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Abstract: The efficiency of antimicrobial photodynamic therapy (PDT) might be improved by us-
ing multiple wavelengths. This study investigates the sensitivity of implant-adherent biofilms of
Staphylococcus aureus, Escherichia coli, and Candida albicans to indocyanine green (ICG)-808 nm diode
laser, toluidine blue O (TBO)-635 nm diode laser, and hydrogen peroxide (HP)-980 nm diode laser
and their combination when irradiated with dual-wavelength laser irradiation (simultaneously
980–635 nm or 980–808 nm). After an incubation period of 72 h, the infected implants were randomly
divided into seven different treatment modalities: Control, HP, HP-PDT, TBO-PDT, HP-TBO-PDT,
ICG-PDT, and HP-ICG-PDT. After the treatments, the colony-forming units (CFUs)/mL and reac-
tive oxygen species (ROS) generation were determined. All evaluated disinfection methods were
significantly effective against the three investigated bacteria compared to the control. The combined
treatment of HP-ICG-PDT or HP-TBO-PDT had the greatest antibacterial effect compared to each
treatment alone. There were statistical differences between HP-ICG-PDT and ICG-PDT or HP-TBO-
PDT and TBO-PDT for all three bacteria studied. PDT with simultaneous dual-wavelength laser
irradiation is an efficient strategy to improve the therapeutic effect of PDT.

Keywords: antimicrobial photodynamic therapy; dental implants; biofilms; hydrogen peroxide

1. Introduction

Replacing missing teeth with dental implants is a standard permanent treatment
today. Nevertheless, pathological conditions can develop in the peri-implant tissues, en-
dangering the implants and their reconstruction and possibly also affecting the health of
the patients [1]. Bacterial colonization and biofilm formation begin shortly after implant
placement, and growth and maturation continue on the implant and tooth surfaces. The
interaction of implant-associated biofilms with host cells can cause peri-implant mucositis,
a local inflammatory reaction of the oral mucosa. Although peri-implant mucositis is
reversible, it can progress to peri-implantitis, a more severe inflammatory disease charac-
terized by alveolar bone loss [2]. Peri-implantitis is one of the most common complications
in dental implantology, with a prevalence of 19.83% and affects both the surrounding soft
and hard tissues and can lead to implant loss [3].
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Some bacterial species, such as Aggregatibacter actinomycetemcomitans,
Porphyromonas gingivalis, Tannerella forsythia, and Prevotella spp., are commonly found in
peri-implant diseases [4]. Currently, some microorganisms, such as Staphylococcus aureus,
Staphylococcus epidermidis, Enterobacter aerogenes, Enterobacter cloacae, Escherichia coli,
Helicobacter pylori, Parvimonas micra, Pseudomonas spp., and Candida spp., have been identi-
fied around the implant that are not common in periodontitis patients [5]. S. aureus, E. coli,
and C. albicans are microorganisms that are frequently involved in peri-implantitis [5–8].
C. albicans may be involved in the initiation and development of peri-implantitis, as Candida
colonization and biofilm formation on other metal surfaces such as hip and knee prostheses
are relatively common [6].

Metal instruments and ultrasonic scalers with or without local antiseptic therapy
can increase the surface roughness of implants, and non-metallic curettes do not provide
effective removal of the microbial plaque. Chemical agents do not allow complete removal
of bacterial contamination and may contaminate the implant surface with different chemical
agents [9]. Diode lasers with different wavelengths have been effective in decontaminating
implants and inhibiting lipopolysaccharide (LPS)-induced macrophage activation and
consequent attenuation of the inflammatory response. They do not alter the physical
structure of the implant surface [10,11].

Antimicrobial photodynamic therapy (PDT) is a minimally invasive antimicrobial ap-
proach that has been proposed as a complementary treatment for peri-implantitis [12].
PDT consists of three main components: A light source with a specific wavelength,
a photosensitizer, and oxygen, which, by activating the photosensitizer in the presence of
oxygen, leads to the formation of reactive oxygen radicals that can cause cell death [13].
PDT is a successful method in the treatment of periodontal infections [14]. Light activation
enables better efficacy in topical form and reduces the side effects of PDT [15]. Although
the efficacy of the PDT method in reducing the microbial load and virulence of bacteria
has been demonstrated in laboratory and in vivo studies with minimal invasion and tissue
damage, there is still a need to improve the efficiency of this method. Since the type and
concentration of the photosensitizer and the light source have an impact on the efficiency
of this method to maximize the production of oxygen-free radicals, one can try to improve
the efficiency of this method by changing the types and also the formulation [16,17].

Local administration of antiseptics has been proposed as an effective method in
nonsurgical treatment for decontamination of the implant surface in the treatment of peri-
implantitis, but hydrogen peroxide (HP) has been shown to be toxic to cells when used in
high concentrations or with long-term exposure. Therefore, it is recommended to combine
the administration of antiseptics with other conservative treatments [18]. The strategy of
combining antimicrobial agents with PDT is now of interest as it often brings advantages
in biofilm eradication [19]. Deeper penetration into biofilms as well as low interference
from radiation are the advantages of HP [20]. The use of HP as a photosensitizer has been
investigated in several studies [21–23].

Although the concept of photosensitizer-based PDT is widely recognized, most pub-
lished work to date has focused on traditional PDT. Therefore, there is a research gap in the
development of innovative light sources and photosensitizers for improved PDT. This study
aims to employ HP and evaluate the antimicrobial effect of simultaneous dual-wavelength
laser irradiation together with ICG and TBO on implant-adherent biofilms of S. aureus,
E. coli, and C. albicans for improved PDT.

2. Materials and Methods
2.1. Photosensitizer and Light Source

SIOXYL Solution (3% HP in stabilized water solution glycerophosphate) [SIOXYL
Solution, Doctor Smile, Italy], TBO (Merck KGaA, Darmstadt, Germany) at a concentration
of 0.1 mg/mL, and ICG (green +I, Novateb Pars, Tehran, Iran) at a concentration of
1 mg/mL were used as photosensitizers in this study. A diode laser (Wiser 3, Doctor
Smile, Italy) with 3 wavelengths, including 635 nm, 808 nm, and 980 nm was used. A diode
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laser with 980 nm at a peak power of 2.5 W (average power of 800 mW) and T-ON 30 µs
and T-OFF 70 µs, with a frequency of 10 kHz and an average energy density of 96 J/cm2,
was used to activate HP alone. For TBO activation, a diode laser at a wavelength of 635 nm
with an output power of 200 mW and an energy density of 24 J/cm2 in continuous mode
was used, and for ICG, a diode laser at a wavelength of 808 nm with an output power of
200 mW and an energy density of 24 J/cm2 in continuous mode was used. For the mixed
groups, HP-TBO-PDT and HP-ICG-PDT, the parameters of 980–635 nm or 980–808 nm
were applied simultaneously with the same parameters as above. The irradiation distance
was set to 2 mm. The irradiation time was also adjusted to 60 s, and the tip area was
0.5 cm2 for all groups.

2.2. Biofilm Formation

The experiments were performed on a total of 105 titanium implants (Dentium, Seoul,
Republic of Korea), 10 mm in diameter and 4.1 mm thick. S. aureus (IBRC-M10917),
E. coli (IBRC-M10698), and C. albicans (ATCC 10231) were used for biofilm formation on
implant surfaces. The microorganisms were prepared in brain heart infusion (BHI) broth
(Merck, Darmstadt, Germany) at a concentration of 107 colony-forming units (CFUs)/mL.
C. albicans was cultured on Sabouraud dextrose (SD) broth (Ibresco, Tehran, Iran). Each
implant was then contaminated separately with 1 mL of each bacterial suspension in sterile
12-well microplates. This was followed by incubation for 72 h in a 5% CO2 atmosphere
at 37 ◦C.

2.3. Treatment Groups

At the end of the incubation period, the implants are gently washed with phosphate-
buffered saline (PBS) and then divided into three groups depending on the bacteria with
which they were contaminated: Group 1 (S. aureus), Group 2 (E. coli), and Group 3
(C. albicans). Finally, the 35 titanium implants in each group were randomly divided
into seven treatment subgroups (n = 5 per subgroup) as follows (Figure 1):
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Figure 1. A schematic drawing showing the methodological design of the study groups. ROS: reactive
oxygen species.

Treatment 1 (Control): The implants remained untreated.
Treatment 2 (HP): The implants were submerged in 1 mL of HP solution. This was left

in the dark for 2 min.
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Treatment 3 (HP-PDT): The implants were submerged in 1 mL of HP solution. This
was left in the dark for 2 min. Subsequently, the implants were irradiated with a diode laser
with a wavelength of 980 nm and an average power of 800 mW for 60 s.

Treatment 4 (TBO-PDT): The implants were submerged in 1 mL of TBO solution at
a concentration of 0.1 mg/mL. This was left in the dark for 5 min. Subsequently, the
implants were irradiated with a diode laser with a wavelength of 635 nm and an output
power of 200 mW for 60 s.

Treatment 5 (HP-TBO-PDT): The implants were submerged in 1 mL of HP solution.
This was left in the dark for 2 min. Next, the implants were placed in 1 mL of TBO solution
at a concentration of 0.1 mg/mL for 5 min. Subsequently, the implants were irradiated
simultaneously with a diode laser with a wavelength of 980 nm–635 nm for 60 s.

Treatment 6 (ICG-PDT): The implants were submerged in 1 mL of ICG solution at
a concentration of 1 mg/mL. This was left in the dark for 5 min. Subsequently, the implants
were irradiated with a diode laser with a wavelength of 808 nm and an output power of
200 mW for 60 s.

Treatment 7 (HP-ICG-PDT): The implants were submerged in 1 mL of HP solution.
This was left in the dark for 2 min. Next, the implants were placed in 1 mL of ICG solution
at a concentration of 1 mg/mL for 5 min. Subsequently, the implants were irradiated
simultaneously with a diode laser with a wavelength of 980 nm–808 nm for 60 s.

2.4. Plate Count Method

After treatment, each Eppendorf tube containing the implant was filled with 1 mL of
PBS, and biofilms were detached by vigorously vortexing for 60 s and then resuspended
by pipetting up and down. Serial 5-fold dilutions of each sample were made in PBS, and
10µL of each dilution was plated onto BHI agar (Ibresco, Tehran, Iran) to determine the
total cell number of each microorganism. For C. albicans, SD agar plates (Ibresco, Tehran,
Iran) were used.

2.5. Measuring Reactive Oxygen Species (ROS)

The generation of ROS by microorganisms involved in implant-adherent biofilms
after treatment with experimental groups was determined using 2′,7′-dichlorofluorescin
diacetate (DCFH-DA). The cell suspension was used for measuring ROS formation. To
evaluate ROS generation, 10 µL of DCFH-DA stock solution and 162 µL assay buffer were
added to 50 µL of samples of the microorganisms and incubated at 37 ◦C for 15 min. The
oxidation of DCFH-DA to DCF at 485 nm excitation and 528 nm emission was measured
by an ELISA fluorimeter (Bio Tek, synergyTM HT, Winooski, VT, USA) [24].

2.6. Statistical Analysis

Data were analyzed using the statistical software package IBM SPSS Statistics version
26.0 (IBM, Chicago, IL, USA). Mean l g CFU/mL ± standard deviation was demonstrated
for each condition. In general, five independent experiments were performed. One-way
analysis of variance (ANOVA) tests were applied to evaluate significant differences between
groups. A Tukey correction was applied to the p-value to account for multiple comparisons
of data. Differences were considered statistically significant for p-values < 0.05.

3. Results
3.1. Effects of Treatment Groups on the Cell Viability

For S. aureus, statistically significant differences were found between all treatment
groups and the control (p < 0.001, Figure 2a). The HP-TBO-PDT group showed significant
differences from TBO-PDT (p = 0.01) and significant differences compared with HP-PDT
(p = 0.037). This study showed that the HP-ICG-PDT group was significantly more effective
than the ICG-PDT (p = 0.006), but not compared to the HP-PDT (p = 0.915).
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Figure 2. Cell viability of Staphylococcus aureus (a), Escherichia coli (b), and Candida albicans (c) biofilms
in an experimental implant-related infection before and after treatment. Values are shown as mean lg
CFU/mL ± standard deviation. # = p < 0.05, * = p ≤ 0.001. HP: hydrogen peroxide; DL: diode laser;
TBO: toluidine blue O; ICG: indocyanine green.

For E. coli, significant differences were observed for all treatment groups with regard
to the control (p < 0.001, Figure 2b). The HP-TBO-PDT group showed significant differences
compared to TBO-PDT and HP-PDT (p < 0.001 and p = 0.006, respectively). Treatment with
HP-ICG-PDT showed more antibacterial effects than ICG-PDT (p < 0.001). There was no
significant difference in the bacterial count of E. coli between the HP-ICG-PDT group and
the HP-PDT group (p = 0.968).

In the case of C. albicans, the differences compared to the control were significant for
all treatment groups (p = 0.011 for ICG-PDT and p ≤ 0.001 for the others, Figure 2c). The
HP-TBO-PDT group showed significant differences compared to TBO-PDT and HP-PDT
(p = 0.008 and p = 0.047, respectively). The CFU/mL in the HP-ICG-PDT group was
significantly lower than in the ICG-PDT group but not in the HP-PDT group (p = 0.003 and
p = 0.401, respectively). The details of the analysis are shown in Table 1.

Table 1. Measures of central dispersion for the number of colonies of microorganisms in the study groups.

Staphylococcus aureus Mean (lg CFU/mL) Std. Deviation Sig. * Lower Bound Upper Bound

Treatments
Control 5.86 0.11
HP 5.23 0.03 <0.001 0.45 0.92
HP-PDT 4.46 0.13 <0.001 0.94 1.83
TBO-PDT 4.56 0.32 <0.001 0.84 1.73
HP-TBO-PDT 3.96 0.22 <0.001 1.41 2.37
ICG-PDT 4.97 0.21 <0.001 0.40 1.36
HP-ICG-PDT 4.33 0.11 <0.001 1.08 1.97
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Table 1. Cont.

Staphylococcus aureus Mean (lg CFU/mL) Std. Deviation Sig. * Lower Bound Upper Bound

Escherichia coli
Treatments
Control 6.65 0.05
HP 6.06 0.03 <0.001 0.38 0.86
HP-PDT 5.26 0.10 <0.001 1.18 1.60
TBO-PDT 5.55 0.05 <0.001 0.89 1.29
HP-TBO-PDT 4.98 0.08 <0.001 1.45 1.90
ICG-PDT 5.67 0.06 <0.001 0.41 0.87
HP-ICG-PDT 5.21 0.12 <0.001 1.23 1.65
Candida albicans
Treatments
Control 6.40 0.46
HP 6.01 0.13 0.019 0.07 0.70
HP-PDT 4.55 0.21 <0.001 1.53 2.39
TBO-PDT 5.04 0.12 0.001 0.59 2.12
HP-TBO-PDT 3.95 0.22 <0.001 1.69 3.22
ICG-PDT 5.50 0.26 0.011 0.19 1.61
HP-ICG-PDT 4.34 0.31 <0.001 1.29 2.83

HP: hydrogen peroxide; PDT: antimicrobial photodynamic therapy; TBO: toluidine blue O; ICG: indocyanine
green; *: significant difference compared with control group.

3.2. Intracellular ROS Generation

All treatment groups except HP alone led to an increase in ROS levels compared
to the control (Figure 3a–c). Maximum ROS formation was found in the HP-TBO-PDT
group, resulting in 1.93-, 1.31-, and 2.47-fold higher ROS generation in S. aureus, E. coli, and
C. albicans, respectively, compared to the control cells (p < 0.001).
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4. Discussion

Although the therapeutic potential of light-based treatments continues to increase,
the lack of efficient dosimetry and appropriate illumination devices, together with in-
adequately defined treatment parameters, has also diminished the success of PDT [25].
Furthermore, each photosensitizer has its own advantages and disadvantages [26]. ICG
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and TBO as photosensitizers, along with exciting light, have been used against periodon-
tal biofilms[27–29], . ICG has been approved by the US Food and Drug Administration
as a fluorescent agent [30]. ICG acts relatively poorly as a singlet oxygen supplier but
has a temperature-raising property and antibacterial ability within biofilm and deep peri-
odontal pockets [31]. In addition, it has also shown low stability in aqueous solutions and
its negative charge can lead to a weak interaction with the surface of bacterial cells [32,33].
TBO is an FDA-approved cationic photosensitizer with low excitation energy and high cell
membrane permeability [34]. However, the clinical application of TBO is limited, mainly
due to the aggregation-induced quenching problem [35]. Alternatively, the fluidic nature
of photosensitizers makes retention periods a challenge, which may affect the desired ther-
apeutic outcome [36]. Likewise, the concentration of photosensitizer used to destroy the
complex structures of biofilms and yeasts should be higher due to the large size of the cell
and the more complex cell structure [37]. On the other hand, the effectiveness of PDT is also
influenced by the infection site. Due to the hypo-oxygenic nature of the subgingival milieu,
sufficient molecular oxygen is not provided for the production of singlet oxygen [38]. More-
over, the infection-associated biofilms become less oxygenated during their maturation
due to oxygen consumption by facultative anaerobes, concentration gradients within the
biofilms, and the presence of an extracellular polymeric substance (EPS) [39]. Hence, the
reinforced PDT can be considered [36].

In the current study, a reduction of bacteria was observed with all decontamination
regimens. The simultaneous administration of photosensitizer with HP followed by dual-
wavelength laser irradiation was the most effective protocol, reducing the number of
adherent bacteria by approximately 2–3 lg compared to either treatment group alone. The
application of PDT to microorganisms alone may cause minor disruption of the membrane.
This could increase the exposure of the internal components of the bacteria to HP, which
should increase bacterial killing by facilitating access to the interior of the bacteria [40]. HP-
based disinfectants have a high affinity for bacteria and their EPS. In addition, they ensure
the formation of active oxygen foam, which also has mechanical cleaning properties, and
allow deeper penetration of the photosensitizer by reducing the depth of the biofilm [41,42].
The effect of HP on the biofilm mass on the implant surface has been demonstrated [43]. It
may be concluded that the exposure of microorganisms to HP leads to an increased uptake
of the photosensitizer within the cells, resulting in an increased production of ROS and
consequently higher microbial death [40]. Furthermore, photochemical enhancement of
the dye occurs through a chemical reaction between HP and ROS produced during PDT,
damaging the microbial cell and allowing better penetration of other treatments [40].

With regard to S. aureus, Cai et al. investigated the efficacy of combined HP and PDT
treatment on the biofilm formed on titanium discs. They concluded that the combined
use of antiseptics with TBO-PDT may be a more efficient method for bacterial disinfection
of titanium discs compared to treatment alone [42]. HP has previously been shown to be
effective against C. albicans [44]. This study confirmed previous results showing that the
anti-biofilm ratio of HP could be further improved by using a 980 nm diode laser, resulting
in 2.5 times more destruction of Enterococcus faecalis biofilm [21].

The use of dual-wavelength provides additional benefits in PDT. Nikinmaa et al.
investigated Streptococcus mutans biofilm susceptibility to irradiation with 810 nm, 405 nm
blue light, or dual-wavelength LED light (simultaneously 405 and 810 nm) plus ICG and
found a significant difference between dual-wavelength PDT with blue light (405 nm)
or 810 nm light alone [32]. De Angelis et al. found that 635 nm diode lasers improved
clinical periodontal outcomes when combined with 980 nm diode laser therapy as a dual-
wavelength approach [45]. The study by Zhang et al. showed that the silica-coated gold
nanorods@curcumin group was irradiated under 405 and 808 nm dual lasers and had
a higher antibacterial effect against both S. aureus and E. coli than that of curcumin or
PDT alone [46]. Similarly, Wen et al. developed a nitrogen-doped carbon dots/curcumin
nanocomposite and showed good antibacterial properties against S. aureus and E. coli under
dual light source (405 + 808 nm) irradiation [47]. Leanse et al. found that irradiation at the
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two wavelengths significantly enhanced antimicrobial activity against methicillin-resistant
S. aureus. A possible explanation for this could be the presence of the EPS produced
during biofilm formation, which may have reduced light emission and led to higher
radiation exposure to induce antimicrobial effects. Alternatively, the cells within the EPS
are metabolically less active, which would explain the higher light dose needed to elicit
infinite microbial inhibition [48].

In a variety of stressors, the lethal effect is partly due to the stimulation of ROS
accumulation [49]. Following light irradiation, ROS generated by a type I photochemi-
cal mechanism lead to membrane degradation, metabolic hydroxylation, and oxidative
DNA damage, killing the target cells [50]. Atsumi et al. reported that the production
of ROS is both dose and time dependent [51]. In this study, the results show that the
combination of HP with photosensitizers can increase ROS production up to 2.5 times
after dual-wavelength laser irradiation. However, E. coli was less affected compared to
other microorganisms, which can be explained by the fact that Gram-negative bacteria are
generally resistant to the photosensitization process [52,53]. The transport of molecules
through the cell wall of Gram-negative bacteria is regulated in the outer membrane, which
is rich in LPS molecules [53].

Also, the results of this study show that TBO-PDT alone or in combination with HP
has a better antimicrobial effect than ICG. This could be due to the fact that TBO has a high
solubility in the membrane and can therefore easily interact with the bacterial membrane.
In addition, cationic dyes can interact better with LPS in Gram-negative bacteria [54].

This study had several limitations. In particular, the results of co-irradiation cannot
be compared with previous studies, as this is the first study to demonstrate a possible
synergistic antimicrobial effect of two wavelengths and HP on titanium-adherent biofilms
of S. aureus, E. coli, and C. albicans. This study has further limitations: Only three bacteria
were examined. Furthermore, this study provides data based on a laboratory setting and
may not be extrapolated to a real clinical situation. Finally, no comparison was made with
other treatment options. Further studies on the other bacterial species, microscopic images,
and gene expression systems are required to obtain a clear concept of the mechanisms
involved. In addition, cytotoxicity experiments on mammalian cells should be performed.

5. Conclusions

The ability of S. aureus, E. coli, and C. albicans to cope with ICG- or TBO-PDT was
effectively reduced by the simultaneous irradiation of a 980 nm diode laser and a 635 or
808 nm diode laser. The antibacterial effect of ICG- or TBO-PDT was significantly lower than
that of HP-ICG-PDT or HP-TBO-PDT when similar light doses were compared, but the HP-
980 nm diode laser improved the antibacterial effect of PDT. This work demonstrates that
improving the PDT mechanism by increasing ROS production can enhance photokilling.
Optimizing PDT can increase its efficacy and create a new trend for combination therapies
against microorganisms. For photosensitizers with lower antimicrobial activity, the protocol
can be used to effectively inactivate bacteria.
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