.3. Statistical Analysis

The statistical analysis of metagenomic profiles (STAMP) was applied to compare the
functional features of each tool between three groups of L (D1, S1, Nr1, Nr2, and Nr3),
H1 (D3, D5, S2, S4, S5, and RF), and H2 (D2, D4, S3, D, DA, and RFA) (Table 1) using the
Kruskal-Wallis test (p < 0.05), followed by the Tukey-Kramer Test for post hoc assay [23].

https://bugbase.cs.umn.edu/upload.html
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3. Results
3.1. Functional Feature Prediction

In this study, 17 soil samples from three independent experiments were grouped
into three groups: L, H1, and H2 (Table 1). L represents soils without MFC processing;
H1 represents the voltage outputs of the soils larger than 50 mV; and H2 represents the
voltage outputs of the soils lower than 50 mV. The voltage output selection of 50 mV is
arbitrary. The clean 16S rDNA sequences, after demultiplexing, joining, and denoising
was dereplicated as amplicon sequence variants (ASVs), followed by a filtering process
with a minimum of four reads and one sample for a sequence. The filtered sequences were
assigned taxonomy according to the individual instructions. Figure S1 shows the relative
abundance of phyla for the soil microbial communities, and except for the unassigned
bacteria, the predominant microorganism in soils D1, S2, S3, S4, S5, D, DA, and RF was
Proteobacteria, whereas in soils D2, D3, D4, D5, and S1 it was Firmicutes. In the RFA soil,
Bacteroidota was the predominant microorganism, whereas Acidobacteriota was predominant
in Nr1, Nr2, and Nr3 soils. Hierarchical clustering of the soil microbial communities
showed that the microbial communities in D, DA, RF and RFA soils were different from the
others, and the microbial communities in Nr1, Nr2, and Nr3 soils were further grouped
together (Figure S2). The highest three Shannon diversity indexes of the soil microbial
communities were 11.248 (Nr2), 11.235 (Nr1), and 11.021 (RF), whereas the lowest three
were 8.285 (D3), 8.445 (D2), and 8.57 (RFA) (Table S1).

The functional features were calculated and followed by statistical analyses (Table 2).
There were 67, 9, 37, and 38 functional features shown to be statistically significant from the
programs BugBase, FAPROTAX, PICRUSt2, and Tax4Fun2, respectively, and the normalized
percentages to the total features were 11.67, 9.78, 8.47, and 10.16% (Table 2). For FAPROTAX,
there were 64 functional groups represented with at least one record, and 78.4% of the
ASVs were not assigned to any group. In PICRUSt2, the weighted nearest-sequenced taxon
index (weighted NSTI) was used to evaluate the average distance for the ASVs in a given
sample to a reference bacterial genome, and higher scores (>0.15) might suggest the few
related references with low prediction quality [12]. Table S2 lists the weighted NSTI scores
of this study, and 8 of the 17 samples had scores higher than 0.15. For Nr1, Nr2, and Nr3,
the weighted NSTI scores were 0.52, 0.51, and 0.40, respectively. Tax4Fun2 provides the
fraction of taxonomic units that were unused (FTU) and the fraction of sequences unused
(FSU) indices as quality indicators [13]. In this study, both the FTU and FSU of all samples
were between 0.50 and 0.96, and the indices of Nr1, Nr2, and Nr3 were all larger than 0.90
(Table S2). These results suggested that the functional predictions were based on a few
sequences, and the reason was mainly that the assigned OTUs or ASVs did not match well
with the reference databases.

3.2. Functional Features Related to Power Generation

According to functional characteristics, we referred to the KEGG pathway maps
to classify manually and compare these functional features (Table S3). Among these
features, functions related to energy metabolism were the only functions included in all
four calculated programs, and the sum total of the percentage was 93.54%. Subsequently, the
functions of the cofactor, carrier, and vitamin biosynthesis, fatty acid, and lipid biosynthesis,
and secondary metabolite biosynthesis were included in the three programs, and the sum
total percentages were 29.94, 13.65, and 12.16%, respectively (Figure 1). Because we used
four different programs with different reference databases and metabolic pathways for
the comparison, the mutual function features, such as energy metabolism and metabolism
of cofactor, carrier, and vitamin biosynthesis, could suggest that these functions are the
majority or the dominant.
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Figure 1. The relative abundance of the pathway categories on the anode-associated soils by the
BugBase, FAPTROTAX, PICRUST2, and Tax4Fun2 tools.

Furthermore, we performed a heatmap and clustering analysis with both functional
features of energy metabolism and the metabolism of cofactor, carrier, and vitamin biosyn-
thesis for a graphical representation of clustering (Figure 2). Soil samples Nr1, Nr2, and
Nr3 were clustered together across all the methods applied, suggesting that similar mi-
crobial communities were present, and indeed the soils were collected as replicates from
the rice paddy field of traditional farming. However, the clustering results could not
reveal the three groups for H1, H2, and L, and it is possible that there were dynamic
changes in the microbial communities after the MFC process. We were interested in the
functional features that showed higher abundance in the H1 and H2 groups than in the
L group because it might suggest that the functions are related to the electron output for
microbial communities in sediment MFCs. For example, these functional features were
M00124 pyridoxal biosynthesis erythrose 4P pyridoxal 5P and M00126 tetrahydrofuran
biosynthesis GTP THF by BugBase (Figure 2A); nitrate reduction, nitrate respiration, ni-
trogen respiration, methanogenesis by CO2 reduction with H2, sulfite respiration, and
ureolysis by FAPROTAX (Figure 2B); pyridoxal 5′-phosphate biosynthesis I, super pathway
of glycolysis, pyruvate dehydrogenase, Tricarboxylic acid (TCA), and glyoxylate bypass,
superpathway of menaquinol biosynthesis (menaquinol-6, menaquinol-10, menaquinol-9,
demethylmenaquinol-9, and demethylmenaquinol-6), and superpathway of tetrahydro-
folate biosynthesis and salvage by PICRUSt2 (Figure 2C); and methane metabolism by
Tax4Fun2 (Figure 2D). The exoelectrogens Aeromonas, Bacillus, Desulfobulbus, Desulfovibrio,
Enterobacter, Geobacter, Klesbsiella, and Shewanella were assigned to the functional features
related to energy metabolism predicted by FAPROTAX listed in Table S3. The functional
features of metabolism for the generation of precursor metabolites and energy relative to
nitrogen, sulfur, methane, and glycolysis metabolism are further presented in bar plots to
show the differences in quantity (Figure 3). The functional features of nitrate reduction,
nitrate respiration, nitrogen respiration, sulfite respiration, ureolysis, the superpathway
of glycolysis, pyruvate dehydrogenase, TCA, glyoxylate bypass, methanogenesis by CO2
reduction with H2, and methane metabolism in Groups H1 or H2 showed higher quantities
than the features in Group L, suggesting that these functions might be helpful for the power
output of the microbes in sediment MFCs. Figure 4 presents the bar plots of the functional
features of menaquinol, pyridoxal 5′-phosphate, and tetrahydrofolate biosynthesis. All
showed higher quantities of features in Groups H1 and H2 than in Group L. The significant
post hoc assays by the Tukey-Kramer test are shown in Figures S3 and S4. Again, the results
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strongly suggested that the metabolism of cofactor, carrier, and vitamin biosynthesis was
related to power generation.
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Figure 2. Heatmap of functional features related to energy metabolism and cofactor, carrier, and
vitamin biosynthesis metabolism predicted by A. BugBase. B. FAPROTAX. C. PICRUSt2. D. Tax4Fun2.
The abundance scale bar represents the percentage with grayscale. H1 represents the voltage outputs
of soils larger than 50 mV (D3, D5, S2, S4, S5 and RF) with black. H2 represents the voltage outputs of
the soils lower than 50 mV (D2, D4, S3, D, DA and RFA) with gray. L represents the soils without
MFC processing (D1, S1, Nr1, Nr2 and Nr3) with white.
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Figure 3. Bar plots of the functional features related to energy metabolism. The x-axis indicates the
samples grouped into three groups. H1 represents the voltage outputs of soils larger than 50 mV
with black. H2 represents the voltage outputs of the soils lower than 50 mV with gray. L represents
the soils without MFCs processing with white. The y-axis indicates the relative abundance. The
horizontal line crossing the bar represents the average.
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4. Discussion

Functional prediction tools based on 16S rDNA sequences provide an economical
and initial resolution for bacterial function and ecological trait annotation in microbial
communities and have become popular and widely used. Recently [24] have reported
a review regarding the functional prediction from taxonomic genes, including BugBase,
FAPROTAX, PICRUSt2, and Tax4Fun2 programs. Briefly, the BugBase tool predicts the
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functional pathways as well as biologically interpretable traits (Gram staining, oxygen
tolerance, biofilm formation, pathogenicity, mobile element content, and oxidative stress
tolerance) and is available for use as a web application (http://bugbase.cs.umn.edu (ac-
cessed on 20 April 2022)); however, if 16S rDNA sequences were applied, the Greengenes
reference database should be used. FAPROTAX prediction is based on the literature of
cultured taxa, whereas the main limitation is only the marine prokaryotic organisms are
considered, and if the taxonomic resolution is poor, the prediction does not infer the upper
rank (e.g., genus). The advantages of PICRUSt2 as evolutionary models are taken into
account, and the NTSI confidence score is provided, as well as extensive documentation
and active community. The advantages of the Tax4Fun2 are R language which is applied
and easily accessible for a large number of users with low experience in bioinformatics,
and the confidence scores (FTU and FSU) provided.

The PICRUSt tool has been applied for the investigation of the microbial response to
petroleum hydrocarbon contamination and revealed the extrahydrocarbonoclastic activities
in contaminated soils [25]. The functional features of soil microbial communities would be
affected by long-term tillage practices, and crop rotation combined with no-tillage manage-
ment could show the highest bacterial diversity and predictive functional capacity [26,27].
Interestingly, predictive functional analysis with PICRUSt suggested that the genes asso-
ciated with plant fitness and plant growth promotion were abundant in agricultural soil,
while the genes related to organic matter degradation were abundant in nonagricultural
soil [28]. A study on the dryland soil bacterial community with tax4Fun tools showed
that the abundance of the genes involved in nitrogen, carbon, and phosphorous cycles
varied among land use systems and seasons [29]. The effects of agricultural management
on tomatos [30] and potato plants [31] were revealed by functional predictions of soil
microbial communities.

Few functional prediction analyses were applied to the anodic microbial communi-
ties of MFCs. A previous study on MFCs applied to anode-enhanced azo degradation
demonstrated that MFC processing would enhance manganese-, iron-, fumarate- and
nitrate-respiration, soil bioremediation, and chemoheterotrophy but suppress methano-
genesis, sulfate respiration, and hydrogen oxidation by FAPROTAX [32]. Studies on the
potential of MFCs for antibiotic removal suggested that functional genes related to extra-
cellular electron transfer were increased, but methanogen function genes and multiple
antibiotic resistance genes were reduced [33], and functional genes related to metabolism
and antibiotic resistance genes were enhanced [34] with the PICRUSt tool. In accordance
with the maximum power density and the PICRUSt prediction, the relative abundance of
cell mobility, replication, repair, translation, membrane transport, signal transduction, and
the metabolism of cofactors and vitamins could be the reason why the electroactive biofilm
had high electrocatalysis [35].

We used BugBase, FAPROTAX, PICRUSt2, and Tax4Fun2 tools to predict the functions
of microbial communities in sediment MFCs, and energy metabolism and metabolism
of cofactor, carrier, and vitamin biosynthesis were the mutual functions with a higher
abundance (Figures 1 and 2). Among energy metabolism, there were functional features
of nitrate reduction, nitrate respiration, nitrogen respiration, sulfite respiration, ureolysis,
the super pathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass,
and methane metabolism and methanogenesis by CO2 reduction with H2 that showed a
higher abundance consistent with the power output (Figure 3). Microorganisms involved
in the sulfur, nitrate, iron, and methane metabolic pathways might interact with each
other [36–40]. The exoelectrogens Aeromonas, Bacillus, Desulfobulbus, Desulfovibrio, Enter-
obacter, Geobacter, Klesbsiella, and Shewanella [2]were also assigned to the functional features
related to energy metabolism predicted by FAPROTAX (Table S4). Ureolytic bacteria can
utilize urea for nitrogen or energy and affect the composition and morphology of calcium
carbonate crystals to enhance biomineralization [41]. The super pathway of glycolysis,
pyruvate dehydrogenase, TCA, and glyoxylate bypass integrates several fundamental
metabolic reactions for ATP generation [19]. For the metabolism of cofactor, carrier, and

http://bugbase.cs.umn.edu
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vitamin biosynthesis, the biosynthesis of menaquinol, pyridoxal 5′-phosphate, and tetrahy-
drofolate were positive functions related to the power output (Figure 4). Menaquinones
(MK, vitamin K2) are mainly synthesized by bacteria and function as electron carriers
in cell membranes, act as antioxidants that protect cell membranes from lipid oxida-
tion, and are involved in the active transport of molecules across cell membranes [19,42].
Pyridoxal 5′-phosphate is a B6 vitamer involved in several metabolic reactions, such as
amino acid biosynthesis and degradation, iron metabolism, nucleotide utilization, co-
factor biosynthesis, and biofilm formation [43]. Tetrahydrofolate (vitamin B9) might be
involved in the metabolism of iron-sulfur clusters by acting as an electron donor [44].
Because the complex microbial communities were applied to the sediment MFCs, these
functional features should contribute to and represent the metabolic states in the anode-
associated environment.

The possible pitfalls of the functional prediction tools based on 16S rDNA were the
limited reference databases, especially to the environmental samples; that is, many of the
sequences could not be assigned a taxon for the prediction, and the second concern was
the different tools that would perform and derive different functional features [24,45,46].
To improve the limited reference databases, user-defined reference databases could be
amended for the analysis [12,13], or multiple tools could be applied for the comparison [46],
which was the approach we used in this study. Pyridoxal 5′-phosphate and tetrahydrofolate
biosynthesis were predicted by the BugBase and PICRUSt2 tools and showed consistent
results. However, for methane metabolism, the functional features M00567 Methanogenesis
CO2 methane (BugBase), methanogenesis by CO2 reduction with H2 (FAPROTAX), and
methane metabolism (Tax4Fun2) showed different predictions; only the function M00567
Methanogenesis CO2 methane showed a higher quantity in Group L than in Groups H1
and H2 (Figure 2). The microbial interactions in anode biofilms appear to be complicated,
and dynamics form symbiotic relationships to better adapt to the environment [47]. High
throughput sequencing indeed provided microbial analysis at a macro scale. However,
to identify soil microorganisms and protein activity during the sampling period for bet-
ter anodic regulatory mechanism interpretation of sediment MFCs, functional shotgun
metagenomics [8] and metatranscriptomics [48] should be the best methods.

5. Conclusions

We have demonstrated the functional prediction of microbial communities in sedi-
ment MFCs based on 16S rDNA with four tools, BugBase, FAPTROTAX, PICRUSt2, and
Tax4Fun2. Both the energy metabolism and the metabolism of cofactor, carrier, and vitamin
biosynthesis were the mutual functional features with higher abundance. The metabolic
reactions of nitrate reduction, nitrate respiration, nitrogen respiration, sulfite respiration,
ureolysis, the super pathway of glycolysis, pyruvate dehydrogenase, TCA, glyoxylate
bypass, methane metabolism, methanogenesis by CO2 reduction with H2, menaquinol
biosynthesis, pyridoxal 5′-phosphate biosynthesis, and tetrahydrofolate biosynthesis were
predicted to be active in anode-associated soils. If the OTUs or ASVs from soil microbes
can be assigned well to the reference databases, this should improve the accuracy and
representativeness of the functional prediction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10020199/s1, Figure S1: Relative abundance of
phyla of the soil microbial communities; Figure S2: Hierarchical cluster analysis of the soil microbial
communities by Euclidean distance and Ward’s minimum variance method; Figure S3: The significant
post hoc assay by the Tukey-Kramer test for energy metabolism functional features; Figure S4: The
significant post hoc assay by the Tukey-Kramer test for the functional features related to cofactor,
carrier, and vitamin biosynthesis; Table S1: Shannon diversity index of soil microbial community;
Table S2: Scores of the fraction of taxonomic units unused (FTU), the fraction of sequences unused
(FSU), and the weighted NSTI; Table S3: The functional features and the metabolic categories;
Table S4: The taxonomy assignment of the functional features related to energy metabolism predicted
by FAPROTAX.
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