
Citation: Kang, M.; Shin, Y.; Kim, Y.;

Ha, S.; Sung, W. Modeling the

Synergistic Impact of Yttrium 90

Radioembolization and Immune

Checkpoint Inhibitors on

Hepatocellular Carcinoma.

Bioengineering 2024, 11, 106.

https://doi.org/10.3390/

bioengineering11020106

Academic Editor: Leili Shahriyari

Received: 22 December 2023

Revised: 15 January 2024

Accepted: 16 January 2024

Published: 23 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Modeling the Synergistic Impact of Yttrium 90 Radioembolization
and Immune Checkpoint Inhibitors on Hepatocellular Carcinoma
Minah Kang 1,2 , Yerim Shin 1,2 , Yeseul Kim 1,2, Sangseok Ha 1,2 and Wonmo Sung 1,2,*

1 Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea,
Seoul 06591, Republic of Korea; minah.kang@catholic.ac.kr (M.K.); angela3shin@catholic.ac.kr (Y.S.);
yeseulkim@catholic.ac.kr (Y.K.); sangseok@catholic.ac.kr (S.H.)

2 Department of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul 06591,
Republic of Korea

* Correspondence: wsung@catholic.ac.kr; Tel.: +82-2-3147-8395

Abstract: The impact of yttrium 90 radioembolization (Y90-RE) in combination with immune check-
point inhibitors (ICIs) has recently gained attention. However, it is unclear how sequencing and
dosage affect therapeutic efficacy. The purpose of this study was to develop a mathematical model to
simulate the synergistic effects of Y90-RE and ICI combination therapy and find the optimal treatment
sequences and dosages. We generated a hypothetical patient cohort and conducted simulations
to apply different treatments to the same patient. The compartment of models is described with
ordinary differential equations (ODEs), which represent targeted tumors, non-targeted tumors, and
lymphocytes. We considered Y90-RE as a local treatment and ICIs as a systemic treatment. The
model simulations show that Y90-RE and ICIs administered simultaneously yield greater benefits
than subsequent sequential therapy. In addition, applying Y90-RE before ICIs has more benefits
than applying ICIs before Y90-RE. Moreover, we also observed that the median PFS increased up
to 31~36 months, and the DM rates at 3 years decreased up to 36~48% as the dosage of the two
drugs increased (p < 0.05). The proposed model predicts a significant benefit of Y90-RE with ICIs
from the results of the reduced irradiated tumor burden and the associated immune activation and
suppression. Our model is expected to help optimize complex strategies and predict the efficacy of
clinical trials for HCC patients.

Keywords: immune checkpoint inhibitor; radioembolization; mathematical modeling

1. Introduction

Hepatocellular carcinoma (HCC), which is the most common primary liver cancer, is a
leading cause of cancer-associated death worldwide [1,2]. The traditional treatments for
early-stage tumors consist of surgical resection, liver transplantation, and locoregional treat-
ments, and intermediate-stage tumors are treated with transarterial chemoembolization
(TACE) and tyrosine kinase inhibitors (TKIs) such as sorafenib and lenvatinib [3–5]. Despite
continuous advancements in treatment modalities and research, the median overall survival
(OS) for the intermediate stage of HCC is only 20~30 months, and that for advanced-stage
HCC is 10~19 months [6,7]. The majority of patients with HCC have unresectable disease
at early diagnosis and lose the opportunity for curative treatment [8,9]. Thus, a novel
approach to the treatment of HCC is needed to improve clinical outcomes.

Cancer immunotherapy has emerged as a promising treatment for cancer [10]. Tu-
mors evade the immunological surveillance system in many ways and proliferate in the
tumor microenvironment while inhibiting the activation of immune suppression [11]. The
identification of the immune checkpoint mechanism has played a significant role in the
development of immune checkpoint inhibitors (ICIs), including cytotoxic T lymphocyte-
associated antigen 4 (CTL-4), programmed cell death 1 (PD-1), and programmed cell
death ligand 1 (PD-L1) inhibitors, which provide new opportunities to treat advanced
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HCC [12–16]. Atezolizumab (anti-PD-L1) and Bevacizumab (anti-vascular endothelial
growth factor) significantly improved progression-free survival (PFS) outcomes (6.8 vs.
4.3 months) and OS (19.2 vs. 13.4 months) against sorafenib [12,13]. The phase III HI-
MALAYA trial demonstrated that a combination of tremelimumab (anti-CTLA-4) and
durvalumab (anti-PD-L1) showed better OS (16.42 vs. 13.77 months) versus sorafenib.
Additionally, durvalumab monotherapy was not inferior to sorafenib for OS [14].

The yttrium 90-radioembolization (Y90-RE) can stimulate the release of tumor antigens,
which can activate T cells and enhance anti-tumor immunity [17], induce immunogenic cell
death resulting in tumor regression in distant non-irradiated areas [18,19], and change the
tumor microenvironment [20]. As Y90-RE has been shown to activate the immune system,
further investigations are needed to evaluate the effectiveness and safety of Y90-RE and ICI
combination treatment for HCC patients [21–28].

Despite the increasing number of clinical trials [21–28], there remains an unresolved
concern with the combination of Y90-RE and ICIs regimens, as preclinical data suggests that
strategic clinical studies on the type of agents, dosage, and sequence are required [29,30].
Mathematical modeling can be used in in silico virtual clinical trials to assist in the design
of actual treatment because combining multiple modalities in clinical trials is a costly, time-
consuming, and labor-intensive form of research procedure. To our knowledge, there is no
mathematical model that can simulate the therapeutic effects of different sequences and
dosages of Y90-RE and ICIs on the tumor-immune systems. In this study, we developed
a mathematical model to quantify and predict the synergistic effects of Y90-RE and ICI
combination therapy and investigated their efficacy to find optimal treatment sequences
and dosages.

2. Materials and Methods
2.1. Mathematical Model Overview

We used a model taken from a previous study that combines ICI treatment with
external radiation therapy [31] to simulate the ICI and Y90 RE combination therapy. The
model is made up of four compartments: (1) targeted tumor cells TI , (2) non-targeted
tumor cells TNI , (3) inactivated tumor cells that release antigens I, and (4) circulating
lymphocytes, L, which are described with ordinary differential equations (ODEs) that
were modified from the predator–prey model [32–34]. In this study, the impacts of tumor
cell death resulting from the immune system, tumor cell growth exponential, tumor cells
killed by linear–quadratic radiation, and circulating immune cells are taken into account.
While immune-induced cell death affects both tumor compartments, radiation-induced
cell death impacts only the targeted one, resulting in inactivated tumor cells (I). In this
model, Y90-RE inactivates cells proportionally, and the number of tumor-directed effector
lymphocytes (L) grows with tumor antigen presentation; otherwise, the number of these
cells decays steadily. Figure 1 shows a summary of the biological assumptions and a
schematic overview of the model. The complete set of model equations is provided in
(1)–(5) (detailed in Supplementary Section S1). Our model separates the targeted and non-
targeted tumor compartments. Both local and systemic treatments can affect the number of
targeted tumor cells, but only systemic treatments can affect the number of non-targeted
tumor cells. In this study, we assumed that Y90-RE was treated as a local treatment and
ICIs as a systemic treatment. Therefore, the non-targeted tumor is usually metastasized
and outside the Y90-RE area. The compartments are separated to simulate their differential
dynamics resulting from the several therapies impacting them, as well as because their
sizes can be measured and approximated for individual patients.

dTI
dt

=

Tumor growth︷︸︸︷
aTI

immune−induced death︷ ︸︸ ︷
−ω′

1
TI

g + TI + M
L

radiation kill f rom Yttrium−90︷ ︸︸ ︷
−δ∗(tR)

(
1 − e−αT DT−βT D2

T
)

TI (1)
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dTNI
dt

=

Tumor growth︷︸︸︷
aTNI

immune−induced death︷ ︸︸ ︷
−ω′

1
TNI

g + TI + TNI
L (2)

dI
dt

=

radiation kill f rom Yttrium−90︷ ︸︸ ︷
−δ∗(tR)

(
1 − e−αT DT−βT D2

T
)

TI

decay︷︸︸︷
−rI (3)

dL
dt

=

recruitment︷ ︸︸ ︷
ω2

TI + TNI
g + TI + TNI

L + ω3
I

g + I
L

supply︷︸︸︷
+s

decay︷︸︸︷
− f L

radiation kill f rom Yttrium−90︷ ︸︸ ︷
−∑

i
δ∗(tR)

(
1 − e−αLDLi

)
Li (4)

ω′
1(t) =

immune checkpoint inhibitors−induced death︷ ︸︸ ︷
ω1(1 + δdurva·Cmaxe

−ln (2)t
t(ω)1/2 ) (5)

Radiation cell death is represented discretely by instantaneous change at distinct
timepoints with the Dirac delta function δ∗( TR), instead of solving ordinary differential
Equations (1)–(5). A linear quadratic (LQ) model is utilized to explain cell survival for the
tumor cells (6) and (7), and a linear survival model is employed to describe the killing of
immune cells (8).
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Figure 1. A schematic representation of the model. The model has four compartments: targeted tu-
mor cells (𝑇𝐼), inactivated tumor cells (I), non-targeted tumor cells (𝑇𝑁𝐼), and circulating lympho-
cytes (L). The targeted tumor cell and circulating lymphocytes are exposed to radiation emiĴed from 
the decay of yĴrium 90, but not non-targeted tumor cells. Both targeted and non-targeted tumor 
cells are cytotoxic according to immune response. The immune response can be upregulated by the 
administration of Programmed Death-Ligand 1 (PD-L1) immune checkpoint inhibitors (durval-
umab). 

We add a new formalism (9) shown in red to describe the exponential radioactive 
decay of Y90-RE while the radiation is delivered to the targeted tumor cells [35,36] by 
extending the previously developed ICIs-RT model [31]. <E> is the average energy emiĴed 
per nuclear transition, m is the mass of tissue that absorbs the radiation, and k is a constant 

Figure 1. A schematic representation of the model. The model has four compartments: targeted tumor
cells (TI), inactivated tumor cells (I), non-targeted tumor cells (TNI), and circulating lymphocytes
(L). The targeted tumor cell and circulating lymphocytes are exposed to radiation emitted from
the decay of yttrium 90, but not non-targeted tumor cells. Both targeted and non-targeted tumor
cells are cytotoxic according to immune response. The immune response can be upregulated by the
administration of Programmed Death-Ligand 1 (PD-L1) immune checkpoint inhibitors (durvalumab).

We add a new formalism (9) shown in red to describe the exponential radioactive
decay of Y90-RE while the radiation is delivered to the targeted tumor cells [35,36] by
extending the previously developed ICIs-RT model [31]. <E> is the average energy emitted
per nuclear transition, m is the mass of tissue that absorbs the radiation, and k is a constant
that produces the dose rate in the desired units. A0 is the activity in the target mass of
interest and T(Y90 − RE)1/2 is the half-life of the radioactive source. The total number of
disintegrations, commonly known as cumulated activity, is equal to A0 × T1/2/ln (2).
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In all areas of interest, activity is considered to be distributed equally. It is also assumed
that there is no bremsstrahlung creation in beta particle decay and that the entire amount of
decay energy is absorbed by the mass. The effective half-life is the same as the radioactive
half-life, as there is no need to remove the radioactive source from the patient.

Tn+1 = Tn·e−αT DT−βT DT
2

(6)

In+1 = In + Tn·(1 − e−αT DT−βT DT
2
) (7)

Ln+1 = ∑i Lni·e−αLDLi (8)

DT = q· k · < E > ·A0

m

∫ ∞

0
e−

ln2
T(Y90)1/2 (9)

All parameters taken from the previously developed ICIs-RT model [31] and the newly
developed term (DT) in this study are listed in Table 1, and the newly added parameters
are highlighted in gray shading.

Table 1. Summary of the model parameters.

Parameter Function Value Ref.
a Tumor growth 0.01 d−1 [37]
f Lymphocyte decay rate 0.033 d−1 [38]
αT/βT Tumor—LQ cell death 10 Gy [39]
r Inactivated tumor cell decay rate 0.14 d−1 [40]
ω1 Tumor-directed lymphocyte efficiency 0.119 d−1 [33,34]
ω2 Tumor/inactivated tumor 0.003 d−1

ω3 Tumor–lymphocyte recruitment constant 0.009 d−1 [33,34]
g Geometric saturation constant 7.330 × 1010 [33,34]
s Lymphocyte regeneration 1.470 × 108 d−1 [41]

αT Tumor—LQ cell death Normally distributed
(µ = 0.148 σ = 0.024)

[39]

αL Lymphocytes—LQ cell death 0.737 Gy−1 [42,43]
Cmax Maximum concentration 10 mg/kg [44]

T(ω)1/2

Half-life of immune checkpoint inhibitor
(durvalumab) in the body 21 days [44]

δdurva
Effectiveness of immune checkpoint
Inhibitor (durvalumab)

Normally distributed
(µ = 0.12 σ = 0.04) [45]

T(Y90RE)1/2 Half-life of yttrium 90 in the body 2.6 days [36], added in
this study

q Effectiveness of yttrium 90 Normally distributed
(µ = 0.12 σ = 0.04)

This study,
added in this

study

k Constant to produce the dose rate in desired units (0.9267 Mev/dis)·(1.6022 × 10−13J/Mev) [36], added in
this study

<E> Average energy emitted per nuclear transition (Gykg/J)·(109dis/sGBq)·(86400s/day)
[36], added in

this study

2.2. Virtual Patient Cohort

The same cohort of virtual population from the previous study [46] was implemented
in this study to simulate the combination therapy of Y90-RE and ICIs. All of the patient pop-
ulations have an inherent set of distributions for tumor volume, circulating lymphocytes,
and radiosensitivity representing HCC patients, which reflect interindividual variation and
heterogeneity in treatment outcome. The Python programming language (Python Software
Foundation, Version 3.9, Wilmington, DE, USA) was used to implement random sampling
generation from the normal distribution and to simulate a mathematical model with the
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virtual patients. Targeted tumor density was assumed to be 109 times the number of tumor
cells per cubic cm. The number of non-targeted tumor cells was estimated to be 0.1%
(1.07 × 108) of the targeted tumor volume. We calculated the average baseline number
of circulating lymphocytes (5.61 × 109) by multiplying the average lymphocyte counts
(1122 ± 469 per mm3) with the total body volume (5 L). The distributions of initial tumor
size (T0), circulating lymphocytes (L0), and tumor radiation sensitivity (αT) are illustrated
in Supplementary Figure S1.

2.3. Model Fitting to Yttrium 90 Radioembolization Therapy Response Data

We validated that the new Y90-RE single model works correctly. The Y90-RE param-
eters were fitted independently for clinical trial data in HCC patients receiving Y90-RE
treatment [47,48].

Based on the Response Evaluation Criteria in Solid Tumors (RECIST), patient response
to treatments can be defined into four categories: complete response (CR, removal of all
target lesions), partial response (PR, at least 30% decrease in the sum of longest diameters
of target lesions in comparison to the baseline value), progressive disease (PD, at least 20%
rise in the sum of longest diameters of target lesions in comparison to the baseline value),
and stable disease (SD, when none of the above criteria fits the tumor response), as in two
clinical trials [47,48]. To determine the probability distributions of q, which represents
the constant treatment effectiveness of Y90-RE, we generated a cohort of 10,000 patients
with a fixed range of q between 0 and 1. Then, we assessed the RECIST 1.1 responses by
measuring the size of the tumor at 6 months after the first Y90-RE treatments. We found
the distinct q distribution that corresponds to the clinical response observed in the Y90-RE
trials [47,48], as determined by the estimated RECIST 1.1 responses: CR: 79%, PR: 20%, SD:
0%, and PD: 0% (Supplementary Figure S2). The estimated mean and standard deviation
of the q distribution are 0.12 and 0.04 (Supplementary Figure S3), which are for all Y90-RE
and ICI combination simulations.

2.4. Virtual Clinical Trial and Outcome

The virtual clinical trials consisted of five treatment groups: Y90-RE monotherapy, ICI
monotherapy, and three groups for the combination regimens of Y90-RE and ICIs corre-
sponding to the three arms (A, B, and C). Arm A involved the simultaneous administration
of Y90-RE and ICIs. In arm B, before the administration of ICIs, Y90-RE was given. In
arm C, before the administration of Y90-RE, ICIs were given. For Y90-RE, the fixed total
radiation absorbed dose to the target volume at 300 Gy to 500 Gy was given. For ICIs, 0.08
to 0.16 of durvalumab (δdurva) was given every 2 weeks for 2 years. We investigated the
effect on treatment outcome according to the timing of the Y90-RE and ICI administration
interval days. The administration interval days between Y90-RE and ICIs were evaluated
from 30 days to 300 days. All five treatments are depicted schematically in Figure 2.

The primary endpoints were progression-free survival (PFS) for targeted tumors and
the cumulative distant metastasis (DM) rate for non-targeted tumors. PFS and DM rates
were estimated using the Kaplan–Meier method. PFS was measured from the date of
targeted tumor volume to progression or death, and DM rates were measured when the
non-targeted tumor volume was greater than 0.1 cc, which can be observed with current
diagnostic technology. A total of 4064 patients (40%) with the non-targeted tumor had
over 0.1 cc. Both endpoints were evaluated using log-rank analysis for comparison, with a
p value < 0.05 considered statistically significant.
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Figure 2. A schematic virtual trial schedule of the model with five different treatment groups.
The blue arrows indicate the administrating timing of Y90-RE, and the yellow arrows indicate the
administrating period of ICIs. Arms A, B, and C are shown according to the order in which Y90-RE
and ICIs were administered, respectively. The administration interval days between the two drugs
were investigated from 30 days to 300 days.

3. Results

We conducted computer simulations on virtual patients with five different treatment
regimens to predict the efficacy of the therapy modality. The virtual patients were simulated
using each treatment protocol outlined in the material and method. All simulations were
performed with Python version 3.9.

The combined regimens of arm A had longer PFS (p < 0.05) than those groups of
Y90-RE monotherapy and ICI monotherapy for the targeted tumors. The median PFS from
arm A was 39.3 months (95% CI, 37.2–39.2 mo), with Y90-RE monotherapy having a median
of 16.2 months (95% CI, 16.3–17 mo) and ICI monotherapy having a median of 6.2 months
(95% CI, 5.8–6.6 mo). Likewise, arm A had significantly lower cumulative DM rates at 3
years (p < 0.05) than those groups of Y90-RE monotherapy and ICI monotherapy for the
non-targeted tumors. The DM rates at 3 years from arm A were 79.7% (95% CI, 77.2–82.2%),
and the DM rates at 3 years from Y90-RE monotherapy and ICI monotherapy were not
available (NA) and 99.9% (95% CI, 98.7%–NA), respectively (Supplementary Figure S4).

The present study reveals a robust correlation between dosage for targeted and non-
targeted tumors. Figures 3A and 4A show the efficacy heatmaps for the three arms (A, B,
and C): the radiation intensity varies in the range of 300–500 Gy, and the PD-L1 (δdurva)
varies in the range of 0.08–0.16. The color column in Figure 3A represents the median PFS,
and the color column in Figure 4A shows the 3-year DM rates. According to the treatment
schedules for arm B and arm C, the administration of Y90-RE and ICIs was carried out with
60 interval days for each.

For the patients who have targeted tumors, the simulation results showed that arm A
yields the best efficacy (p < 0.05). Specifically, as PD-L1 or the dosage of Y90-RE increases,
the median PFS increases up to 31~36 months. Arms A, B, and C demonstrated promising
efficacy in that order. The efficacy maps for arm A, arm B, and arm C in Figure 3A show
that the order in which these two treatments are given does make a significant difference to
the outcome.
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For 0.08 of δdurva and 300 Gy of Y90-RE, the median PFS from arms A, B, and
C were 21.6 months (95% CI, 20.8–22.6 mo), 19.8 months (95% CI, 18.8–20.6 mo), and
18.4 months (95% CI, 17.6–19.2 mo), respectively. For 0.12 of δdurva and 400 Gy of Y90-
RE, the median PFS from arms A, B, and C were 38.4 months (95% CI, 37.2–39.2 mo),
36.5 months (95% CI, 35.3–37.5 mo), and 32.6 months (95% CI, 31.4–33.8 mo), respectively.
For 0.16 of δdurva and 500 Gy of Y90-RE, the median PFS from arms A, B, and C were
56.7 months (95% CI, 55–57.7 mo), 55.9 months (95% CI, 54.2–57.1 mo), and 46.5 months
(95% CI, 48.2–51.1 mo), respectively.

In arm A, the 1-, 3-, and 5-year PFS rates from 0.08 of δdurva and 300 Gy of Y90-RE
were 83.2% (95% CI, 80.7–85.3%), 3.2% (95% CI, 2.2–4.4%), and NA. The 1-, 3-, and 5-year
PFS rates from 0.12 of δdurva and 400 Gy of Y90-RE were 96.4% (95% CI, 95–97.3%), 54.9%
(95% CI, 51.8–58%), and NA. The 1-, 3-, and 5-year PFS rates from 0.16 of δdurva and 500 Gy
of Y90-RE were 99.9% (95% CI, 99.2–99.8%), 88.5% (95% CI, 86.2–90.2%), and 33.8% (95% CI,
30.9–36.8%).

In arm B, the 1-, 3-, and 5-year PFS rates from 0.08 of δdurva and 300 Gy of Y90-RE
were 78.2% (95% CI, 75.6–80.7%), 2.2% (95% CI, 1.4–3.2%), and NA. The 1-, 3-, and 5-year
PFS rates from 0.12 of δdurva and 400 Gy of Y90-RE were 94.7% (95% CI, 93.2–96%), 49.9%
(95% CI, 46.9–53.1%), and NA. The 1-, 3-, and 5-year PFS rates from 0.16 of δdurva and
500 Gy of Y90-RE were 99.8% (95% CI, 99.2–99.8%), 85.8% (95% CI, 83.4–87.8%), and 34.1%
(95% CI, 31.1–37.0%).

In arm C, the 1-, 3-, and 5-year PFS rates from 0.08 of δdurva and 300 Gy of Y90-RE
were 74.8% (95% CI, 71.9–77.3%), 1.6% (95% CI, 0.9–2.5%), and NA. The 1-, 3-, and 5-year
PFS rates from 0.12 of δdurva and 400 Gy of Y90-RE were 92.6% (95% CI, 90.7–94%), 41.2%
(95% CI, 38.1–44.1%), and NA. The 1-, 3-, and 5-year PFS rates from 0.16 of δdurva and
500 Gy of Y90-RE were 99.7% (95% CI, 99.2–99.9%), 76.9% (95% CI, 74.1–79.3%), and 21.1%
(95% CI, 18.6–23.6%).

Likewise, for the patients who have non-targeted tumors, arm A had lower 3-year DM
rates than arms B and C (p < 0.05). In the sequential treatment, arm B had lower 3-year
DM rates than arm C (Figure 4A). With an increase in PD-L1 or dosage of Y90-RE, the
cumulative DM rates at 3 years decreased by 36.4 to 48.8%.

In arm A, the 1-, 3-, and 5-year DM rates from 0.08 of δdurva and 300 Gy of Y90-RE
were 53% (95% CI, 50–56.2%), 98.9% (95% CI, 98.1–99.95%), and NA. The 1-, 3-, and 5-year
DM rates from 0.12 of δdurva and 400 Gy of Y90-RE were 42.3% (95% CI, 39.4–45.5%), 79.8%
(95% CI, 77.3–82.3%), and NA. The 1-, 3-, and 5-year DM rates from 0.16 of δdurva and
500 Gy of Y90-RE were 41.7% (95% CI, 38.8–44.9%), 50.2% (95% CI, 47.2–53.4%), and NA.



Bioengineering 2024, 11, 106 9 of 14

In arm B, the 1-, 3-, and 5-year DM rates from 0.08 of δdurva and 300 Gy of Y90-RE were
59.0% (95% CI, 55.9–62.0%), 99.3% (95% CI, 98.7–99.7%), and NA. The 1-, 3-, and 5-year
DM rates from 0.12 of δdurva and 400 Gy of Y90-RE were 50.4% (95% CI, 47.4–53.6%), 80.9%
(95% CI, 78.6–83.4%), and NA. The 1-, 3-, and 5-year DM rates from 0.16 of δdurva and
500 Gy of Y90-RE were 49.8% (95% CI, 46.8–53.0%), 51.4% (95% CI, 48.4–54.6%), and NA.

In arm C, the 1-, 3-, and 5-year DM rates from 0.08 of δdurva and 300 Gy of Y90-RE were
59.4% (95% CI, 56.3–62.4%), 99.4% (95% CI, 98.7–99.7%), and NA. The 1-, 3-, and 5-year
DM rates from 0.12 of δdurva and 400 Gy of Y90-RE were 49.1% (95% CI, 46.1–52.3%), 85.2%
(95% CI, 83.0–87.4%), and NA. The 1-, 3-, and 5-year DM rates from 0.16 of δdurva and
500 Gy of Y90-RE were 46.2% (95% CI, 43.2–49.4%), 62.9% (95% CI, 60.0–65.9%), and NA.

We subsequently applied the model to investigate the effect of varying intervals of
days between the administration of two drugs on treatment outcomes. The difference
in administration interval days from 30 to 300 days was evaluated. Additionally, the
intensity of the drugs was assessed by dividing them into three categories: minimum
(0.08 of δdurva and 300 Gy of Y90-RE), intermediate (0.12 of δdurva and 400 Gy of Y90-
RE), and maximum (0.16 of δdurva and 500 Gy of Y90-RE). The model predicts substantial
changes in endpoint time with different interval days. Longer interval days negatively
affect the efficacy of both targeted and non-targeted tumors. For the targeted tumor, the
median PFS from the intensity of minimum, intermediate, and maximum decreases up to
7.4~15.2 months, 13.6~29 months, and 8.24~45 months, respectively. For the non-targeted
tumor, the cumulative DM rates at 3 years from the intensity of minimum, intermediate,
and maximum increased up to 0.4~0.5%, 8.3~10.4%, and 24.1~26.1% (Supplementary
Figures S5 and S6).

The log-rank test was used to assess the significant difference in the treatment interval
days between the two drugs and the intensity of the drugs, with a significance level of
p < 0.05. Supplementary Figures S7 and S8 show the simulation results.

For the targeted tumor from 0.08 of δdurva and 300 Gy of Y90-RE, there were no
statistically significant differences between arms A and B or arms B and C when the number
of administration interval days of two drugs was less than 30 days (p < 0.25). However,
the median PFS from arm A was significantly longer than that of arms B and C when the
number of administration interval days of the two drugs was more than 30 days, and these
three groups were significantly associated with PPS from 60 days or more (p < 0.05). Of
the 0.12 of δdurva and 400 Gy of Y90-RE, there were no statistically significant differences
between arms A and B when the number of administration interval days for two drugs was
less than 30 days (p < 0.22). All three groups had a substantial association with PFS from
60 days or longer (p < 0.05). For the 0.16 of δdurva and 500 Gy of Y90-RE, when the interval
between drug administrations was less than 60 days, no statistically significant differences
were observed between arms A and B (p < 0.57). There was a significant correlation with
PFS between all three groups from 90 days or longer (p < 0.05), as shown in Supplementary
Figure S7.

For the non-targeted tumor from 0.08 of δdurva and 300 Gy of Y90-RE, the cumulative
DM rate from arm A was considerably higher than arms B and C when the adminis-
tration interval days between the two drugs exceeded 30 days (p < 0.05). However, no
statistically significant differences were observed between arms B and C when the num-
ber of administration interval days of the two drugs was below 60 days (p < 0.21). The
three groups were significantly related to the cumulative DM rates for 90 days or longer
(p < 0.05). Using 0.12 of δdurva and 400 Gy of Y90-RE, the cumulative DM rate was similar
in arms A and B when the number of administration interval days for the two drugs was
below 30 days (p < 0.06). The cumulative DM rate from arm A was significantly lower
than that of arms B and C when the interval of days between the two drugs was 60 days or
longer (p < 0.05). Concerning the 0.16 of δdurva and 500 Gy of Y90-RE, when the interval
between drug administrations was less than 90 days, no statistically significant differences
were observed between arms A and B (p < 0.06). There was a significant correlation with
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the cumulative DM rates between all three groups from 120 days or longer (p < 0.05), as
demonstrated in Supplementary Figure S8.

4. Discussion

Clinical trials are necessary to evaluate new cancer treatments and support evidence-
based clinical decision-making. Successful cancer treatment for many indications relies
on combination therapies. Several studies have shown the efficacy and tolerability of
Y90-RE and ICI combination therapy, but the sequencing of Y90-RE/ICIs has not been
determined [29,30]. The establishment of an optimal and effective treatment schedule is
a significant obstacle to the clinical application of combination treatment regimens, as
sequencing, dose, and choice of ICIs are parameters that can affect efficacy. Mathematical
models can be utilized in a wide variety of ways to reduce the need for costly, labor-
intensive, and time-consuming clinical studies. Thus, we present a mathematical model
combining Y90-RE with ICIs as a treatment for locally advanced HCC patients to investigate
treatment efficacy according to sequence and dose. The ultimate purpose of this model is
not to encompass all pertinent underlying biological mechanisms but rather to focus on
the Y90-RE and ICI parameters that we can adjust (sequence and dose) to guide the design
of clinical trials. In addition, we intentionally included no term for simulating the direct
response of immune responses to radiation but only indirect responses through tumor load
reduction. In the future, subsequent clinical data will provide insight into the necessity of
such a term and enable its parameterization.

Durvalumab was used in this study due to the availability of monotherapy-fitting
data [45]. However, this model can be modified and utilized in the future with other types
of ICIs as single-agent therapies. We independently fit both single-approach ICIs [45]
and Y90-RE [47,48] models based on virtual patient populations and simulate treatment
outcomes with the currently ongoing ICI-Y90-RE combination trial protocol [29,30].

Our model exclusively takes into account the radiosensitivity parameters for tumors
(αT/βT) while administering radiation, without considering the liver parenchyma. Hence,
this study focuses only on the absorbed dose by the tumor, suggesting that it is equivalent
to segmentectomy rather than lobectomy.

The results of this study predict several behaviors that have been clinically observed.
Supplementary Figure S4 revealed that the benefit of adding Y90-RE to ICIs is increasingly
improved in both targeted and non-targeted tumors than in patients who have only received
a single treatment, as shown by previously small retrospective clinical trials [20,24,25]. The
benefits of adding Y90-RE to ICIs are progressively enhanced in patients where less disease
is left untreated. This needs to be considered when evaluating the efficacy of Y90-RE
and ICI combination treatment, as this factor can differ significantly between patients
and clinical trials. Research has shown that irradiating a small tumor burden has little
effect on efficacy [49]. Conversely, it has been suggested that radiation to a larger tumor
could potentially enhance the effectiveness of treatment outcomes [50]. Furthermore, we
found an optimal treatment sequence of combination strategies. The results show that
concurrent administration has significantly improved median PFS and 3-year DM rates than
sequential therapies for targeted and non-targeted tumors, as shown in Figures 3 and 4.
For targeted tumors, in sequential treatment, the median PFS from arm B was improved
compared to arm C (Figure 3). These findings demonstrated that immune activation
was caused following radiotherapy or locoregional therapy in the preclinical data [21–23].
In addition, our results suggest that administering Y90-RE could potentially elicit an
immunogenic effect, considering its capability to deliver higher radiation doses to targeted
tumors [21,22]. Preclinical data have demonstrated that a combination of Y90-RE and ICI
treatment produces a more robust anti-tumor immune response [26–30]. Of non-target
tumors, in sequential treatment, the 1-year DM rate of arm C was lower than arm B, whereas
at the 3-year DM rate, arm B was lower than arm C (Figure 4). These data show that patients
may have experienced lymphopenia, decreased lymphocyte proliferation capacity, and loss
of inflammatory cytokine production capacity immediately after the treatment [46,51].
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As mentioned in the above results, we found a treatment strategy by considering the
injection interval days between the two drugs and the treatment sequence, as illustrated
in Supplementary Figures S7 and S8. Simultaneous administration of Y90-RE and ICI
demonstrates the best therapeutic effect. However, if simultaneous injection is not possible,
prolonging the treatment interval between the two drugs in sequential treatment, injecting
Y90-RE first improves treatment results. Furthermore, as the δdurva and Y90-RE increase,
the point at which a statistically significant difference between arms A and B occurs in
the number of interval days between two drug injections increases. Thus, to optimize the
treatment outcomes, the number of interval days between the two drug injections should
be reduced to a shortened duration as the two medications decrease.

This model currently has several limitations, as follows: (a) Our present model does
not predict absolute results for individual patients. Although all hypothetical patient popu-
lations were generated based on the realistic distribution of model parameters reflecting
trends in the experimental data, the model does not predict outcomes absolute outcomes
for individual patients. Instead, we can evaluate the results of different Y90-RE and ICIs
regimens for representative HCC populations that fit HCC population-averaged parame-
ters to the model. (b) No normal tissue and systemic toxicity are considered for Y90-RE
and ICIs. In this study, we assume all regimens have similar degrees of adverse effects.
However, treatment-related toxicities, disease severity, the extent of liver function impair-
ment at diagnosis, and patient performance status influence allocation to HCC patients,
posing significant challenges in achieving favorable treatment outcomes. Therefore, future
enhancements might involve including dedicated toxicity models to verify that maximizing
anti-tumor efficacy does not lead to intolerable levels of harm to normal tissues. This
would require a substantial quantity of patient toxicity data for various Y90-RE and ICI
combination regimens. (c) The model includes immunosuppressive mechanisms of Y90-RE,
but it does not take into account that it might boost the effects of Y90-RE demonstrated in
preclinical studies. If these enhancing effects of Y90-RE are observed in patient studies,
they can be accounted for by changing ω1 to depend on dosage size. (d) The tumor is
currently depicted as a single compartment without addressing various spread patterns.
Tumors can be added in multiple compartments of the lung, liver, kidney, and brain,
with distinct antigen-stimulating and infiltrating lymphocyte dynamics as proposed by
Walker et al. [43,52] and Serre et al. [53].

Despite these limitations, the major strengths of this study can assist in guiding the
design of optimization treatment strategies in HCC patients and as a useful clinical tool in
the emerging landscape of combination therapy. Additional clinical data for combination
therapy will provide a foundation for continuous investigation and further iteration of the
model to improve its accuracy and precision.

5. Conclusions

We developed a framework that integrates the effects of Y90-RE and ICIs and their
possible synergy through tumor burden reduction and antigen release. The proposed
mathematical model reproduces several relationships observed in clinical data and enables
the optimization of combination strategies for HCC patients. Simulations of the model
demonstrate that concurrent use of Y90-RE and ICIs yields greater benefits compared
to their separate administration on consecutive interval days. In sequential treatment,
if simultaneous injection is not possible, to optimize treatment results, the number of
interval days between ICI and Y90-RE injections should be minimized as the intensity
of ICIs and Y90-RE increases. Furthermore, injecting Y90-RE first improves treatment
outcomes. This model has the potential to function as a simulation tool for improving the
decision-making process regarding the optimal timing and dosage of Y90-RE with ICIs and
maybe other types of anticancer therapies. Future research will expand this model to other
clinical datasets and find a way to manage separation into different tumor compartments,
radiation, and drug-induced adverse effects in the optimization process.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering11020106/s1, Figure S1: Modeling the synergistic impact of
yttrium 90 radioembolization and immune checkpoint inhibitors on hepatocellular carcinoma.
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