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Abstract: Petroleum hydrocarbons are relatively recalcitrant compounds, and as contaminants,
they are one of the most serious environmental problems. n-Alkanes are important constituents
of petroleum hydrocarbons. Advances in synthetic biology and metabolic engineering strategies
have made n-alkane biodegradation more designable and maneuverable for solving environmental
pollution problems. In the microbial degradation of n-alkanes, more and more degradation pathways,
related genes, microbes, and alkane hydroxylases have been discovered, which provide a theoretical
basis for the further construction of degrading strains and microbial communities. In this review, the
current advances in the microbial degradation of n-alkanes under aerobic condition are summarized
in four aspects, including the biodegradation pathways and related genes, alkane hydroxylases,
engineered microbial chassis, and microbial community. Especially, the microbial communities of
“Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper” provide new ideas
for the degradation of petroleum hydrocarbons. Surfactant producers and nitrogen providers as a
“Helper” are discussed in depth. This review will be helpful to further achieve bioremediation of
oil-polluted environments rapidly.

Keywords: biodegradation; n-alkanes; alkane hydroxylases; engineered microbial chassis; micro-
bial community

1. Introduction

Petroleum hydrocarbons are common environmental pollutants, which endanger
terrestrial and aquatic ecosystems due to their sediment and secondary release in the
coastal environment [1,2]. Some studies have shown that many plants, even some edible
plants, can take up petroleum hydrocarbons from contaminated soil and aqueous media,
which is harmful to human health [3]. Traditional physicochemical treatments are expensive
and have limited efficiency [4]. With the development of synthetic biology and metabolic
engineering strategies, microbial remediation technology was recognized to be one of
the most effective approaches to deal with petroleum pollution. Although microbial
remediation technology has developed rapidly and made remarkable achievements, there
are still some limitations to environmental remediation.

Petroleum hydrocarbons are categorized as n-alkanes, iso-alkanes, cycloalkanes, and
aromatics [5], among which n-alkanes are the most biodegradable structural group. How-
ever, at physiological temperatures, the C5–C10 homologs tend to disrupt the lipid mem-
brane structures of microorganisms, and C20–C40 are hydrophobic solids, which are not
easily degraded. As a result, n-alkanes have been detected in lakes, rivers, oceans, ground-
water, and soil [6]. Here, gaseous alkanes (<C5) are excluded from our consideration due
to their physical properties at physiological temperatures, which mean they have very
few toxic effects on the environment. For brevity, n-alkanes will be used to represent
nongaseous n-alkanes (>C5) in the following.
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In recent years, microbial remediation technology of petroleum hydrocarbon pollution
has been extensively studied from different levels. At the external environment level, the
toxicity of petroleum hydrocarbon and factors influencing the microbial degradation of
petroleum hydrocarbons have been discussed many times [4,7]. The iron-assisted anaer-
obic hydrocarbon degradation was discussed separately [8]. Some related technologies
have been studied and summarized, such as bioelectrochemical systems [9] and rhizore-
mediation [10]. The strategies for petroleum hydrocarbon bioremediation in the marine
environment were reviewed [11]. At the community level, electron transfer between
bacterial cells, microbial interactions, and syntrophic phenomenon during hydrocarbon
biodegradation have been well summarized [6]. Here, the idea of microbial community
was often mentioned. At the cell level, the mechanism of petroleum hydrocarbon biodegra-
dation under aerobic and anaerobic condition was reviewed eight years ago [12]. A recent
review systematically summarized the enzymes and corresponding genes involved in the
microbial petroleum degradation pathway [13]. The present review provides a detailed de-
scription of alkane hydroxylase, which catalyzes the rate-limiting step, and other genes that
contribute to degradation have also been summarized. With the development of synthetic
biology and metabolic engineering, it has gradually become possible to construct microbial
communities for the degradation of petroleum hydrocarbons by bottom-up approaches.
The application of synthetic biology and metabolic engineering in the degradation of
petroleum hydrocarbons has been discussed [14]. However, the research basis required
for the bottom-up construction of degrading strains and microbial communities is rarely
summarized systematically.

Therefore, this review summarized the research basis of constructing artificial systems
for petroleum hydrocarbon degradation from four aspects, including the biodegradation
pathways and related genes, alkane hydroxylases, engineered microbial chassis, and micro-
bial community. First, this review comprehensively summarizes biodegradation pathways,
related genes, and alkane hydroxylase, taking the example of n-alkanes under aerobic con-
ditions. Then, the potential chassis for the construction of degrading strains is discussed.
Finally, a new idea of “Alkane-degrader and Alkane-degrader” and “Alkane-degrader
and Helper” for constructing microbial communities is proposed. This work will help
later researchers to construct degrading strains and then construct microbial communities
more efficiently.

2. Biodegradation Pathways and Related Genes
2.1. Biodegradation Pathways

There are mainly four pathways for n-alkanes biodegradation, including terminal
oxidation pathway, subterminal oxidation pathway, diterminal oxidation pathway, and
Finnerty pathway. Hexadecane was taken as an example here to explain the four degrada-
tion pathways (Figure 1).

Terminal oxidation pathway is the most common degradation pathway and can be
found in many bacteria, such as Alcanivorax borkumensis SK2(T) [15], Pseudomonas putida
KT2440 [16], and Geobacillus thermodenitrificans NG80-2 [17]. Taking hexadecane as an
example, hexadecane is oxidized to 1-hexadecanol by alkane hydroxylases (e.g., AlkB,
AlkM, LadA and cytochrome P450 family), and then 1-hexadecanol is further oxidized
by alcohol dehydrogenases to 1-hexadecanal [18]. Finally, it is converted by aldehyde
dehydrogenases into hexadecanoic acid. As a kind of fatty acid, hexadecanoic acid enters
β-oxidation in the end. Subterminal oxidation was found by Forney and Markovitz [19] in
Pseudomonas aeruginosa. Thirty-three years later, this pathway was recognized in Gordonia
sp. strain TY-5 [20]. Different from the terminal oxidation pathway, hexadecane is oxidized
to 2-hexadecanol by alkane hydroxylases (e.g., AlkB and the cytochrome P450 family).
Then, 2-hexadecanol is oxidized to 2-hexadecanal. Under the catalysis of Baeyer–Villiger
monooxygenase (BVMO), 2-hexadecanal could be converted into the tetradecyl acetate.
The tetradecyl acetate is further oxidized by esterase to the corresponding alcohol, and
the next steps are the same as for the terminal pathway. In the end, fatty acids enter
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β-oxidation. The diterminal oxidation pathway was first discovered in a bacterium. This
pathway was also found in several strains of yeast [21]. The special point of this pathway
is the existence ofω-hydroxylase, which can convert hexadecanoic acid to more valuable
16-hydroxyhexadecanoic acid. 16-Hydroxyhexadecanoic acid is further oxidized by alcohol
dehydrogenases and aldehyde dehydrogenases. The product, hexadecanedioic acid, enters
β-oxidation. The Finnerty way is different from the three above-mentioned ones. The
pathway was postulated by Finnerty and was found in Acinetobacter sp. strain HO1-
N [22]. In the first step, hexadecane is catalyzed by dioxygenase and is converted into
1-hydroperoxy hexadecane and hexadecaneperoxoic acid. Then, hexadecaneperoxoic acid
is further oxidized to hexadecanoic acid, which enters β-oxidation.
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indicate a putative pathway.

2.2. Related Genes

In microorganisms, alkane degradation involves many degradation pathway genes,
and it can be impacted by many other processes, such as oxidative stress reaction and
recognition and transport processes. Therefore, it is necessary to consider all the genes
involved when constructing and optimizing an alkane degrader. With the development
of synthetic biology and metabolic engineering strategies, many genes related to the
degradation of alkanes have been identified and analyzed. Some important genes are as
follows (Figure 1).

In the process of alkane degradation, the genes encoding alkane hydroxylase play
an important role. Some genes, such as alkB [23], alkM [24], ladA [25], and the gene of
encoding CYP153C1 protein [26] have been identified in prokaryotes. Meanwhile, rubA and
rubB [27] were recognized to encode alkane hydroxylase coenzymes in prokaryotes, and
alkR, which is located next to alkM with an opposite orientation, encodes a transcriptional
regulator of polypeptide. In the alkane degradation of eukaryotes, CYP52 gene family
occur frequently, especially in yeast [28,29]. For example, twelve genes (ALK1 to ALK12)
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which encode the cytochromes P450ALKs have been isolated in Yarrowia lipolytica [30].
Furthermore, CYP52A21 and CYP52A23 genes, which belong to CYP52 family, encode
an alkane/fatty acid hydroxylase. It can not only oxidize alkane but alsoω-hydroxylate
fatty acid in Candida albicans [31]. In the degradation of alcohols, laoA and laoB encode
alcohol dehydrogenase and its coenzyme, respectively, to degrade primary long-chain
alcohols; then, laoC encodes an aldehyde dehydrogenase, converting long-chain aldehyde
to the corresponding acids [32]. In addition, HFD1-HFD4, which was identified from Y.
lipolytica also can perform the same function as laoC in the alkane degradation pathway [33].
On a secondary alcohol degradation gene cluster, sadC is involved in the degradation of
secondary alcohol; sadD, sadA, and sadB encode a BVMO, and two esterases catalyze sec-
ondary alcohol to the corresponding primary alcohols [34]. In the end, acyl-CoA synthetase
encoded by FAT1 and FAA1 catalyzes fatty acid to enter the TCA cycle [35].

The recognition and transport of alkanes and the oxidative stress reaction are two
important aspects that impact the degradation of alkanes. The recognition and transport
of alkanes usually takes place on the cell membrane. Genes aupA and aupB which encode
outer membrane proteins (AupA) and inner membrane proteins (AupB) respectively are
responsible for the uptake of alkanes in a prokaryote [36]. Gene ABC1, which encodes the
ABC1 transporter is involved in the transport of alkanes in a eukaryote [37]. Some genes
that encode fatty acid transport proteins, such as ScFAT1 and YlFAT1 [38] in eukaryotes
and exfadLO [39] and fadL [40] in prokaryotes, may indirectly impact alkane degradation
by increasing or decreasing fatty acid accumulation. In addition, three genes, Yas1p, Yas2p,
and Yas3p, which encode an alkane-responsive biosensor, were transferred artificially to
Saccharomyces cerevisiae [41]. This study has enlightening significance for the construction of
S. cerevisiae that can degrade alkanes. In the process of alkane degradation, some harmful
substances such as H2O2, O2

−, and organic sulfonates may be produced to cause oxidative
damage to cells. At the same time, related genes have been identified. oxyR which encode
the virulence-related redox-sensing transcription factor confers resistance to H2O2 [42]. The
P24 gene was recognized to encode a superoxide dismutase, which can protect from damage
due to O2

− [43]. ssuD and tauD can transform organic sulfonate to a sulfur source, which is
necessary for the production of some oxidative stress-sensing proteins and metabolites that
defend against oxidative stress [44]. It is worth mentioning that Osh6p which be encoded
by OSH6 gene is a homologue of the oxysterol-binding protein. It was speculated to be
involved in the formation of Alk protein by changing the ratio of phosphatidylserine and
then impacting the endoplasmic reticulum membrane environment [45].

3. Alkane Hydroxylases

In alkane degradation, alkane hydroxylases participate in the first reaction by introduc-
ing oxygen atoms, which be considered as the rate-limiting step [22]. At present, the alkane
hydroxylases including integral-membrane alkane hydroxylases (e.g., AlkB, AlkM), cy-
tochrome P450 alkane hydroxylases, flavoprotein alkane hydroxylases (e.g., AlmA, LadA),
and dioxygenase have been identified. Among them, the research on integral-membrane
alkane hydroxylases and cytochrome P450 alkane hydroxylases is more mature and de-
tailed than that on flavoprotein alkane hydroxylases and the dioxygenase family in the
aspects of structure and modification (Table 1).

3.1. Integral-Membrane Alkane Hydroxylases

AlkB and AlkM, which were identified from P. putida Gpo1 [46] and Acinetobacter
calcoaceticus ADP1 [24], respectively, were the two major enzyme systems. The difference
of function between them is that AlkM was reported to oxidate long-chain n-alkanes
(C16–C30) [47] and AlkB oxidates alkanes with shorter chain lengths (C5–C12) [48].

Compared to AlkM, the structure of AlkB has been studied more clearly. In a previous
study, AlkB was studied to have six alpha-helical transmembrane segments, and each
transmembrane segment had eight histidines. These eight histidines are very significant for
the structure of AlkB [49]. In addition to this, the existence of iron is crucial for the activity
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of AlkB. In P. putida Gpo1, the alkane hydroxylase system is composed of many enzymes
involved in alkane degradation. In addition to AlkB, there are also two rubredoxins and
one rubredoxin reductase, which play the role of transferring electrons in the system [48].
Researchers also found another rubredoxin and rubredoxin reductase, rubA and rubB,
which are from A. borkumensis [50], Acinetobacter sp. M-1 [27]. In Dietzia strain DQ12-45-1b,
researchers found a novel gene alkW1, which is composed by AlkB and a rubredoxin [51].
The study found the AlkB-fused rubredoxin can oxidate long-chain alkanes. In addition,
the alkB gene promoter (PalkB), which impacts the expression of alkB, was identified and
analyzed [52].

Gene alkM is different from alkB in DNA sequence homology. However, AlkM is
still recognized to belong to integral-membrane alkane hydroxylases for it also needs
rubredoxin and rubredoxin reductase [53]. The gene of AlkM also differs from AlkB in its
positional relationship with the gene of coenzyme. AlkM is not linked to the rubredoxin-
and rubredoxin reductase-encoding genes on the Acinetobacter sp. strain ADP1, while alkB
is the opposite of alkM [24]. In addition, the transcriptional regulators have also been
identified. AlkR is essential for the transcriptional regulation of AlkM. The gene of AlkR is
located next to the gene of AlkM [24]. In Acinetobacter sp. strain M-1, there are genes alkMa
and alkMb, alkRa and alkRb, which are similar to strain ADP1 in the aspects of sequence
homology and positional relationship [27].

3.2. Cytochrome P450 Alkane Hydroxylases

Many alkane hydroxylases belong to the cytochrome P450 family, which are heme-
thiolate proteins [54]. Currently, the most studied is Class I and Class II of cytochrome
P450, which is categorized by components [55]. CYP153 enzymes was identified from A.
calcoaceticus EB104 [54], which are an important part of Class I. n-Alkanes (C6–C11) can be
oxidized by CYP153 enzymes, such as CYP153C1, which was cloned from Novosphingobium
aromaticivorans DSM12444 [26]. Understanding these enzymes can help us modify them
in the desired direction with synthetic biology and metabolic engineering strategies. The
P450cam system (belonging to CYP101) identified from P. putida ATCCI7453 is similar to
integral-membrane alkane hydroxylases [56]. The components of the P450cam system
include cytochrome P450 alkane hydroxylases, putidaredoxin, and putidaredoxin reduc-
tase. The two coenzymes undertake the function of transferring electrons from NADH to
P450cam [57]. P450cam has been modified in its active-site amino acid residues by substitu-
tion. The mutations have higher activity in alkane degradation [58]. In Class II, the CYP52
family and P450 BM-3 have been studied. CYP52 family is important forω-oxidation in
the diterminal oxidation pathway, which always occurs in yeast such as Candida tropicalis
ATCC 20336 [59]. In C. tropicalis ATCC 20336, the CYP52 family oxidizes n-alkanes to
fatty acids and dicarboxylic acids, which are more valuable products. P450 BM-3 is from
Bacillus megaterium 14581 [60]. The peculiarity of the structure of this enzyme is that the
hydroxylase domain and the reductase domain are fused in a single polypeptide chain,
which cause it to be the most active P450 enzyme [60]. In addition, some modifications of
P450 BM-3 have been studied, such as rational evolution, which improves the degradation
ability of n-alkanes [61].

3.3. Flavoprotein Alkane Hydroxylases

Flavoprotein alkane hydroxylases catalyze a reaction involving NAD(P)H, cofactor
flavin, and substrate. They transfer electrons through redox reactions [22]. At present,
two flavoprotein hydroxylases that have been wildly studied are LadA and AlmA. LadA
was isolated from G. thermodenitrificans NG80-2 [27]. Research showed that it can oxidize
long-chain n-alkanes, from C15 to at least C36 via the terminal oxidation pathway. LadA
belongs to the SsuD subfamily, which contains a triosephosphate isomerase (TIM) barrel
structure [17]. It was identified to be a flavoprotein hydroxylase for the FMN in the TIM
barrel. Some modifications such as random- and site-directed mutagenesis of LadA have
been used to enhance its activity [62]. Research showed that the expression of the LadA
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mutants can help Pseudomonas fluorescens strain KOB21 grow faster with hexadecane. AlmA,
which was first isolated from Acinetobacter sp. strain DSM 17874, can oxidize long-chain
alkanes [63]. It was also found in Alcanivorax dieselolei B-5 [64], Acinetobacter pittii SW-1 [65],
Acinetobacter oleivorans DR1 [66], P. aeruginosa SJTD-1 [67], and Alcanivorax hongdengensis
A-11-3 [68]. However, few of degradation mechanism that AlmA is involved in have
been characterized. In Acinetobacter sp. strain M-1, one dioxygenase was found [69].
Taking hexadecane as an example, dioxygenase can oxidate hexadecane to 1-hydroperoxy
hexadecane in the Finnerty way. The activity of this enzyme requires flavin adenine
dinucleotide and Cu2+. The enzyme catalyzes n-alkanes ranging from C10 to C30. Although
there is no genuine repetition of the work that can fully prove dioxygenase acts on n-alkanes
in the subsequent 25 years, dioxygenases appeared in the aerobic degradation pathway of
naphthalene and phenanthrene during the past 25 years [70,71]. It makes researchers think
that the possibility exists, but still needs to be verified. Therefore, the pathway catalyzed
by this enzyme is shown by dotted lines in Figure 1.

Table 1. Some important alkane hydroxylases.

Enzyme Origin Structural Features Modification Type of
Oxidation

Oxidation
Length Reference

The ALKB
family

AlkB P. putida
GPo1

Six alpha-helical
transmembrane

segments
Nonheme iron

integral-membrane
Eight histidines
Needs iron and

oxygen

/

Terminal
oxidation,

subterminal
oxidation

C5–C12 [48,49]

AlkM
Acinetobacter

sp. strain
ADP1

/ / Terminal
oxidation C16–C30 [24,47]

Cytochrome
P450

Class I
(CYP153)

Bacteria
A. calcoaceticus

EB104

FAD-containing
reductase

Iron–sulfur protein

Active site
replaced by

residues with
bulkier and

more
hydrophobic
side chains

Terminal
oxidation,

subterminal
oxidation

C6–C11 [54,56,72]

Class II
(CYP52)

Fungi
C. tropicalis

ATCC 20336
Bacteria

B. megaterium
14581

FAD- and
FMN-containing
cytochrome P450

reductase

Rational
evolution

Terminal
oxidation,

subterminal
oxidation

C10–C16 [59–61]

Flavoprotein

LadA
G. thermodeni-

trificans
NG80-2

TIM barrel fold
C-terminus of

polypeptide chain

Random- and
site-directed
mutagenesis

Terminal
oxidation C15–C36 [17,25,62]

AlmA
Acinetobacter

sp. strain
DSM. 17874

Flavin binding / / >C32 [63]

Dioxyge-
nase

Acinetobacter
sp. strain

M-1
ND / Finnerty way C10–C30 [67]

Note: ND = not defined.
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4. Engineered Microbial Chassis

Most of identified microorganisms that can express alkane hydroxylases are nonmodel
microorganisms such as Mycobacterium sp. [73], Rhodococcus sp. [74], Pseudomonas sp. [75],
Dietzia sp. [76], Acinetobacter sp. [24], Aspergillus sp. [73], Fusarium sp. [77], Penicillium
sp. [78], Ochrobactrum sp. [79], or Brevibacterium sp. [80]. However, they are difficult
to modify due to their unstated genetic background. For a microbial chassis, model
microorganisms, such as Escherichia coli are the most widely used. With the progress of
synthetic biology technology, some nonmodel microorganism can also be transformed,
and these nonmodel organisms may have functions that model organisms do not have,
such as a complete degradation system. Here, we summarize the research progress on
E. coli, Pseudomonas sp., and Bacillus sp., which can be modified as potential chassis for the
degradation of petroleum hydrocarbons.

4.1. E. coli

E. coli is an important model microorganism. At present, E. coli has been applied to
the expression of alkane hydroxylase and the whole-cell biooxidation of alkanes, which
is able to not only avoid the complicated steps of enzyme purification but also solve the
difficulty of the reduced activity of the enzymes.

In E. coli, the research can be divided into two aspects. On the one hand, researchers
make E. coli degrade alkane by expressing alkane hydroxylases. Back in 1993, researchers
tried to introduce alk genes into E. coli; they found that it resulted in the overexpression of
alkane hydroxylase in a distinct cytoplasmic membrane subfraction [81]. Two years later, a
study showed that recombinant E. coli can express more alkane hydroxylase (AlkB), but
the specific activity of the alkane hydroxylase component AlkB was five or six times lower
than in Pseudomonas oleovorans [82]. However, both studies did not use recombinant E. coli
to degrade alkane. Recently, a study demonstrated that using the E. coli GEC137 pCEc47∆J
strain to produce primary alcohols and carboxylic acids is feasible [83]. It is the first time
using AlkB to degrade n-alkane (n-dodecane) in a recombinant organism. The next year,
the AlkB gene of P. putida GPo1 was constructed in a PCom8 expression vector, and the
pCom8-GPo1 AlkB plasmid was transformed into E. coli DH5a [84]. The result showed
that the culture of the recombinant E. coli with the petroleum biodegradation bacterial
community increased the degradation ratio of diesel oil at 24 h from 31% to 50% [84].
On the other hand, other studies focused on ω-oxidation, which can convert alkanes to
more valuable chemicals. These studies have shown that diterminal oxidation can be used
convert inexpensive medium-chain n-alkanes to valuable medium-chain α,ω-diols and
α,ω-dicarboxylic acid (DCAs). In other research, the biocatalytic conversion of fatty acid
esters towardω-hydroxy fatty acid esters was investigated with recombinant E. coli that
produce the AlkBGT enzymes [85]. Furthermore, a review systematically demonstrated
the strategies for improving product yield and productivity ofω-HFAs and their related
chemicals in E. coli recently [86]. These results indicate that the use of recombinant E. coli to
degrade alkanes and produce valuable byproducts is feasible.

4.2. Pseudomonas sp.

Generally, Pseudomonas species are ubiquitous in nature and capable of producing
biosurfactants with crude oil as the carbon source. Recently, many strains belonging to
Pseudomonas sp. were isolated and identified (Table 2). Based on these studies, many
genes associated with degradation were identified. For example, a gene cluster encoding
a putative alcohol dehydrogenase (PA0364/LaoA), a probable inner membrane protein
(PA0365/LaoB), and a presumable aldehyde dehydrogenase (PA0366/LaoC) were ex-
plained specifically [32]. Subsequently, modifications of the Pseudomonas sp. were also
gradually developed. NAH7 plasmid was transferred to P. putida KT2440, which enabled
P. putida KT2440 to degrade naphthalene. At the same time, this transformation alleviated
the cellular stress brought on by this toxic compound [87]. This is a rational modification
example of Pseudomonas. Other research is about irrational modifications of Pseudomonas.
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Pseudomonas pseudo alcaligenes CECT 5344 was grown in furfuryl alcohol, furfural, and furoic
acid as carbon sources and the evolved strain was obtained after the strain adapted [88].
The evolved strain did not show any prolonged lag phases, while the original strain had a
lag period of several days [88]. These studies provide a chassis for the future genetic engi-
neering of wild Pseudomonas and laid the foundation for the construction of communities
for efficient alkane degradation.

Table 2. Some alkane-degrading bacteria that have been recently modified or isolated and identified.

Species Type Name Degrading
Substances Degradation Rate References

E. coli Artificial
E. coli GEC137 pCEc47∆J n-Dodecane / [83]

E. coli DH5a pCom8-Gpo1 AlkB Diesel oil 24 h from 31% to 50% [84]

Pseudomonas
sp.

Wild

Pseudomonas qingdaonensis ZCR6 Petroleum
hydrocarbons 76.52% [75]

P. aeruginosa pp4 Crude oil 86% [89]
P. aeruginosa AKS1 Crude oil 0.038 for 1 day [90]

Pseudomonas sp. strain SA3 Naphthalene 98.74 for 4 days [91]
Pseudomonas brassicacearum

MPDS Dibenzofuran 65.7% for 4 days [92]

Pseudomonas sp. strain NEE2 n-Hexane 60% for 2 days [93]
Pseudomonas sp. Sp48 Crude oil 89% for 6 days [94]

P. aeruginosa L10 C10–C26 n-alkanes ND [95]

P. putida strain KD6 Petroleum
hydrocarbons 97.729% for 12 days [96]

P. aeruginosa strain ASP-53 Pyrene 30.1% after 144 h [97]
P. aeruginosa ZS1 Crude oil 50% for 12 days [98]

Artificial
P. putida KT2440R (NAH7) Naphthalene / [87]

P. pseudo alcaligenes CECT 5344
evolved

Furfural and furoic
acid / [88]

Bacillus sp. Wild

Bacillus marsiflavi Bac 144 Crude oil 65% for 5 days [99]
Bacillus sp. AKS2 Crude oil 0.020 for 1 day [90]

Bacillus subtilis strain
Al-Dhabi-130 Crude oil 89% for 2 days [100]

B. subtilis RSL-2 Crude oil ND [101]
Bacillus cereus T-04 Crude oil 60%–80% [102]

Bacillus safensis strain ZY16 n-Hexadecane 98.20% [103]
B. subtilis MG495086 Light paraffin oil 91.3 ± 5% [104]

B. cereus S13 Anthracene 82.29% for 120 h [105]
Bacillus thuringiensis AT.ISM.1 Anthracene 91% [106]

Bacillus spp. B6 PAHs 11%–83% [107]
Bacillus subtilis (M16K and

M19F) Crude oil >94.0% [108]

Note: ND = not defined.

4.3. Bacillus sp.

Bacillus species have strong resistance to external harmful factors. Therefore, it is
appropriate to use Bacillus sp. as a chassis for degrading alkanes. They exist in soil, water,
air, and animal intestines [109]. Recently, many bacteria of the Bacillus sp. were isolated
and identified (Table 2). At present, the biological methods of modifying strains mainly
include promoter replacement and the strengthening of target genes. In the approach of
promoter replacement, through the substitution of the promoter of the lichenysin biosynthe-
sis operon, the engineered strain produced 2149 mg/L lichenysin, a 16.8-fold improvement
compared to that of the wild strain [110]. In the approach of the strengthening of target
genes, engineered bacteria increase the yield of target products by the activation of two
competence-stimulating pheromones to stimulate the transcription of the operon [111],
by the independent or simultaneous overexpression of two regulatory genes [112] and
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by inserting a strong constitutive promoter upstream of the operon [113]. Additionally,
Wu et al. [114] developed a systematic engineering approach to improve the biosynthesis.
The final surfactant titer increased to 12.8 g/L, with a yield of 65.0 mmol/mol sucrose (42%
of the theoretical yield) in the metabolically engineered strain. Although there has been
no modification research on the degradation ability of Bacillus sp., this still provides some
experience for our genetically engineered strains of wild Bacillus.

5. Microbial Community

In terms of petroleum hydrocarbon degradation, a microbial community is more effec-
tive than a single microorganism for it can increase the variety of degradable substrates
and construct a system of commensalism and co-metabolism [115,116]. Many microor-
ganisms have been isolated and identified from the environment, and the degradation
effects of different combinations, e.g., pure bacterial community [117], pure fungal commu-
nity [118], bacterial–fungal community [119], and pure protozoa community, have been
compared [120]. These undoubtedly provide a rich material and theoretical basis for our
further research. However, it is difficult to manipulate microorganisms to do degradation
tasks precisely; only if the endogenous gene of each microorganism in microbial com-
munities and cell–cell interaction in communities is known clearly, this can be achieved.
Therefore, researchers have begun to consider constructing microbial communities for
the degradation of petroleum hydrocarbons designed by using engineered strains and
rational allocation of strains. In these studies, the interaction of the microorganisms could
be defined as “Alkane-degrader and Alkane-degrader” and “Alkane-degrader and Helper”
(Figure 2).
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5.1. Alkane-Degrader and Alkane-Degrader

In an “Alkane-degrader and Alkane-degrader” community, each member can degrade
alkanes, but the type of alkane they degrade is different. Each member degrades an alkane
that they are good at degrading, and then they finish the task of degradation of complex
petroleum hydrocarbons. Recently, a co-culture of bacteria, Acinetobacter baumannii, and
fungi, Talaromyces sp., was studied. In this community, fungi have stronger ability to
degrade n-alkanes, while bacteria degrade other components such as aromatics and iso-
alkanes better. The total degradation rate of crude oil of this community can reach 80% [121].
In addition to using wild bacteria to create an artificial community, some researchers tend to
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use engineered bacteria to construct a microbial community. In one research, a mutant with
alkMa or alkMb deletion of Acinetobacter venetianus strain RAG-1 enhanced the degradation
of C10–C20 or C22–C32 n-alkanes. Then, an adjustable and targeted community consist-
ing of ∆alkMa/almA and ∆alkMb was constructed. This community achieved enhanced
degradation (10 days) of light crude oil (73.42% to 88.65%), viscous crude oil (68.40% to
90.05%), and high waxy crude oil (47.46% to 60.52%) compared with the single wild-type
strain [122]. It can be seen that the microbial community in the form of “Alkane-degrader
and Alkane-degrader” is conducive to the degradation of complex alkane components.

5.2. Alkane-Degrader and Helper

In an “Alkane-degrader and Helper” community, one or some members degrade
alkanes, and other member do other works to help the former degrade alkanes better. For
example, surfactant producers can help an “Alkane-degrader” degrade alkane by increase
the solubility of the alkanes. In contaminated soil, nitrogen providers can help by providing
nitrogen to the alkane degrader.

5.2.1. Surfactants Producers

Most “Helpers” can secrete surfactants to help “Alkane-degraders” [123]. However,
how can this help the microbes? This question is still is not fully answered. The common
explanation for this question is that biosurfactants can increase the solubility, which can
result in higher growth of bacteria and greater efficiency of biodegradation [124]. However,
more-comprehensive analysis of this process has been carried out taking into account
multilevel changes occurring in cells from the genome, through metabolic activity, to
the surface properties of the cells [125]. These focused on the in-depth description of
relationships between hydrocarbons and bacteria and found changes in the genome caused
by exposure to surfactants. The results indicated that the benefits of surfactant use may
be related to deep modifications not only of the cell’s surface properties but also at the
omics level. Nevertheless, the mechanism of deep modification at the omics levels still
needs more research. It should be pointed out that, in some cases, surfactants are not
beneficial or may even be harmful to the degradation of petroleum hydrocarbons. In
soil pollution remediation, anionic surfactants react with divalent ions such as Ca2+ or
are irreversibly sorbed on the soil. It will result in a large loss of surfactant or increase
the soil organic carbon content, which adversely impacts petroleum biodegradation [126].
In addition, some surfactants have been reported to inhibit or stimulate the growth of
microorganisms [127].

Based on the differences in their chemical compositions, biosurfactants can be classified
into bioemulsifiers, which have higher molecular weights, e.g., polymeric and particulate
biosurfactants [128], and biosurfactants, whose molecular weights are lower, e.g., rhamno-
lipids [129], sophorolipids [130], and lipopeptides [131]. The difference of function between
the two types is that low-molecular-weight biosurfactants can help bacteria increase the
surface area of hydrophobic, water-insoluble substrates and increase the bioavailability
of hydrophobic compounds by reducing the surface tension effectively. However, high-
molecular-weight bioemulsifiers coat the oil droplets and prevent their coalescence to
achieve this effect [132].

Biosurfactants can increase the degradation rate of alkane degraders [133,134]. Iso-
lation and identification of a surfactant-producing bacteria from the environment has,
therefore, become an area of interest for researchers. Understandably, since surfactant
production and alkane degradation are closely related, most bacteria that can produce
surfactants can also degrade crude oil (Table 3). These studies provide rich materials and
theories for the subsequent construction of microbial communities. Additionally, many
surfactant producers have been used to increase the degradation rate in a community.
The “Helper” could be single bacteria, such as Pseudomonas sp. XM-01 [135], Rhodococcus
erythropolis OSDS1 [124], B. subtilis SPB1 [136], Acinetobacter sp. Y2 [137], or Dietzia sp.
CN-3 [138], or a bacterial community, such as cultivable biosurfactant-producing single
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cultures composed of Pseudomonas sp. S2WE, Pseudomonas sp. S2WG, Pseudomonas sp.
S2MS, or Ochrobactrum sp. S1MM [139], or a bacterial community. After the “Helper” joins
the community, the alkane hydrocarbon degradation rate of all alkane degraders increases
significantly, and the highest improvement can reach about 55.4%.

Table 3. Surfactant-producing bacteria isolated and identified from the environment in recent years.

Name Culture
Conditions

Surfactant
Production

Capacity

Emulsifying
Ability Degradability Features References

P. aeruginosa sp.
PP4

37 ◦C, pH 7,
MSM broth,

150 rpm
ND ND

Biodegradation
efficiency of crude
oil reached 78% for

15 days

Acid
tolerant [140]

Pseudomonas sp.
strain W10

37 ◦C and
180 rpm

Produced
biosurfactant

BSW10 (2 g/L)

Reduced the
surface tension to

32 mN/m

Degradation of
phenanthrene
reached 80%

/ [141]

Rhodotorula sp.
CC01

30 ◦C, 180 rpm,
pH 6.5–7.0

fermentation
medium

Production rate:
163.33 mg/L for
one hour yield:
1360 mg/L at

50 h

Reduced the
surface tension of
water to 34.77 ±

0.63 mN/m

Olive oil was
determined as the
best sole carbon

source

Removes
NH4+–N [142]

Planococcus sp.
XW-1

pH 7.4, 2216E
liquid medium

Glycolipid-type
biosurfactant

Reduced the
surface tension of

water to 26.8
mN/m

After 21 days, 54%
of crude oil was

degraded

Cold
adapted [143]

Achromobacter
sp. A-8

30 ◦C, pH 7,
and 10 g/L

NaCl
ND

Decreased the
viscosity of

petroleum by about
45%

The biodegradation
of petroleum

reached
56.23–73.87% for

20 days

Salt tolerant [144]

Bacillus
licheniformis
strain DM-1

45 ◦C, LB liquid
medium Exopolysaccharide

Viscosity of the
crude oil was

reduced by 40%

The degradation of
n-octadecane was

81.33%

Tolerates
high tem-
perature

[145]

Geobacillus
stearother-
mophilus

DG1

45–75 ◦C,
fermentation

medium
Exopolysaccharide ND /

Tolerates
high tem-
perature

[146]

A. pittii strain
ABC

25 ± 2 ◦C,
darkness,
130 rpm

Produced
lipopeptide

biosurfactant
(0.57 g/L)

Emulsification
index (E24

65.26 ± 1.2%),

Degraded 88% and
99.8% of n-hexane

Tolerates
heavy metal

salts
[147]

Clostridium sp.
N-4

pH 7, 96 ◦C, 4%
salinity Glycoprotein

Reduced the
surface tension of
water to 32 ± 0.4

mN/m

ND
Tolerates
high tem-
perature

[148]

Bacillus
methylotrophicus

UCP1616

28 ◦C, pH 7,
solid

fermentation
medium

Concentration
of lipopeptide

(10.0 g/L)

Reduced the
surface tension of

water to 29 mN/m
ND / [149]

R. erythropolis
M-25 ND ND ND

70.7% of the crude
oil was degraded

after 30 days
/ [150]

Note: ND = not defined.
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5.2.2. Nitrogen Providers

The importance of nitrogen in the remediation of diesel-contaminated soil is well
known [151,152]. Research shows that proper nitrogen biostimulation has a positive effect
on the degradation of aromatic hydrocarbons, while excessive nitrogen stimulation has
a negative effect on the microbial degradation efficiency [153]. In a community, alkane
degraders and nitrogen-fixing bacteria synergistically contribute to each other by pro-
viding carbon to the nitrogen-fixing bacteria and nitrogen to the alkane degraders [154].
Researchers found that nitrogen starvation can significantly reduce the strength of cell
adhesion to the soil particles [155]. To supplement the nitrogen source required by the
alkane degrader, Koren et al. [156] used uric acid bound to crude oil and found that it
was available for bacterial growth and petroleum biodegradation. To further explore
the role of nitrogen in the alkane degradation, Gao et al. [157] identified the nitrogen
metabolic pathway in the bioremediation of diesel-contaminated soil by metagenomics
analysis. As a result, they found that, for the best performance of enhanced bioremediation
of diesel-contaminated soil, the organic ammonium form of nitrogen is preferred to other
form of nitrogen sources. This study will undoubtedly increase our understanding of the
mechanism by which nitrogen assists in the degradation of crude oil.

As the importance of nitrogen in alkane degradation is discovered, some strains
that can provide nitrogen were also isolated and identified. Recently, a nitrogen-fixing
bacterium from an oil production mixture of the Yumen Oilfield was isolated and identified.
It belongs to Azospirillum [158]. Even before this, scientists have found bacteria with similar
functions [159], which can be used to construct communities. Additionally, a genome for
novel nitrogen-fixing bacteria with capabilities for the utilization of aromatic hydrocarbons
was assembled [160]. This study will open the broad window of bioremediation strategies
under a nitrogen-stress environment. In recent years, nitrogen providers were used in
communities to increase the degradation rate. For example, one nitrogen-fixing microbe
Azotobacter vinelandii KCTC2426 helped two different oil-degrading microbes (Acinetobacter
sp. K-6 + Rhodococcus sp. Y2-2) to degrade the diesel from the soil and removed 83.1%
of it after 40 days of treatment [161]. In another study, nitrogen-fixing bacteria facilitated
the microbial degradation of poly (butylene succinate-co-adipate) by enhancing fungal
abundance, accelerating plastic-degrading enzyme activities, and shaping/interacting
with plastic-degrading fungal communities [162]. These research results provide great
inspiration for us to construct a microbial community with a higher degradation rate
in the future.

6. Conclusions

Microbial degradation of petroleum has always been a concern of the scientific com-
munity. However, the rapid advances of synthetic biology and metabolic engineering
strategies in recent years have opened new research avenues on this topic. It is expected
that precise and effective degradation of petroleum hydrocarbons can be achieved through
the design and construction of degrading strains and microbial communities. The stud-
ies on degradation pathway, related genes, enzymes, degrading strain chassis, and the
interaction of strains are the basis of realizing the controllable degradation of petroleum
hydrocarbon pollutants. The degradation pathways of various components in petroleum
hydrocarbons have been fully summarized. However, due to the complexity of microor-
ganisms and the difficulty of obtaining some extremophiles, researchers need to further
explore whether there are unknown degradation pathways. There are many studies on
genes for the degradation of petroleum hydrocarbons, and more attention should be paid
to other genes that impact degradation, which have been summarized in the present review.
In the engineered microbial chassis, S. cerevisiae, as a model organism of fungi, is also worth
considering because of its rich resource environment and advanced molecular manipula-
tion methods. Unfortunately, few studies on the use of this strain for the construction of
an alkane degrader were reported. Microbial communities can be used in many scenarios.
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In the future, the research work of constructing microbial communities to achieve the
degradation of petroleum pollution should be conducted more widely.
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