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Abstract: As healthcare systems around the world face challenges such as escalating costs, limited
access, and growing demand for personalized care, artificial intelligence (AI) is emerging as a key
force for transformation. This review is motivated by the urgent need to harness AI’s potential to
mitigate these issues and aims to critically assess AI’s integration in different healthcare domains. We
explore how AI empowers clinical decision-making, optimizes hospital operation and management,
refines medical image analysis, and revolutionizes patient care and monitoring through AI-powered
wearables. Through several case studies, we review how AI has transformed specific healthcare
domains and discuss the remaining challenges and possible solutions. Additionally, we will discuss
methodologies for assessing AI healthcare solutions, ethical challenges of AI deployment, and the
importance of data privacy and bias mitigation for responsible technology use. By presenting a
critical assessment of AI’s transformative potential, this review equips researchers with a deeper
understanding of AI’s current and future impact on healthcare. It encourages an interdisciplinary
dialogue between researchers, clinicians, and technologists to navigate the complexities of AI imple-
mentation, fostering the development of AI-driven solutions that prioritize ethical standards, equity,
and a patient-centered approach.

Keywords: artificial intelligence; clinical decision-making; ethical considerations in healthcare AI;
healthcare technology; medical imaging and diagnostics

1. Introduction

In recent years, artificial intelligence (AI) has emerged as a transformative force in
various sectors, with healthcare being one of the most significant [1]. The integration of
AI into hospitals and clinics represents a paradigm shift in how medical care is delivered
and managed. This paper aims to explore the multifaceted role of AI in healthcare settings,
focusing on its impact on clinical decision-making, hospital operations, medical diagnostics,
patient care, and the ethical considerations it raises.

The concept of AI in healthcare is not new; it dates back to the early days of computer
science when researchers first envisioned machines capable of mimicking human intelli-
gence [2]. However, it was not until the advancement of machine learning algorithms [3]
and the exponential increase in computational power and data availability [4] that AI
applications in healthcare truly began to flourish. This evolution has been marked by
significant milestones, from early expert systems [5] to advanced neural networks capable
of outperforming human experts in specific tasks [6].

Today, AI in healthcare encompasses a broad range of applications [7]. In clinical
settings, it assists in diagnosing diseases, predicting patient outcomes, and personalizing
treatment plans [8]. In hospital management, AI optimizes operational efficiency, stream-
lines administrative tasks, and improves patient flow and scheduling [9]. In the field of
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medical diagnostics, AI enhances the accuracy and speed of image analysis in radiology and
pathology [10]. Moreover, AI plays a crucial role in patient care through remote monitoring,
telemedicine, and virtual assistance, fundamentally altering the patient–doctor interaction
paradigm [11].

This paper explores artificial intelligence’s evolving role in healthcare, focusing on
its application in hospitals and clinics. In consideration of the extensive scope of this
study, we employed a meticulous approach in selecting references, focusing primarily
on works published within reputable journals over the past five years. Our search was
conducted using both Google Scholar and PubMed, ensuring a comprehensive exploration
of the pertinent literature. Figure 1 provides a comprehensive overview of the key topics
addressed in this paper. We start with AI in clinical decision-making, highlighting its use
in diagnosis, prognosis, and personalized medicine through specific disease case studies.
The discussion then moves to AI’s role in improving hospital operations and management,
including logistics, administrative tasks, and scheduling. Further, we examine AI in
medical imaging and diagnostics, where it enhances accuracy and efficiency in radiology
and pathology. This paper also covers AI’s impact on patient care and monitoring, with
a look at AI-powered wearables and virtual nursing assistants, and the expansion of
telemedicine. We also discuss methodologies to assess the performance of AI healthcare
solutions. Ethical considerations and challenges of AI integration, such as privacy, bias, and
data security, are addressed, followed by a look at the future of AI in healthcare, considering
its potential to improve patient outcomes and respond to global health crises.
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Figure 1. Comprehensive overview of AI applications in hospitals and clinics: detailed exploration of
key topics addressed in this paper.

2. AI in Clinical Decision-Making

This section explores how AI, with its advanced learning and processing capabilities,
is reshaping the domain of medical diagnostics and treatment. By harnessing the power
of AI, healthcare professionals are now equipped with tools that provide deeper insights
into patient data. This leads to more accurate diagnoses and effective treatment plans. We
will explore three critical aspects: AI algorithms for diagnosis and prognosis, case studies
of AI in detecting diseases like cancer and diabetes, and AI’s role in the growing field of
personalized medicine.
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2.1. AI Algorithms for Diagnosis and Prognosis

AI algorithms are becoming important contributors in diagnosing and predicting
diseases and offer new insights to healthcare. These algorithms analyze vast amounts
of medical data to identify patterns and correlations that might elude human analysis.
For instance, in oncology, AI algorithms can sift through radiographic images, genetic
information, and patient histories to detect cancer at early stages [12]. Similarly, in the field
of cardiology, AI models are employed to predict heart attacks and strokes by analyzing
ECG patterns and other vital signs [13].

One of the key strengths of AI in diagnosis is its ability to continually learn and
improve. As these algorithms are exposed to more data, their diagnostic precision and
predictive accuracy are enhanced. This is crucial in managing complex and chronic diseases
where early detection and timely intervention can be life-saving [14].

Moreover, AI’s role in prognosis is equally transformative [15,16]. By analyzing
patterns in disease progression, AI can forecast potential complications, enabling healthcare
professionals to devise preemptive strategies. This is particularly important in chronic
diseases like diabetes, where AI can predict potential risks, such as kidney failure or
vision loss, by analyzing blood sugar levels, lifestyle factors, and treatment responses over
time [17].

AI algorithms can be broadly categorized into machine learning, deep learning, and
natural language processing, each with unique strengths and applications:

1. Machine learning (ML): ML algorithms learn from data to make predictions or deci-
sions without being explicitly programmed for the task [18]. In healthcare, supervised
learning algorithms have been instrumental in developing predictive models for pa-
tient outcomes based on historical data [19]. Unsupervised learning, on the other hand,
is used to identify patterns or clusters within data, useful in discovering novel disease
subtypes [20]. Reinforcement learning, where algorithms learn to make sequences of
decisions by trial and error, has potential in personalized treatment optimization [21].

2. Deep learning (DL): A subset of ML, deep learning uses neural networks with multi-
ple layers (hence “deep”) to analyze complex data structures. Convolutional Neural
Networks (CNNs) are particularly effective in processing imaging data, making them
invaluable for diagnosing diseases from medical images like X-rays or MRIs [22].
Some other advanced CNN architectures include Residual Network (ResNet), Incep-
tion, Visual Geometry Group (VGG), and Graph Convolutional Networks (GCNs),
each with its own strengths and applications in image analysis, classification, and
graph data processing [23]. Recurrent Neural Networks (RNNs), known for their
ability to handle sequential data, are used for analyzing time-series data, such as
physiological signals collected during patient monitoring, to predict health deterio-
rations or outcomes over time [24]. For instance, Long Short-Term Memory (LSTM)
networks, a sophisticated variant of RNNs, have been extensively utilized in the
detection of sleep apnea using polysomnography data [25]. Additionally, Transformer
models, such as BERT (Bidirectional Encoder Representations from Transformers)
and GPT (Generative Pre-trained Transformer), offer revolutionary approaches to
processing natural language in clinical notes, enabling more accurate extraction of
patient information and insights. Generative Adversarial Networks (GANs) [26] and
conditional diffusion models [27] have emerged as a powerful tool for generating
synthetic medical images for training without privacy concerns, while Graph Neural
Networks (GNNs) are unlocking new possibilities in modeling complex biological
and health-related networks, from predicting protein interactions to understanding
disease pathways.

Table 1 provides a summary of the various deep learning models discussed, including
their applications, strengths, and areas of healthcare they are transforming.
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Table 1. Overview of advanced deep learning models in healthcare diagnosis and prognosis.

Algorithm Type General Application Limitations Comments Example

Convolutional Neural
Networks (CNNs)

Image recognition and
analysis in medical

imaging (e.g., X-rays,
MRI, CT scans)

Require large labeled
datasets and
substantial

computational
resources; can be a

“black box” making
interpretability difficult

Highly effective for
spatial data; state of the

art in medical
image analysis

Deeplab v3+, a CNN
variant for gastric cancer

segmentation [28].
Results: 95.76%

accuracy,
outperforming
SegNet/ICNet.

Recurrent Neural
Networks (RNNs) and

Long Short-Term
Memory

(LSTM) Networks

Analysis of sequential
data such as ECG, EEG

signals, or patient
health records

Prone to overfitting on
smaller datasets; long

training times;
difficulty in

parallelizing the tasks

Suited for time-series
data; LSTM addresses

vanishing gradient
problem in RNNs

LSTM for EEG signal
classification [29].

Results: 71.3% accuracy,
utilizing novel

one-dimensional
gradient descent

activation functions for
enhanced performance.

Transformer Models
(e.g., BERT, GPT)

Natural language
processing tasks,

including clinical text
analysis and patient

history summarization

Require significant
computational power

and memory;
pre-training on large

datasets
is time-consuming

Offer state-of-the-art
performance in NLP;
enable understanding

of context in
clinical documentation

Clinical-specific BERT
(Transformer) for

Japanese text analysis
[30]: pre-trained on

120 million texts,
achieving 0.773

Masked-LM and 0.975
Next Sentence

Prediction accuracy,
indicating potential for

complex medical
NLP tasks.

Generative Adversarial
Networks (GANs)

Synthetic data
generation for training

models without
compromising
patient privacy;

augmenting datasets

Training stability issues;
generating high-quality

data is challenging

Useful in data-limited
scenarios; potential in

creating realistic
medical images

for training

Differentially private
GAN for synthetic data

generation: utilizes
convolutional AEs and

GANs to produce
realistic synthetic

medical data,
preserving data

characteristics and
outperforming existing

models [31].

Graph Neural
Networks (GNNs)

Modeling complex
relationships and

interactions between
health data points (e.g.,

drug interaction
prediction, disease

progression modeling)

Complex model
architectures that are
difficult to interpret;

scalability to very
large graphs

Effective for data
represented as graphs;

emerging
applications in

personalized medicine

Knowledge-GNN for
drug–drug interaction
prediction: leverages
knowledge graphs to
capture complex drug

relationships and
neighborhood
information,

outperforming
conventional
models [32].

3. Natural language processing (NLP): NLP algorithms allow computers to understand
and interpret human language. In healthcare, NLP is used to extract meaningful
information from unstructured data sources like clinical notes or the research literature,
aiding in both diagnostic processes and the aggregation of knowledge for prognosis
estimation [33]. An example of such a language model is the GatorTron [34]. It is
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a large-scale Transformer-based NLP model tailored for the healthcare domain. It
utilizes the Transformer architecture, known for its efficiency in handling sequence-
to-sequence tasks and its ability to process large datasets, to interpret and analyze
electronic health records. With its 8.9 billion parameters, GatorTron is trained on over
90 billion words of clinical text, making it a highly advanced model for extracting and
understanding complex medical information from unstructured data sources.

AI algorithms are not just tools for efficient diagnosis and prognosis; they represent
a paradigm shift in understanding and managing health and disease. The next sections
will provide deeper insights into specific case studies and the role of AI in personalizing
medical care, further highlighting AI’s profound impact on clinical decision-making.

2.2. Case Studies of AI in Detecting Diseases

The potential of AI in the early detection and accurate diagnosis of diseases such
as cancer, diabetes, and other critical conditions has been demonstrated in various case
studies. This subsection explores some notable examples, illustrating how AI technology is
making strides in the field of disease detection:

1. Cancer detection: One of the most groundbreaking applications of AI is in the early
detection of cancer. A notable case study involves the use of deep learning algo-
rithms in the analysis of mammograms for breast cancer detection. Research has
shown that AI can identify patterns in mammographic images that are indicative of
cancerous growths, often with greater accuracy than traditional methods. A notable
study published in the journal Nature reported the development of an AI model
by Google Health [35]. This model was trained on a large dataset of mammograms
and demonstrated the ability to detect breast cancer more accurately than human
radiologists. The AI system showed a reduction in both false positives and false nega-
tives, key factors in cancer diagnostics. This progress in AI technology is significant
because early detection of breast cancer can dramatically improve prognosis and
treatment outcomes.

2. Diabetes management: AI’s role in managing and detecting diabetes, particularly
through machine learning algorithms, is a significant area of improvement in health-
care. These algorithms can analyze patient data to predict the onset and progression
of diabetes and its complications, as demonstrated in different studies. In one study,
several supervised classification algorithms were applied to predict and classify eight
diabetes complications, including metabolic syndrome, dyslipidemia, neuropathy,
nephropathy, diabetic foot, hypertension, obesity, and retinopathy [36]. The dataset
utilized in this study comprises 79 input attributes, including results of medical tests
and demographic information collected from 884 patients. The performance of the
models was evaluated using the accuracy and F1 score, reaching a maximum of 97.8%
and 97.7%, respectively. Among different classifiers, random forest (RF), Adaboost,
and XGBoost achieved the best performance. This high level of accuracy demonstrates
the potential of machine learning in effectively predicting diabetes complications.
Another study focused on evaluating the efficacy of machine learning algorithms in
predicting complications and poor glycemic control in nonadherent type 2 diabetes
patients [37]. This real-world study used data from 800 type 2 diabetes patients, of
which 165 met the inclusion criteria. Different machine learning algorithms were used
to develop prediction models, with the predictive performance assessed using the area
under the curve. The highest performance scores for predicting various complications
such as diabetic nephropathy, neuropathy, angiopathy, and eye disease were 90.2%,
85.9%, 88.9%, and 83.2%, showcasing the effectiveness of these models.

3. Heart disease prediction: The prediction of heart disease using AI represents a sig-
nificant advancement in cardiovascular healthcare. This application not only aims to
predict the occurrence of heart disease but also attempts to determine its severity, a
crucial factor in effective treatment and management. One innovative study in this
area focused on a machine learning-based prediction model that performs both binary
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and multiple classifications of heart disease [38]. The model, known as Fuzzy-GBDT,
integrates fuzzy logic with a gradient boosting decision tree to streamline data com-
plexity and improve prediction accuracy. Additionally, to avoid overfitting, the model
incorporates a bagging technique, enhancing its capability to classify the severity
of heart disease. The evaluation results of this model show excellent accuracy and
stability in predicting heart disease, demonstrating its potential as a valuable tool in
healthcare. Another interesting study introduces a cutting-edge healthcare system that
employs ensemble deep learning coupled with feature fusion approaches [39]. This
system is designed to overcome the limitations of traditional machine learning models
that struggle with high-dimensional datasets. It achieves this by integrating sensor
data with electronic medical records, creating a more holistic dataset for heart disease
prediction. The system uses the information gain technique to streamline this dataset,
focusing on the most relevant features and thereby reducing computational complex-
ity. A key aspect of this model is the application of conditional probability for precise
feature weighting, enhancing the overall performance of the system. Impressively,
this ensemble deep learning model achieved an accuracy of 98.5%, outperforming
existing models and illustrating its efficacy in heart disease prediction.

4. AI in neurological disorders: The integration of AI, particularly deep learning (DL), in
neurology has opened new avenues for the diagnosis and management of neurologi-
cal disorders. The recent literature reveals significant progress in employing AI for the
early detection and more accurate diagnosis of various conditions, including AD. One
area of notable advancement is the use of deep learning in neuroimaging studies. DL’s
ability to process and learn from raw data through complex, nonlinear transformations
makes it well suited for identifying the subtle and diffuse alterations characteristic
of many neurological and psychiatric disorders. Research in this domain has shown
that DL can be a powerful tool in the ongoing search for biomarkers of such condi-
tions, offering potential breakthroughs in understanding and diagnosing brain-based
disorders [40]. Furthering this progress, a comprehensive review of deep learning
techniques in the prognosis of a range of neuropsychiatric and neurological disorders,
such as stroke, Alzheimer’s, Parkinson’s, epilepsy, autism, migraine, cerebral palsy,
and multiple sclerosis, has underscored deep learning’s versatility in addressing
real-life challenges across various domains, including disease diagnosis [41]. In the
specific case of Alzheimer’s Disease (AD), the most common cause of dementia, deep
learning has shown promise in enhancing diagnosis accuracy. Utilizing Convolutional
Neural Networks (CNNs), researchers have developed frameworks for detecting AD
characteristics from Magnetic Resonance Imaging (MRI) data [42]. By considering
different stages of dementia and creating high-resolution disease probability maps,
these models provide intuitive visualizations of individual AD risk. This approach,
especially when addressing class imbalance in datasets, has achieved high accuracy,
surpassing existing methods. The adaptation of such models to extensive datasets
like the Alzheimer’s Disease Neuroimaging Initiative (ADNI) further validates their
effectiveness in predicting AD classes.

5. Key insights: These case studies highlight AI’s significant role in advancing disease
detection across multiple medical disciplines, offering accurate and timely diagnoses,
often through non-invasive methods. However, as AI technology continues to evolve,
there is a critical need for addressing challenges such as data privacy, algorithmic
transparency, and ensuring equitable access to these technologies. Future develop-
ments should focus on creating more robust AI systems that can handle diverse
datasets, thereby reducing potential biases in diagnosis. Additionally, integrating
AI with traditional diagnostic methods and enhancing interdisciplinary collabora-
tion among technologists, clinicians, and patients will be key to harnessing AI’s full
potential in disease detection and management.
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2.3. The Role of AI in Personalized Medicine

The advent of AI in healthcare has boosted the growth of personalized medicine, a
paradigm that tailors medical treatment to the individual characteristics of each patient.
This subsection explores how AI is instrumental in driving this personalized approach,
offering new insights into patient care that were previously unattainable:

1. Tailoring treatments to genetic profiles: One of the most significant applications of
AI in personalized medicine is in the field of genomics. AI algorithms can analyze
vast genomic datasets to identify mutations and variations that might influence an
individual’s response to certain treatments. For example, in oncology, AI helps in
identifying specific genetic markers that are susceptible to targeted cancer therapies.
This approach increases the efficacy of the treatment and minimizes the risk of adverse
reactions, ensuring a more effective and safer treatment plan for the patient. A prime
example of this application is a study focusing on nonmuscle invasive urothelial
carcinoma, a type of bladder cancer known for its high recurrence risk [43]. In
this study, researchers employed a machine learning algorithm to analyze genomic
data from patients at their initial presentation. They aimed to identify genes most
predictive of recurrence within five years following transurethral resection of the
bladder tumor. The study involved whole-genome profiling of 112 frozen nonmuscle
invasive urothelial carcinoma specimens using Human WG-6 BeadChips. A genetic
programming algorithm was then applied to evolve classifier mathematical models
for outcome prediction. The process involved cross-validation-based resampling
and assessing gene use frequencies to pinpoint the most prognostic genes. These
genes were subsequently combined into rules within a voting algorithm to predict
the likelihood of cancer recurrence. Of the genes analyzed, 21 were identified as
predictive of recurrence. Further validation through the quantitative polymerase
chain reaction was conducted on a subset of 100 patients. The results were promising:
a five-gene combined rule using the voting algorithm showed 77% sensitivity and
85% specificity in predicting recurrence in the training set. Additionally, a three-gene
rule was developed, offering 80% sensitivity and 90% specificity in the training set for
recurrence prediction.

2. Predictive analytics in drug development: AI also plays a crucial role in drug de-
velopment, particularly in predicting how different patients will respond to a drug.
By analyzing historical data from clinical trials and patient records, AI models can
predict the effectiveness of drugs on various demographic groups [44,45]. This predic-
tive power is invaluable in designing clinical trials and in developing drugs that are
more effective for specific patient populations In recent years, AI has made remark-
able strides in drug development. Exscientia introduced the first AI-designed drug
molecule for clinical trials in early 2020 [46]. DeepMind’s AlphaFold then achieved
a breakthrough in July 2021 by predicting structures for over 330,000 proteins, in-
cluding the entire human genome. In 2022, Insilico Medicine started Phase I trials
for an AI-discovered molecule, a process significantly faster and more cost-effective
than traditional methods. By 2023, AbSci had innovated in creating antibodies using
generative AI, and Insilico Medicine saw an AI-designed drug receive FDA Orphan
Drug Designation, with Phase II trials planned shortly thereafter. These milestones
mark a transformative era in AI-driven drug discovery. AI’s application extends to
the identification of novel proteins or genes as potential disease targets, with systems
capable of predicting the 3D structures of these targets using deep learning [47]. AI is
also revolutionizing molecular simulations and the prediction of drug properties such
as toxicity and bioactivity, enabling high-fidelity simulations that can be run entirely
in silico [44]. Moreover, AI is shifting the paradigm of traditional drug discovery
from screening large libraries of molecules to generating novel drug molecules from
scratch [48]. This approach can enhance the efficiency of the drug discovery process
and can lead to the development of novel therapies.
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The growing industry interest in AI-enabled drug discovery is evident from the
substantial investments flowing into the sector. The promise of lower costs, shorter devel-
opment timelines, and the potential to treat currently incurable conditions positions AI as
an important tool in the future of drug development.

The advances of AI in drug development underscore the necessity for legal and
policy frameworks to adapt to these rapid technological changes, ensuring the continued
assurance of drug safety and efficacy while harnessing the full potential of AI in healthcare.

3. Customizing treatment plans: AI systems are adept at integrating and analyzing vari-
ous types of health data—from clinical records and lab results to lifestyle information
and environmental factors. This capability allows healthcare providers to create more
refined and comprehensive treatment plans [49]. For instance, in managing chronic
diseases like diabetes, AI can analyze data from wearable devices, diet logs, and blood
sugar readings to recommend personalized lifestyle and medication adjustments for
better disease management [50].

4. AI in mental health: In the field of mental health, AI is used to personalize treatment
approaches. By monitoring patterns in speech [51], behavior [52], and social media
activity [53,54], AI tools can help in identifying the onset of mental health issues and
suggest interventions tailored to the individual’s unique situation. This personalized
approach is crucial in mental health, where treatment efficacy can vary significantly
from person to person.

In future research and development within mental health treatment, a promising
direction is the integration of AI systems with emotional intelligence [55]. Such systems
could be crucial in early detection and intervention of mental health disorders by analyzing
speech and behavior patterns for signs of conditions like depression or anxiety. Further
exploration into personalizing therapy using AI could lead to more individualized and
effective care.

Addressing accessibility is also crucial; AI-powered chatbots or virtual assistants can
provide immediate support, overcoming barriers to traditional mental health services.
Moreover, incorporating AI to assist therapists in real time during sessions could signif-
icantly enhance the effectiveness of therapy. Focusing on these aspects can transform
mental health care into a more empathetic, accessible, and personalized practice, ultimately
improving patient outcomes and support.

5. Key insights: While the integration of AI into personalized medicine offers transfor-
mative potential, it also presents a spectrum of challenges that must be addressed.
Beyond data privacy and algorithmic bias, significant concerns include interoperabil-
ity and data integration across diverse healthcare systems [56], ensuring AI systems
are compliant with regulatory and ethical standards, and establishing their clinical
validity and reliability [57].

Moreover, health equity remains a critical challenge, as AI must be accessible and
beneficial to all population segments, avoiding disparities in healthcare [58]. The scala-
bility and generalization of AI systems to various patient demographics and healthcare
environments is also essential. Equally important is the training and acceptance of these
tools among healthcare professionals. While AI may excel in certain diagnostic tasks, it
serves as a valuable tool that enhances the capabilities of healthcare professionals rather
than replacing human judgment entirely. Therefore, the integration of AI into healthcare
workflows should be viewed as a symbiotic relationship, ultimately leading to improved
patient outcomes. Additionally, cost considerations and effective resource allocation pose
challenges in implementing AI solutions in healthcare settings [59].

3. AI in Hospital Operations and Management

In the complex and dynamic environment of hospitals and clinics, efficient operations
and management are crucial for delivering quality healthcare. The integration of AI into
these aspects creates a new era in healthcare management. This section explores how AI is
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being leveraged to revolutionize hospital operations, enhancing efficiency, reducing costs,
and improving patient care. We will explore three primary areas: AI’s role in optimizing
logistics and resource management, its application in automating administrative tasks, and
its contribution to improving patient flow and scheduling.

Table 2 summarizes the transformative applications of AI in hospital operations
and management.

Table 2. Transformative applications of AI in hospital management.

Aspect Applications

AI for hospital logistics and
resource management

Predictive inventory management for medical
supplies, medications, and equipment; efficient
facility management including HVAC systems
and predictive maintenance; optimization of
resource allocation for staff and materials; and
supply chain optimization and management
during emergencies and health crises.

Automating administrative tasks with AI

Patient data management including EMRs and
unstructured data analysis; billing and claims
processing automation for accuracy and
compliance; AI-driven scheduling systems for
appointments and procedures; document
management and processing automation;
automated communication and reminders for
patient engagement; and data security and
compliance monitoring.

AI in patient flow and scheduling optimization

Optimization of patient flow through
predictive analysis of admissions, discharges,
and transfers; dynamic scheduling systems for
appointments and procedures, minimizing
no-shows and cancellations; reduction in
waiting times through better triage processes
and real-time patient wait time prediction; and
enhancement of patient experience by
providing accurate information and integrating
with telehealth services
for virtual consultations.

3.1. AI for Hospital Logistics and Resource Management

Effective logistics and resource management are vital for the smooth functioning
of any healthcare facility. AI technologies are playing an increasingly significant role in
optimizing these aspects, leading to more efficient and cost-effective operations:

1. Inventory management: AI systems are being used to predictively manage inventory
in hospitals [60,61]. By analyzing usage patterns, patient inflow, and other relevant
data, AI can forecast the need for medical supplies, medications, and equipment. This
predictive capability ensures that hospitals maintain optimal stock levels, reducing
wastage and ensuring the availability of critical supplies when needed.

2. Facility management: AI also contributes to the efficient management of hospital
facilities. For example, AI-powered systems can control heating, ventilation, and air
conditioning (HVAC) systems more efficiently, reducing energy costs while maintain-
ing a comfortable environment for patients and staff [62]. Additionally, AI can help in
the predictive maintenance of hospital equipment, identifying potential issues before
they lead to breakdowns, thus minimizing downtime and repair costs [63].

3. Resource allocation: One of the most substantial applications of AI in hospital man-
agement is in the optimization of resource allocation [64]. AI algorithms can analyze
complex datasets, including patient admissions, staff availability, and operational
capacities, to optimize the allocation of human and material resources. This includes
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scheduling surgeries and medical procedures in a manner that maximizes the utiliza-
tion of operating rooms and medical staff, while minimizing patient wait times [65].

4. Supply chain optimization: AI enhances supply chain operations in hospitals by
analyzing trends and automating ordering processes [66,67]. It can anticipate supply
chain disruptions and suggest alternative solutions, ensuring that the hospital’s oper-
ations are not affected by external supply chain challenges. In emergency situations
or during health crises, AI systems play a crucial role in managing logistics and
resources [68]. They can quickly analyze the situation, predict the resources required,
and assist in the efficient distribution of these resources where they are needed most.

In conclusion, AI’s role in hospital logistics and resource management is multifaceted
and profoundly impactful. By automating and optimizing these critical aspects, AI can
bring about operational efficiencies and enhance the overall quality of patient care. As AI
technology continues to advance, its potential to further revolutionize hospital operations
and management is vast, opening new avenues for innovation in healthcare delivery.

3.2. Automating Administrative Tasks with AI

This subsection examines how AI is being utilized to streamline administrative
processes, thereby reducing the workload on healthcare staff and improving overall
service delivery:

1. Patient data management: AI plays an important role in managing vast amounts of
patient data [69]. AI systems can organize, categorize, and process patient records, ap-
pointments, and treatment histories with high efficiency and accuracy. These systems
can also extract relevant information from unstructured data, such as doctor’s notes,
making it easier for healthcare providers to access and analyze patient information.
For example, a study utilized AI and natural language processing (NLP) to analyze
electronic medical records (EMRs), focusing on uncoded consultation notes for disease
prediction [70]. Techniques like bag of words and topic modeling were applied, along
with a method to match notes with a medical ontology. This approach was particu-
larly tested for colorectal cancer. The study found that the ontology-based method
significantly enhanced predictive performance, with an AUC of 0.870, surpassing
traditional benchmarks. This highlights AI’s potential in extracting useful information
from EMR’s unstructured data, improving disease prediction accuracy.

2. Billing and claims processing: AI algorithms can also be used to automate billing
and insurance claims processing. They can quickly analyze and process claims data,
identify errors or inconsistencies, and ensure that billing is accurate and compliant
with relevant regulations [71]. This not only speeds up the reimbursement process
but also reduces the likelihood of billing errors, leading to improved financial opera-
tions and patient satisfaction. For example, a study in the insurance sector utilized
machine learning to improve loss reserve estimation accuracy, crucial for financial
statements [72]. Moving away from traditional macro-level models, this approach
used individual claims data, integrating details about policies, policyholders, and
claims. The method addressed the challenge of right-censored variables by creating
tailored datasets for training and evaluating the algorithms. Compared to the conven-
tional chain ladder method, this AI-driven approach showed notable improvements
in accuracy, evidenced by a real case study with a Dutch loan insurance portfolio.

3. Scheduling appointments: AI-driven scheduling systems are revolutionizing the way
appointments are managed in healthcare settings [73]. These systems can analyze
patterns in appointment bookings and cancellations to optimize the scheduling of
patients. By predicting peak times and adjusting appointments accordingly, AI helps
in reducing wait times and improving patient flow. For example, a project aimed at
reducing outpatient MRI no-shows effectively utilized AI predictive analytics [74].
In this quality improvement initiative, over 32,000 anonymized outpatient MRI ap-
pointment records were analyzed using machine learning techniques, specifically an
XGBoost model, a decision tree-based ensemble algorithm. This approach achieved



Bioengineering 2024, 11, 337 11 of 38

notable results; the model’s predictive accuracy was demonstrated by an ROC AUC
of 0.746 and an optimized F1 score of 0.708. When implemented alongside a practical
intervention of telephone call reminders for patients identified as high-risk for no-
shows, the no-show rate decreased from 19.3% to 15.9% over six months. In another
study, a data-driven approach was used to optimize appointment scheduling and
sequencing, especially in environments with uncertain service durations and cus-
tomer punctuality [75]. Leveraging a novel method based on infinite-server queues,
the study developed scalable solutions suitable for complex systems with numerous
jobs and servers. Tested using a comprehensive dataset from a cancer center’s in-
fusion unit, this approach significantly improved operational efficiency. The results
showed a consistent reduction in costs—combining waiting times and overtime—by
15% to 40%, demonstrating the effectiveness of AI-based strategies in optimizing
appointment scheduling.

4. Document management and processing: AI technologies are adept at automating
the processing of various documents, including consent forms, admission forms,
and medical reports [76]. By using natural language processing (NLP) and machine
learning, AI can quickly parse through documents, extract relevant information, and
categorize them appropriately. This automation reduces the administrative burden on
staff and speeds up document processing.

5. Automated communication and reminders: A notable application of AI in healthcare
is the optimization of information extraction from electronic health records (EHRs),
particularly from scanned documents. A study demonstrated this by successfully ex-
tracting sleep apnea indicators from scanned sleep study reports using a combination
of image preprocessing techniques and natural language processing (NLP) [77]. By
employing methods like gray-scaling and OCR with Tesseract, followed by analysis
through advanced models like ClinicalBERT, the study achieved high accuracy rates
(over 90%) in identifying key health metrics.

6. Automated communication and reminders: AI-powered chatbots and virtual assis-
tants are increasingly used for patient communication. They can handle routine
inquiries, provide information about services, and send reminders for upcoming
appointments or medication schedules. This not only enhances patient engagement
but also frees up staff to focus on more critical tasks. An example of this application is
seen in the ChronologyMD project [78], which utilized AI to improve eHealth com-
munication programs. The project addressed major deficiencies in existing eHealth
communication strategies, which often failed to fully engage audiences and sometimes
even negatively impacted the delivery of crucial health information. By strategically
employing AI, the ChronologyMD project succeeded in making health communication
more engaging, relevant, and actionable. Additionally, it led to increased exposure
to relevant messages, reduced the workload of healthcare staff, and improved the
overall efficiency of the program while minimizing costs.

7. Data security and compliance: AI systems contribute significantly to data security
and compliance in healthcare [79]. They can monitor and analyze data access pat-
terns to detect and prevent unauthorized access or breaches. Additionally, AI can
ensure that administrative processes are compliant with healthcare regulations, such
as HIPAA, thereby safeguarding patient privacy. Building on this, recent research
has explored the role of AI in ensuring compliance with the General Data Protection
Regulation (GDPR), crucial for data controllers [80]. This study aimed to bridge gaps
in compliance checking through a two-pronged approach: firstly, by conceptualizing
a framework for document-centric compliance checking in the data supply chain, and
secondly, by developing methods to automate the compliance checking of privacy
policies. The study tested a two-module system, where the first module uses natural
language processing (NLP) to extract data practices from privacy policies, and the
second module encodes GDPR rules to ensure the inclusion of all mandatory infor-
mation. The results demonstrated that this text-to-text approach was more effective
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than local classifiers, capable of extracting both broad and specific information with
a single model. The system’s effectiveness was validated on a dataset of 30 privacy
policies, annotated by legal experts.

In summary, automating administrative tasks with AI significantly enhances the
efficiency and accuracy of hospital operations. It allows healthcare professionals to focus
more on patient care rather than administrative duties, leading to improved healthcare
delivery. As AI technology continues to evolve, it could progress from automating tasks to
personalizing patient interactions through emotional intelligence and cultural awareness,
ultimately aiming to provide a more holistic and supportive care experience.

3.3. AI in Patient Flow and Scheduling Optimization

The effective management of patient flow and scheduling is a critical component
of hospital operations, impacting both patient satisfaction and healthcare delivery effi-
ciency. The integration of AI in this domain has shown significant promise in optimizing
these processes:

1. Optimizing patient flow: AI algorithms are particularly adept at analyzing patterns
in patient admissions, discharges, and transfers, enabling more efficient patient flow
throughout the hospital [65,81]. By predicting high-demand periods, AI can assist
in preemptively allocating resources such as beds, staff, and equipment to meet
patient needs. For instance, AI systems can forecast daily or seasonal fluctuations in
patient admissions, allowing hospitals to adjust staffing levels and bed availability
accordingly [82]. This proactive approach reduces bottlenecks, minimizes wait times,
and enhances the overall patient experience.

2. Dynamic scheduling systems: AI-driven scheduling systems revolutionize the way
appointments and procedures are organized. These systems can analyze multiple
variables, including healthcare provider availability, patient preferences, and urgency
of care, to create optimal schedules. By doing so, they reduce appointment no-shows
and last-minute cancellations, maximizing the utilization of healthcare professionals’
time. Moreover, these AI systems can adapt in real time to changes, such as emergency
cases, by rescheduling non-urgent appointments without significant disruptions [83].
In a study aimed at improving outpatient department efficiency and patient satis-
faction, researchers developed an innovative appointment scheduling system based
on a Markov decision process model, incorporating patient preferences to maximize
satisfaction [84]. Adaptive dynamic programming algorithms were utilized to over-
come the complexity of scheduling, dynamically adjusting to patient preferences
and continuously improving appointment decisions. The system’s performance was
evaluated through various experiments, which demonstrated optimal convergence
behavior and accuracy.

3. Reducing waiting times: One of the critical benefits of AI in patient flow is the re-
duction in waiting times in emergency departments and outpatient clinics. AI can
predict patient inflow and identify potential delays, allowing hospital staff to take
proactive measures to manage patient wait times effectively [85,86]. For emergency
departments, this means better triage processes and quicker allocation of patients to
the appropriate care. Utilizing machine learning algorithms, a recent study predicted
patient waiting times before consultation and throughput time in an outpatient clinic,
aiming to enhance patient satisfaction by providing more accurate wait time infor-
mation [87]. The study employed random forest and XGBoost algorithms, analyzing
input variables such as gender, day and time of visit, and consultation session. The
study achieved high accuracy (86–93%) in predicting wait and throughput times in an
outpatient clinic using machine learning models with novel input variables.

4. Enhancing patient experience: AI systems can also improve the overall patient experi-
ence by providing accurate information about appointment times, wait periods, and
treatment schedules [88]. This transparency helps in managing patient expectations
and reduces anxiety associated with medical appointments and procedures. In a
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recent study, a machine learning model was developed to predict patient responses
to the “Doctor Communications” domain of the Hospital Consumer Assessment of
Healthcare Providers and Systems survey, using data from a tertiary care hospital
(2016–2020) [89]. The random forest algorithm effectively predicted patient responses
about doctors’ courtesy, explanation clarity, and attentiveness. The model achieved
an AUC of 88% for these doctor communication survey questions.

5. Integrating with telehealth: In the era of digital health, AI in scheduling extends
beyond in-person appointments to include telehealth services. AI systems can effec-
tively schedule and manage virtual consultations, ensuring that patients receive timely
care without the need to physically visit the healthcare facility, which is particularly
beneficial for routine follow-ups or during health crises like pandemics [90].

In conclusion, AI’s role in optimizing patient flow and scheduling in hospitals and
clinics is profoundly transformative, offering significant enhancements in operational effi-
ciency, reduced waiting times, and improved patient experiences. As an important element
in modernizing healthcare delivery, AI-driven optimization strategies are increasingly
crucial. Looking to the future, AI technology is poised for further evolution, with potential
advances including real-time adaptive scheduling algorithms, deeper integration with
electronic health records for more personalized patient care, and the use of predictive
analytics for anticipating patient demand and resource allocation.

4. AI in Medical Imaging and Diagnostics

The integration of AI into medical imaging and diagnostics marks a transformative de-
velopment in healthcare. This section examines how AI is reshaping the fields of radiology
and pathology, bringing unprecedented levels of accuracy and efficiency. We will explore
AI’s expanding role in enhancing diagnostic processes and review specific examples of AI
systems in imaging technologies such as MRI and CT scans.

4.1. AI’s Role in Radiology and Pathology

AI’s impact on radiology and pathology has been profound, revolutionizing the way
medical images are analyzed and interpreted.

In radiology, AI algorithms, particularly those based on deep learning, are increasingly
being used to analyze radiographic images. These AI models are trained on vast datasets
of X-rays [91], MRIs [92], CT scans [93], and other imaging modalities [94], enabling them
to detect abnormalities such as tumors, fractures, and signs of diseases like pneumonia
or brain bleeds with high precision. In many cases, AI can highlight subtle findings that
may be overlooked by the human eye, thus serving as an invaluable tool for radiologists.
For example, a recent study introduced an anatomy-aware graph convolutional network
(AGN) tailored for mammogram mass detection, enabling multi-view reasoning akin to
radiologists’ natural ability [95]. This AGN, significantly outperforming current methods
on benchmarks, involves modeling relations in ipsilateral and bilateral mammogram views,
and its visualization results offer interpretable cues crucial for clinical diagnosis.

AI in radiology is not only about detecting abnormalities; it also helps in quantifying
disease progression [96], assessing response to treatment [97], and predicting patient
outcomes [98]. For example, in cancer treatment, AI can measure the size and growth of
tumors over time, providing crucial information for treatment planning [99].

The field of pathology has also seen significant advancements with the integration of
AI [100]. Digital pathology, where slides are scanned and analyzed by AI algorithms, has
enabled more accurate and faster diagnosis of diseases. AI excels in pattern recognition,
which is essential in identifying markers of diseases in tissue samples. This is particularly
impactful in the diagnosis of cancers, where AI can assist pathologists in spotting cancerous
cells, often with greater accuracy and speed than traditional methods. As an example, deep
learning neural networks have significantly advanced molecular diagnostics in clinical
oncology, leading to a new era in digital pathology and precision medicine [101]. This
advancement holds significant promise particularly for resource-limited settings. For
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example, in India, an AI-powered software has been used to analyze key molecular markers
in endoscopic images, enabling more precise diagnoses of gastric cancer, potentially paving
the way for personalized treatment approaches [102].

AI’s contribution to pathology extends beyond disease detection. It also includes
predicting disease aggressiveness and patient prognosis, helping pathologists make more
informed decisions about patient care. For example, an AI model utilizing MRI scans
accurately predicts the aggressiveness of soft tissue sarcomas with an average accuracy of
84.3% and sensitivity of 73.3%, providing valuable insights as a second expert opinion for
clinicians prior to biopsy, presenting a novel approach for rare pathology diagnosis [103].

In summary, AI’s role in radiology and pathology is transformative, offering advanced
diagnostic capabilities. However, this progress invites critical considerations, such as the
need for ongoing training for medical professionals to effectively integrate AI tools, and
continuous evaluation of AI systems to ensure they complement rather than replace human
expertise. Future advancements should aim to harmonize AI technology with clinical
practice, ensuring it remains a supportive tool that enhances, rather than overshadows, the
critical role of medical professionals.

4.2. Enhancing Accuracy and Efficiency in Diagnostic Processes

The incorporation of AI into diagnostic processes is a game-changer in healthcare,
notably enhancing both accuracy and efficiency. This subsection considers the various
ways in which AI is achieving these improvements and the impact it has on the overall
diagnostic workflow:

1. Improving diagnostic accuracy: AI algorithms, particularly those based on deep learn-
ing, have demonstrated remarkable accuracy in diagnosing diseases from medical
images and test results. These systems are trained on vast datasets, allowing them to
recognize patterns and anomalies that might be imperceptible to the human eye. For
example, in dermatology, AI systems trained on images of skin lesions have shown the
ability to detect skin cancers, such as melanoma, with a level of precision comparable
to that of experienced dermatologists [104].

2. Reducing diagnostic errors: One of the key benefits of AI in diagnostics is its potential
to reduce errors [105]. Misdiagnosis and missed diagnoses are significant concerns in
medicine, often leading to delayed or inappropriate treatment. AI systems provide a
level of consistency and attention to detail that is challenging for humans to maintain
over long periods, thus reducing the likelihood of such errors.

3. Speeding up diagnostic processes: AI significantly speeds up the diagnostic process.
Analyzing medical images or test results, tasks that would take a healthcare pro-
fessional considerable time, can be performed by AI in a fraction of the time. This
rapid analysis is particularly beneficial in urgent care situations, where quick decision-
making is critical. For instance, AI algorithms can quickly analyze CT scans of stroke
patients to identify blockages or bleeding in the brain, enabling faster initiation of
life-saving treatments [106].

4. Automated reporting and documentation: AI not only automates reporting and
documentation in diagnostic processes [107] but also enhances the quality of these
processes. While AI systems generate preliminary reports from image analysis for
radiologist review, streamlining workflow and reducing administrative burden, a
recent study has furthered this efficiency by consolidating existing ML reporting
guidelines [108]. This study, after an extensive review of 192 articles and expert
feedback, created a comprehensive checklist encompassing 37 reporting items for
prognostic and diagnostic ML studies. This effort in standardizing ML reporting
is pivotal in improving the quality and reproducibility of ML modeling studies,
complementing AI’s role in simplifying diagnostic reporting.

5. Integrating diagnostic data: AI excels in integrating and analyzing data from various
sources. In the case of complex diseases, AI can combine information from imaging,
laboratory tests, and patient histories to provide a more comprehensive diagnostic
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insight [109]. This integration is particularly valuable in diagnosing complex condi-
tions like autoimmune diseases or in cases where symptoms are ambiguous. As an
example, a scoping review focused on AI techniques for fusing multimodal medical
data, particularly EHR with medical imaging, to develop AI methods for various
clinical applications [110]. The review analyzed 34 studies, observing a workflow
of combining raw data using ML or DL algorithms for clinical outcome predictions.
It found that multimodality fusion models generally outperform single-modality
models, with early fusion being the most commonly used technique. Neurological
disorders were the dominant category studied, and conventional ML models were
more frequently used than DL models. This review provides insights into the current
state of multimodal medical data fusion in healthcare research.

In conclusion, AI’s significant role in improving diagnostic accuracy and efficiency is
transforming healthcare, delivering faster and more precise diagnoses. However, a critical
concern is that these AI systems are often primarily designed for specific groups, which can
lead to disparities in healthcare. Future advancements should emphasize the development
of more inclusive AI models that cater to a broader patient demographic, ensuring equitable
healthcare improvements across all populations.

4.3. The Role of Hardware Acceleration in AI-Powered Diagnostics

The previous sections explored how AI is revolutionizing medical imaging and diag-
nostics by enhancing accuracy and efficiency. However, this transformation hinges on the
immense processing power required to analyze large medical datasets of X-rays, MRIs, and
CT scans, along with the complex AI algorithms used for tasks like image recognition and
disease detection. This is where hardware acceleration steps in, acting as a powerful engine
that fuels AI-powered diagnostics [111].

Hardware accelerators are specialized components within a computer system de-
signed to offload and expedite specific computing tasks typically handled by the main
processor (CPU). While CPUs are versatile, they may not always be the most efficient for
computationally intensive AI workloads. Hardware accelerators, on the other hand, are
optimized for these tasks, offering significant performance boosts.

Several types of hardware accelerators are well suited for AI-powered diagnos-
tics [112]:

1. Graphics Processing Units (GPUs): Originally designed for computer graphics render-
ing, GPUs excel at parallel processing, making them ideal for handling the massive
datasets and complex calculations involved in AI algorithms. In the medical image
analysis domain, GPUs can be used to accelerate basic image processing operations
such as filtering and interpolation. Additionally, GPUs can enhance the operation of
different AI algorithms used in medical imaging tasks like image registration, image
segmentation, image denoising, and image classification [113].

2. Tensor Processing Units (TPUs): Custom-designed chips like TPUs, pioneered by
companies like Google, are specifically optimized for high-performance deep learning
inference, a key technique used in medical image analysis. TPUs offer significant
speed advantages over CPUs for tasks like image recognition and classification. For
example, researchers implemented a system for glaucoma diagnosis using both edge
TPUs and embedded GPUs [114]. While both achieved fast image segmentation and
classification for real-time diagnosis support, the study found that TPUs consumed
significantly less energy compared to GPUs. This makes TPUs a more attractive option
for battery-powered medical devices used in edge computing scenarios.

3. Field-Programmable Gate Arrays (FPGAs): These versatile chips offer flexibility for
hardware customization. Unlike pre-designed GPUs and TPUs, FPGAs can be pro-
grammed to perform specific AI algorithms, potentially leading to highly optimized
solutions for certain diagnostic tasks. However, programming FPGAs requires spe-
cialized expertise. For instance, researchers have proposed a MobileNet accelerator
designed specifically for FPGAs that focuses on minimizing on-chip memory usage
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and data transfer, making it ideal for low-power devices [115]. They achieve this by
using two configurable modules for different convolution operations and a new cache
usage method. Their implementation demonstrates real-time processing with low
memory usage, making FPGAs a viable option for running efficient CNNs in auxiliary
medical tasks on portable devices.

4. Application-Specific Integrated Circuits (ASICs): When dealing with a well-defined
AI algorithm in a specific diagnostic application, ASICs can be designed to offer the
ultimate performance [116]. Engineered for a single task, ASICs provide unparalleled
efficiency and processing speed for that specific function. However, the lack of
flexibility limits their application to well-established and unchanging algorithms.

By leveraging hardware acceleration, AI-powered diagnostics can achieve several
benefits: faster processing for near-real-time analysis of medical images, leading to quicker
and potentially life-saving interventions; improved accuracy through the ability to perform
intricate image analysis, potentially leading to a higher degree of disease detection; and
enhanced efficiency by streamlining the diagnostic process, allowing radiologists and
clinicians to analyze more images in a shorter timeframe.

It is important to note that these benefits extend beyond medical imaging, with
hardware acceleration playing a crucial role in other AI health tasks such as analyzing
genetic data for personalized medicine or processing real-time sensor data from wearable
devices for remote patient monitoring [117].

4.4. Examples of AI Systems Used in Imaging

AI has made significant contributions in the field of medical imaging, with various
AI systems being developed and used for analyzing images from MRI, CT scans, and
other modalities. This subsection highlights some notable examples of these AI systems,
showcasing their capabilities and the impact they have on diagnostic imaging. An overview
of AI applications in medical imaging is also presented in Table 3.

Table 3. Overview of AI applications in medical imaging.

Imaging Modality Application Example of AI System Impact

MRI

AI applications in MRI
analysis encompass detection
of brain abnormalities, tumors,

strokes, neurodegenerative
diseases, and more. AI can

analyze images and quantify
the volume of affected areas.

An AI system analyzes MRI
images to detect brain

abnormalities, such as tumors
or strokes, and quantifies their
volume, aiding in treatment

planning [118].

Improved detection of tumors,
strokes, and

neurodegenerative diseases;
quantification of affected areas

aids in treatment planning
and disease monitoring.

CT

AI in CT scan interpretation
includes detecting lung

nodules, identifying fractures
and hemorrhages, assessing

stroke severity, and
characterizing tumor

progression. AI systems can
process CT scans rapidly and

accurately, aiding in
timely diagnosis.

An AI model diagnoses lung
cancer with high accuracy and

reduced false positives,
improving diagnostic

precision [119].

Faster detection of
life-threatening conditions;

enhanced accuracy compared
to traditional methods;

potential to save lives in
emergency situations.
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Table 3. Cont.

Imaging Modality Application Example of AI System Impact

X-ray

AI applications in X-ray
enhance image analysis for
tumor detection, improving
accuracy and reducing false
positives and negatives. AI
systems serve as a second
reviewer, enhancing the

sensitivity of cancer screening.

AI-based CAD algorithms
significantly improve

radiologists’ sensitivity in
breast cancer detection,

reducing false negatives and
improving cancer detection

rates [120].

Increased sensitivity in
detecting breast cancer lesions;

reduction in false positives
and negatives; enhancement

of radiologists’
diagnostic accuracy.

Ultrasound

AI aids in analyzing
echocardiography scans to

assess cardiovascular function
and detect structural

abnormalities of the heart. AI
systems measure parameters
such as ejection fraction and

aid in diagnosing and
managing heart diseases.

A novel AI algorithm
accurately calculates left

ventricular ejection time in
echocardiography, providing

reliable metrics for cardiac
function assessment [121].

Accurate assessment of
cardiovascular parameters;

reduction in user-dependent
variability; enhancement of

clinical utility
in echocardiography.

1. AI in MRI analysis: AI applications in MRI analysis are versatile, encompassing the
detection of brain abnormalities, tumors, strokes, neurodegenerative diseases, mus-
culoskeletal injuries, cardiac conditions, and liver and abdominal organ pathologies,
as well as evaluating breast and prostate cancers, demonstrating its broad utility in
diagnosing a wide range of medical conditions [122,123]. In addition, deep learning is
now playing a key role in accelerating the MRI acquisition process [92]. An example
of AI application in MRI is an AI system developed for detecting brain abnormal-
ities [118]. This system uses a deep CNN to analyze MRI images and can identify
conditions such as tumors, strokes, and neurodegenerative diseases. The AI not only
detects these abnormalities but also helps in quantifying the volume of affected areas,
which is vital for treatment planning and monitoring disease progression. Another
example is the application of AI in the interpretation of breast cancer. CNNs are
employed to extract features from MRI breast scans, and alongside classifiers, they
effectively detect the presence of cancer, showcasing the potential of AI in enhancing
diagnostic accuracy in breast cancer detection [124]. AI systems are increasingly used
for the automated segmentation of images in radiology [125]. These systems can
differentiate and label various anatomical structures in the images, such as organs and
tissues, aiding radiologists in diagnosis and in planning surgeries or treatments. For
example, a study introduced a 4D deep learning model, combining 3D convolution
and LSTM, for the precise segmentation of hepatocellular carcinoma (HCC) lesions in
dynamic contrast-enhanced MRI images [126]. Utilizing both spatial and temporal
domain information from multi-phase images, the model significantly improved liver
tumor segmentation performance, achieving superior metrics compared to existing
models and offering a comparable performance to the state-of-the-art nnU-Net model
with reduced prediction time. AI is also being adapted for pediatric imaging, ad-
dressing the unique challenges presented by the varying sizes and developmental
stages of pediatric patients [127]. AI systems in this domain are tailored to recognize
and interpret patterns specific to children, aiding in the diagnosis of congenital and
developmental conditions. For instance, in pediatric imaging for focal epilepsy, a deep
CNN model was introduced, excelling in tract classification and identifying critical
white matter pathways with 98% accuracy [128]. This model effectively predicted
surgical outcomes and postoperative language changes, showcasing its potential to
enhance preoperative evaluations and improve surgical precision in children.

2. AI for CT scan interpretation: AI applications in CT scan interpretation span detecting
lung nodules, identifying fractures and hemorrhages, assessing stroke severity, and
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characterizing tumor progression. One innovative AI application in CT imaging is
in the rapid identification of pulmonary embolisms [119]. The AI system processes
CT pulmonary angiograms to detect blood clots in the lungs with high accuracy,
often faster than traditional methods. This speed is critical in emergency situations,
where timely intervention can be life-saving. As another example, Google’s AI, in
collaboration with researchers from Northwestern University, NYU-Langone Medical
Center, and Stanford Medicine, has developed a CT scan model that diagnoses lung
cancer with accuracy equal to or surpassing six radiologists [129]. This model analyzes
3D volumetric scans to predict malignancy and detect subtle lung nodules, viewing
the lungs as a single 3D object and comparing scans over time to track lesion growth.
Tested on over 45,800 de-identified chest CT screenings, it detected 5% more cancer
cases and reduced false positives by over 11% compared to traditional radiologist
evaluations, demonstrating significant potential for enhancing lung cancer diagnosis.

3. AI in X-ray analysis: AI is revolutionizing X-ray analysis across various medical
fields. Take mammography, for instance, AI is transforming breast cancer screening
by enhancing image analysis for tumor detection, improving accuracy in identifying
benign and malignant lesions, and reducing false positives and negatives, thereby
streamlining the diagnostic process for early and effective treatment [130]. These
systems analyze mammograms to identify signs of cancerous lesions, with some
AI models demonstrating the ability to detect cancers that were initially missed by
radiologists. By serving as a second reviewer, these AI systems enhance the accu-
racy of breast cancer screening. A recent study demonstrated that cmAssist™, an
AI-based CAD algorithm based on multiple custom deep learning-based networks,
significantly enhanced radiologists’ sensitivity in breast cancer detection [120]. Ana-
lyzing 122 mammograms with a blend of false negatives and BIRADS 1 and 2 ratings,
radiologists showed a notable improvement in cancer detection rates (CDRs) by an
average of 27% when using cmAssist, with a minimal increase in false positives. This
marked improvement underscores the potential of AI-CAD software in improving
accuracy and sensitivity in breast cancer screening.

4. AI in ultrasound: AI is significantly impacting various applications of ultrasound. In
cardiac imaging, for example, AI systems are used to analyze images from echocardio-
graphy scans to assess cardiovascular function [131]. They can measure parameters
such as the ejection fraction, which indicates how well the heart is pumping blood,
and detect structural abnormalities of the heart. This information is crucial in diag-
nosing and managing heart diseases. For example, a study evaluating a novel AI for
automated left ventricular ejection time calculation in echocardiography showed high
accuracy, closely correlating with cardiac MRI results [121]. The AI, which demon-
strated lower bias and greater reliability especially in challenging cases, outperformed
conventional methods. This algorithm is based on a patented CNN, though specific
details of its architecture and training process remain proprietary. This underscores
the algorithm’s potential in reducing user-dependent variability and enhancing the
clinical utility of echocardiography.

In conclusion, these examples illustrate the diverse and impactful applications of AI
in medical imaging. By enhancing the accuracy, speed, and efficiency of image analysis, AI
systems are proving to be invaluable assets in diagnostic radiology, ultimately leading to
better patient care and outcomes. As AI technology continues to advance, its applications
in medical imaging are expected to broaden, further transforming the field of radiology.

5. AI in Patient Care and Monitoring

The rise of AI in healthcare marks a paradigm shift, promising a future of more efficient
and effective patient care and monitoring. This section explores how AI is enhancing
patient care through innovative technologies and personalized approaches. The focus is on
three key areas: AI-powered wearable devices for continuous monitoring, the impact of
virtual nursing assistants, and AI’s role in telemedicine and remote patient engagement.
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These applications of AI are transforming the way patient care is administered and are
empowering patients with more control over their health and wellness. Table 4 presents
a summary of AI powered technologies for patient care and monitoring covered in this
section. These topics are further discussed in the following:

Table 4. AI-powered technologies for patient care and monitoring.

Main Applications Key Technologies and
Applications Benefits Challenges

AI-powered wearable devices

Continuous physiological
monitoring (heart rate, blood
pressure, etc.); early detection
of health issues; personalized
recommendations for
lifestyle changes

Improved patient engagement;
proactive health management

Data collection and model
deployment; balancing
accuracy with wearable
device limitations

Virtual nursing assistants

24/7 patient support and
health reminders; chronic
disease management; patient
education and
behavior monitoring

Enhanced patient engagement
and education; improved
treatment plan compliance

Data privacy and information
accuracy; ensuring they
complement human care

AI in telemedicine and remote
patient engagement

Advanced diagnostics and
consultations; personalized
virtual consultations; remote
patient monitoring and
predictive analytics

Increased healthcare
accessibility; proactive chronic
condition care

Data privacy, system accuracy,
and integration

5.1. AI-Powered Wearable Devices for Continuous Monitoring

AI-powered wearables mark a breakthrough in patient monitoring, blending conve-
nience with real-time analysis of vital signs like heart rate, blood pressure, blood glucose,
and oxygen saturation. They can also capture additional physiological data like elec-
troencephalography (EEG), electrical activity of the heart (electrocardiography, ECG), and
peripheral physiological signals like photoplethysmography (PPG), providing a more
comprehensive picture of a patient’s health. Especially valuable for managing chronic
conditions, these devices provide timely alerts for crucial interventions, such as notifying
diabetic patients of blood sugar levels to prevent critical episodes [132].

One of the most impactful aspects of these wearables is their ability to analyze col-
lected data and predict potential health issues before they become serious. Utilizing AI
algorithms, these devices can detect patterns or anomalies in health data indicative of
emerging problems. For instance, wearables can analyze heart rate variability [133], other
cardiac markers [134], and sleep patterns [135] to predict the risk of heart conditions and
sleep disorders, facilitating early preventive measures. For example, a novel deep learning
framework based on a hybrid CNN-LSTM model forecasts sleep apnea occurrence from
single-lead ECG with an accuracy of up to 94.95% when validated on 70 sleep record-
ings [135]. This approach utilizes ECG R-peak amplitudes and R-R intervals, making it
suitable for wearable sleep monitors to manage sleep apnea effectively.

AI-powered wearables significantly enhance patient engagement by offering insights
into health metrics and progress, encouraging active health management [136]. These
devices, often paired with companion apps, provide personalized recommendations
for lifestyle changes, medication adherence, and exercise based on the patient’s health
data [137]. Additionally, they are increasingly being used for sleep monitoring, offering
valuable data on sleep patterns and quality [138]. This feature aids in identifying sleep-
related issues, allowing for targeted interventions that can improve overall well-being and
health management.

While AI-powered wearables hold promise for revolutionizing patient care, they face
specific challenges from data collection to model deployment [139]. Collecting sufficient,



Bioengineering 2024, 11, 337 20 of 38

reliable data for training, especially in healthcare, is difficult due to high costs and the
complexity of ensuring data reliability. Selecting the most effective features and frameworks
and evaluating and deploying the best ML models add layers of complexity, compounded
by the necessity for models to generalize well across diverse personal features. Wearable
device developers must also navigate the selection of deployment options, balancing the
advantages of on-device computing against the limitations of power consumption, storage,
and computational power. Addressing these challenges involves a careful trade-off between
model accuracy and the practical constraints of wearable technology, requiring innovations
in model design, data processing, and system integration to optimize the clinical impact
and user acceptance of wearable ML applications.

5.2. Virtual Nursing Assistants

Virtual nursing assistants, powered by AI, are transforming healthcare by offering
continuous patient support and enhancing the efficiency of healthcare services [140]. These
systems provide round-the-clock assistance, including health-related queries, medication
reminders, and appointment scheduling, thereby supporting both patients and healthcare
professionals. For example, AI-driven voice technology, through chatbots on mobile phones
and smart speakers, enhances patient management and healthcare workflow, offering
solutions for acute care triaging, chronic disease management, and telehealth services,
particularly noted during the COVID-19 pandemic [141].

AI systems enhance patient engagement and education through personalized inter-
actions, improving compliance with treatment plans and encouraging healthier lifestyle
choices. A recent study in the Greater Toronto area on patient engagement in AI health-
care development educated diverse participants on AI before gathering their perspectives.
The results indicated a strong desire for early and diverse patient involvement in AI
development stages, emphasizing the critical role of patient education for meaningful
engagement [142].

Additionally, they monitor health status and symptoms for those with chronic condi-
tions, alerting healthcare providers when necessary to prevent complications and reduce
hospital readmissions [143]. Virtual nursing assistants also collect and analyze patient data,
offering insights into patient behavior and healthcare trends [144].

Despite their benefits, challenges such as data privacy, information accuracy, and
ensuring they complement human care remain. With ongoing advancements in AI, virtual
nursing assistants are expected to become more enhanced, promising a future of accessible,
personalized, and efficient healthcare.

5.3. AI in Telemedicine and Remote Patient Engagement

The integration of AI into telemedicine and remote patient engagement is revolution-
izing healthcare accessibility and effectiveness [145]. AI is enhancing telehealth platforms
with advanced diagnostic and consultation services, enabling healthcare providers to diag-
nose patients remotely and personalize virtual consultations based on patient data [146].
AI-powered chatbots and virtual assistants facilitate patient interaction, offering support
and streamlining the appointment process [147], while AI’s role in remote patient monitor-
ing and predictive analytics supports proactive care for chronic conditions and anticipates
potential health issues. For example, a study developed and evaluated PROSCA, an AI-
based medical chatbot for prostate cancer education, involving ten men with suspicion
of prostate cancer [148]. The chatbot effectively increased prostate cancer knowledge
among 89% of its users, with all participants expressing a willingness to reuse and support
chatbots in clinical settings, highlighting its potential in enhancing patient education and
doctor–patient communication.

While AI integration into telemedicine offers enhanced capabilities for remote healthcare
delivery, challenges including data privacy, system accuracy, and seamless healthcare system
integration persist [149]. Despite these obstacles, AI’s incorporation into telemedicine remains
crucial and offers a more accessible, personalized, and proactive healthcare future, where
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technology effectively narrows the distance between patients and providers, supported by
physician-guided implementation and adherence to clinical practices.

6. Methodologies for Assessing AI Healthcare Solutions

Evaluating AI-based healthcare solutions requires a comprehensive approach that
considers various aspects of performance, effectiveness, safety, and ethical considerations.
In this section, we explore the methodologies employed to assess the viability and impact
of AI technologies within healthcare settings.

6.1. Validation

Validation encompasses multiple stages, each crucial for ensuring the reliability and
effectiveness of AI algorithms in healthcare, as elaborated below:

1. Algorithm validation: The successful integration of AI algorithms into healthcare
hinges on their accuracy, reliability, and performance. This necessitates comprehensive
testing using diverse datasets [150]. A critical challenge in this process is overfitting,
where the algorithm performs well on the training data but fails to generalize to
unseen data. To address this, techniques like cross-validation are employed [151].
Cross-validation involves splitting the training data into multiple folds and iteratively
training the algorithm on a subset of folds while using the remaining folds for valida-
tion. This process helps assess how well the algorithm generalizes to new data and
prevents overfitting. Beyond generalizability, AI in healthcare should be adaptable for
personalized use. This means the algorithms should continuously learn from individ-
ual patient data to enable tailored treatment approaches. Rigorous assessment helps
identify strengths, weaknesses, and areas for improvement, ultimately enhancing
the reliability of AI-based healthcare solutions. Furthermore, validation on different
patient groups is essential to address potential biases in the training data. Biases can
lead to unfair and ineffective outcomes for certain demographics. By ensuring the
algorithms perform consistently across diverse populations, we can ensure fairness
and effectiveness for all.

2. Clinical validation: Clinical validation plays a crucial role in assessing the efficacy
and safety of AI interventions [152]. Rigorous clinical trials and studies should be
conducted to compare AI-based interventions with standard treatments or existing
practices. These evaluations can encompass a range of study designs, including
randomized controlled trials (RCTs), observational studies, or real-world evidence
analyses. Through these studies, researchers can determine the effectiveness of AI
technologies in improving patient outcomes and clinical decision-making. Further-
more, defining appropriate outcome measures is essential for assessing the impact
of AI interventions on patient outcomes. Outcome measures such as mortality rates,
disease progression, quality of life, and healthcare costs can be used to evaluate the
effectiveness of AI technologies in improving healthcare delivery.

6.2. Interpretability and Usability

To earn trust and acceptance within the healthcare system, AI technologies must be
interpretable, usable, and ethically sound. Interpretability ensures that AI models provide
clear explanations for their decisions, fostering trust with clinicians who can understand
the reasoning behind recommendations [153]. Usability focuses on the seamless integration
of AI tools into existing workflows for all stakeholders. User-centered design principles,
with active involvement from clinicians and patients throughout development, are crucial
not only for usability but also for user engagement. This collaborative approach fosters a
sense of ownership and trust in the AI solution, ultimately driving successful adoption and
improved patient outcomes.

Furthermore, interpretability extends beyond simply understanding the “why” be-
hind an AI decision. Explainability techniques like feature importance analysis, LIME
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(Local Interpretable Model-agnostic Explanations) [154], and SHAP (SHapley Additive
exPlanations) [155] values can provide deeper insights into the model’s reasoning.

While interpretability and usability are crucial for the initial acceptance of AI solutions,
user engagement plays a vital role in driving long-term trust and successful adoption [156].
User engagement refers to the ongoing interaction and positive user experience with the
AI tool. User-centered design principles can promote engagement as follows:

1. Active stakeholder involvement: Throughout the development process, actively in-
volving clinicians, patients, and other stakeholders provides valuable insights into
their needs and expectations. This collaborative approach fosters a sense of ownership
in the solution, leading to higher engagement.

2. Iterative development and feedback loops: Developing AI solutions is an iterative
process. By incorporating user feedback throughout development cycles, researchers
can refine the AI tool to better address user needs. This ongoing feedback loop not
only improves usability but also strengthens user confidence and engagement.

3. User-friendly interfaces and clear visualizations: Designing clear and user-friendly
interfaces is essential for user engagement. This includes presenting AI outputs in a
way that is easy to understand and interpret, even for users with limited technical
expertise. Additionally, providing clear visualizations of the AI’s reasoning can further
enhance user trust and engagement.

6.3. Scalability and Continuous Improvement

Scalability refers to the ability of AI models to adapt and perform effectively across
diverse healthcare settings, patient populations, and clinical scenarios [157]. An AI model
trained in a large academic hospital, to be truly impactful, needs to adapt and deliver
accurate results in smaller clinics with different patient populations and clinical scenarios.
Scalability ensures AI solutions can be implemented and benefit a wider range of healthcare
providers and patients.

Continuous improvement involves implementing mechanisms for ongoing monitor-
ing, feedback collection, and iterative enhancement of AI solutions over time. This may
include the following:

1. Post-market surveillance: Closely monitoring the performance of AI solutions after
deployment in real-world settings to identify any unforeseen issues or areas for
improvement [158].

2. Performance monitoring: Continuously tracking the effectiveness of the AI tool in
achieving its intended outcomes [159]. These data can be used to identify areas where
the AI can be further optimized.

3. Updating algorithms based on new data and insights: AI algorithms are not static.
As new data become available, or as researchers gain a deeper understanding of the
underlying problem, the algorithms can be updated to improve their performance
and accuracy.

By prioritizing scalability and continuous improvement, researchers and developers
should ensure the long-term success and sustainability of AI-based healthcare solutions in
addressing evolving healthcare challenges.

7. Ethical Considerations and Challenges

As AI continues to enhance the healthcare sector, it brings significant ethical consider-
ations and challenges. This section explores the complex ethical landscape surrounding
the use of AI in healthcare. We will explore the implications of AI on privacy, consent, and
bias, scrutinize the practical challenges in its integration, such as data security and interop-
erability, and discuss the evolving regulatory and compliance landscape. The integration
of AI into healthcare raises fundamental questions about patient rights, data stewardship,
and the equitable delivery of care, demanding a thoughtful and refined approach to its
deployment. Figure 2 navigates the ethical considerations and challenges in healthcare AI.
These topics are further discussed in the following sections:
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7.1. Ethical Implications of AI in Healthcare

The ethical implications of AI in healthcare include various possibilities, including
the following:

1. Privacy concerns: One of the foremost ethical concerns in AI healthcare is the privacy
of patient data. AI systems require access to large datasets of patient information,
which raises questions about the security and confidentiality of sensitive health
data [160]. Ensuring that patient data used for AI applications are anonymized and
securely stored is paramount. There is also a need for transparent policies regarding
who has access to these data and for what purposes.

2. Informed consent: The issue of informed consent in AI healthcare is complex, necessi-
tating clear communication with patients about the use of their data, especially with
AI algorithms that may be challenging for non-experts to grasp. This includes detail-
ing data sharing implications, potential benefits and risks associated with AI-driven
healthcare, and the level of human oversight in AI decisions. More details on the use
of informed consent forms for AI in medicine with a comprehensive guideline for
emergency physicians can be found in [161].

3. Bias and fairness: AI systems are only as unbiased as the data they are trained on.
There is a risk that AI algorithms may perpetuate existing biases present in healthcare
data, leading to unfair treatment outcomes for certain groups [162]. For example,
if an AI system is trained predominantly on data from a specific demographic, its
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accuracy might be lower for patients outside of that demographic. Ensuring that AI
systems are developed and trained on diverse datasets is crucial to mitigate these
biases. Moreover, the continuous monitoring and auditing of AI systems for biased
outcomes are necessary to uphold fairness in healthcare delivery.

4. Transparency and accountability: Transparency in AI decision-making processes is
a key ethical concern [163]. It is important for healthcare providers and patients
to understand how AI systems make their recommendations. This transparency
is essential for building trust in AI systems and for accountability [164]. In cases
where AI-driven decisions impact patient care, it is crucial to have mechanisms in
place to review and understand these decisions, particularly in the event of adverse
outcomes. A recent study highlights the need for transparent and accountable AI
systems in natural NLP to address the “black box” issue of deep learning models [165].
It introduces the Explaining and Visualizing CNNs for Text Information (EVCT)
framework, which offers human-interpretable solutions for text classification with
minimal information loss, aligning with recent demands for fairness and transparency
in AI-driven decision support systems.

In conclusion, while AI presents significant opportunities for enhancing healthcare,
it also introduces complex ethical challenges that must be addressed. Privacy, consent,
bias, transparency, and accountability are critical considerations that need to be carefully
managed to ensure the responsible and equitable use of AI in healthcare.

7.2. Challenges in Integrating AI

The integration of AI in healthcare systems is not without its challenges. Among the
most prominent are issues related to data security and interoperability. These challenges
can impede the effective and safe use of AI in healthcare settings, and addressing them
is crucial for the successful adoption of AI technologies. Some possible challenges in
integrating AI include the following:

1. Data security concerns: As healthcare AI systems require access to large volumes of
sensitive patient data, ensuring the security of these data is paramount [166]. The
risk of data breaches and cyberattacks poses a significant concern. These security
breaches can lead to the exposure of confidential patient information, resulting in
privacy violations and potentially harming the trust between patients and healthcare
providers. Implementing robust cybersecurity measures, including encryption, se-
cure data storage solutions, and regular security audits, is crucial to protect patient
data [167]. Additionally, educating healthcare staff about data security best practices
is essential in safeguarding against breaches.

2. Interoperability between systems: Another major challenge in integrating AI into
healthcare is the issue of interoperability—the ability of different healthcare IT systems
and software applications to communicate, exchange data, and use the information
that has been exchanged [168]. Many healthcare systems use a variety of electronic
health record (EHR) systems and other digital tools that may not be compatible with
one another or with new AI technologies. This lack of interoperability can hinder the
seamless exchange of patient data, reducing the effectiveness of AI tools. Developing
standardized data formats and communication protocols, as well as encouraging the
adoption of interoperable systems, is vital to overcome this challenge [169].

3. Integration with existing clinical workflows: Integrating AI into existing clinical
workflows can be challenging. Healthcare professionals may need to adjust their
workflows to accommodate AI tools, which can be a time-consuming and complex
process. Ensuring that AI systems are user-friendly and align with current clinical
practices is essential to facilitate their adoption. Training and support for healthcare
professionals in using these AI systems are also crucial for successful integration. For
example, in a recent study, a three-tiered integration approach of AI-based image
analysis into radiology workflows is outlined, focusing on enhancing automation
and incorporating radiologist feedback for continuous AI improvement [170]. This
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approach entails initially visualizing AI outcomes without generating new patient
records. It allows for the storage of AI-generated results in institutional systems and
equips radiologists with tools to refine AI inferences for periodic retraining. This
methodology was exemplified in a case study on brain metastases detection, where
radiologist input substantially decreased false positives via iterative retraining with
an expanded dataset.

4. Data quality and quantity: The effectiveness of AI systems depends heavily on
the quality and quantity of the data they are trained on. Inconsistent, incomplete,
or inaccurate data can lead to poor AI performance. Ensuring the collection of
high-quality, comprehensive patient data is therefore a significant challenge in AI
integration [171]. Standardizing data collection methods and ensuring thorough data
curation processes are essential steps in addressing this issue.

7.3. Regulatory and Compliance Issues

The integration of AI into healthcare raises significant regulatory and compliance
issues. Navigating this complex landscape is crucial for ensuring that AI applications
in healthcare are safe, effective, and ethically sound. This subsection discusses the key
regulatory and compliance challenges associated with AI in healthcare.

The regulatory framework for AI in healthcare is still evolving. Different countries and
regions have varying standards and guidelines for the use of AI in medical settings [172,173].
For instance, in the United States, the Food and Drug Administration (FDA) is actively
working on establishing clear guidelines for AI and machine learning-based medical
devices [174]. Ensuring compliance with these regulations, which are often in a state of
flux, is a challenge for AI developers and healthcare providers. Staying up to date with
these developments and comprehending their relevance to AI applications is essential.

AI-based systems used in healthcare often require approval from regulatory bod-
ies [175]. This process can be lengthy and complex, as it involves rigorous testing and
validation of the AI models. Proving the safety and efficacy of AI systems to regulatory
standards is a significant challenge, especially given the dynamic and evolving nature of AI
algorithms. Regulatory bodies are increasingly focusing on the ethical implications of AI,
including concerns about privacy, bias, and transparency. Ensuring that AI systems uphold
these ethical standards and do not compromise patient safety is a key compliance issue.

Compliance with data protection and privacy laws is another major challenge. Laws
such as the General Data Protection Regulation (GDPR) in the European Union and the
Health Insurance Portability and Accountability Act (HIPAA) in the United States impose
strict requirements on the handling of patient data [176]. AI systems that process patient
data must comply with these laws, which involves implementing robust data protection
measures and ensuring that patient data are used in a lawful and transparent manner.

Lastly, and critically, regulatory compliance for AI in healthcare extends beyond a
mere initial approval. It demands continuous monitoring and reporting to ensure ongoing
adherence to standards. This involves regular audits, necessary updates to AI algorithms
to guarantee their correct functioning, and the immediate reporting of any adverse events
or discrepancies to regulatory bodies.

8. The Future of AI in Healthcare

The rapid evolution of AI promises a transformative future for healthcare. This final
section of this paper looks forward to the emerging trends and potential applications of AI
in healthcare, examining how they might shape patient outcomes and the overall delivery
of healthcare services. We will also explore the role of AI in responding to global health
crises, such as pandemics, and its impact on public health strategies.

Table 5 thoroughly outlines the emerging trends and potential impacts of AI in
healthcare. The subsequent sections further investigate and enhance understanding of
these trends.
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Table 5. Emerging trends and potential impacts of AI in healthcare.

Trend/Application Potential Impact Challenges Future Directions

Personalized medicine

Revolutionizes treatment for
diseases with genetic

components, significantly
improving patient outcomes

through customized
care plans.

Data privacy, integration into
clinical practice, and ensuring
equitable access across diverse

patient populations.

Expanding personalized
medicine to encompass
mental health, lifestyle

diseases, and integrating
real-time health monitoring

data for dynamic
treatment adjustments.

AI-powered tools for health
and sleep monitoring

Improved detection and
diagnosis of sleep disorders,

early identification of
potential health issues,

personalized treatment, and
proactive interventions.

Data privacy, accuracy of
predictions, and user

acceptance and comfort with
interventional technologies.

Designing analysis and
intervention technologies to

monitor, predict, and manage
health issues and sleep

disorders; integration with
wearable devices and smart
home technology, providing

real-time adjustments.

Longevity and aging

Unlocks new possibilities in
aging research, promoting

healthier, extended lifespans
through AI-driven genomic
interventions and predictive

analytics for
preventive medicine.

Addressing ethical
implications of longevity

research, ensuring
accessibility and fairness in

anti-aging treatments.

Leveraging AI for
comprehensive health
longevity platforms,
integrating AI with

regenerative medicine, and
creating personalized

anti-aging treatment plans
based on predictive

health analytics.

AI in drug discovery
and development

Reduces time and costs in
drug market introduction,

enhances the efficacy of new
drugs by identifying optimal

candidate molecules.

Ensuring the reliability of AI
predictions; ethical concerns

around automated
decision-making in
drug development.

Leveraging AI to explore
novel drug pathways,

improve clinical trial design,
and predict patient responses
to treatments more accurately.

Advanced robotics in surgery
and rehabilitation

Improves precision in
surgeries and patient

outcomes in rehabilitation,
potentially reducing recovery

times and healthcare costs.

Ethical considerations around
autonomy; the need for robust
training programs for medical

staff on robotic systems.

Developing autonomous
surgical robots, enhancing

robotic systems with sensory
feedback for improved

rehabilitation outcomes, and
expanding applications in

minimally invasive
procedures.

AI hardware accelerators

Faster diagnoses, treatment
planning, and analysis,
improved patient care

outcomes, and real-time
medical data processing.

Integration with medical
devices; cost and power

consumption of accelerators.

Develop healthcare-specific AI
hardware; improve

accessibility of
AI-driven healthcare.

AI-enhanced medical imaging

Enables earlier and more
accurate disease detection,

potentially even identifying
health risks before symptoms
appear, thus shifting towards
preventive healthcare models.

Balancing the need for patient
privacy with the benefits of
data sharing for AI training;

integrating AI tools with
existing

healthcare infrastructures.

Developing AI systems
capable of cross-modality
analysis, improving 3D

imaging techniques, and
creating predictive models for
disease progression based on

imaging data.
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Table 5. Cont.

Trend/Application Potential Impact Challenges Future Directions

Integrating AI with IoT
and wearables

Leads to proactive health
management and

personalized health
recommendations, potentially

reducing emergency
healthcare interventions.

Addressing data security and
ensuring device

interoperability across
different healthcare systems.

Enhancing predictive
analytics for early detection of
health anomalies, creating an
ecosystem of interconnected

devices for holistic health
monitoring; unobtrusive

health monitoring.

Enhancing patient outcomes
and system efficiency

Promises significant
improvements in patient care

through earlier disease
detection, customized

treatments, and optimized
healthcare

resource management.

Ensuring equitable
improvements across all

populations, addressing the
digital divide in

healthcare access.

Implementing AI-driven
health advisories in public

health strategies, optimizing
healthcare delivery models

with predictive resource
allocation, and enhancing

remote patient
monitoring systems.

Global health
monitoring systems

Strengthens global health
security by enabling rapid

response to disease outbreaks
and guiding public health

interventions with
data-driven insights.

Integrating diverse data
streams in real time, adapting
models quickly to emerging

health threats.

Developing global
AI-powered surveillance

systems, enhancing predictive
models for epidemic and

pandemic forecasting, and
creating AI-driven platforms

for vaccine and
therapeutic development.

Addressing data scarcity

Facilitates AI development in
under-researched areas, such
as rare diseases, by making

efficient use of limited
data resources.

Creating effective models
with sparse data, ensuring the

generalizability of findings
from limited datasets.

Exploring novel data
augmentation techniques,
crowdsourcing for data

collection, and
cross-institutional data

sharing initiatives to enrich
datasets. Developing

advanced techniques based on
few-shot leaning.

Ensuring model versatility

Allows for the broader
application of AI models
across varying healthcare

settings and patient
demographics, improving the
universality and accessibility

of AI-driven
healthcare solutions.

Developing adaptable models
that maintain high accuracy

across diverse datasets,
addressing potential biases in

AI training.

Advancing transfer learning
and domain adaptation
techniques that can be

personalized at the point
of care.

Ensuring data privacy

Enhances privacy and security
in healthcare applications,

addressing one of the major
concerns of digital health

data management.

Balancing the utility of data
for AI training with stringent

privacy requirements,
adapting regulations to keep

pace with
technological advancements.

Developing more advanced
privacy-preserving AI

techniques, such as secure
multi-party computation,
federated learning, and

advanced encryption methods
for health data.

Stakeholder acceptance
Successful AI integration in
healthcare; improved trust

and collaboration.

Concerns about AI reliability
and clinician autonomy.

Transparent communication
and training programs.

Building trust with
Explainable AI (XAI)

Enhances the trustworthiness
of AI systems among

healthcare professionals and
patients, ensuring that

AI-supported decisions are
well informed and

ethically sound.

Simplifying complex AI
decision-making processes for

non-technical stakeholders,
ensuring explanations are

meaningful and actionable.

Integrating XAI into clinical
workflows, developing

standards for AI explanations
in healthcare, and educating
healthcare professionals on
interpreting AI decisions.
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8.1. Personalized Healthcare Applications

Future research should continue to prioritize personalized healthcare applications.
Possible future directions in this domain encompass the following:

1. Personalized medicine: One of the most promising trends in AI healthcare is the
move towards more personalized medicine [177]. AI’s ability to analyze vast amounts
of genetic, health data, and lifestyle information will enable the development of
more precise and effective treatments tailored to individual patient profiles. This
personalized approach can improve treatment outcomes and reduce side effects.

2. AI-powered tools for health and sleep monitoring: Future research should explore
the development and validation of AI-driven tools and algorithms for the diagnosis,
monitoring, and management of health issues and sleep disorders [178]. This includes
leveraging machine learning to analyze data from wearable devices such as sleep pat-
terns, heart rate variability, and activity levels. These analyses can, for example, help
detect abnormalities such as sleep apnea and personalize treatment recommendations
based on individual sleep profiles.

3. Longevity and aging: By harnessing the power of predictive analytics, AI can explore
vast datasets to uncover biomarkers of aging and offer personalized strategies to slow
or even reverse the aging process [179]. This includes leveraging AI for genomic inter-
ventions, where it could guide the editing of genes associated with aging mechanisms,
enhancing cellular repair, resilience, and longevity. The potential of AI extends to the
field of drug discovery and repurposing, where it can expedite the identification of
compounds with anti-aging effects [180]. Moreover, AI’s integration into healthcare
promises a paradigm shift towards preventive medicine, emphasizing early detection
and intervention in age-related declines.

8.2. Enhanced Treatment Technologies

Future research should focus on AI-powered technologies for enhancing treatment
methodologies. Some potential future directions include the following:

1. AI in drug discovery and development: AI is poised to play a significant role in
accelerating drug discovery and development [181]. By rapidly analyzing molecular
and clinical data, AI has the potential to identify potential drug candidates much
faster than traditional methods. This acceleration could significantly reduce the time
and cost associated with bringing new drugs to market.

2. Advanced robotics in surgery and rehabilitation: The use of AI-driven robotics in
surgery and rehabilitation is expected to advance further [182]. Robotic systems,
guided by AI algorithms, could potentially perform complex surgeries with high
precision, reducing risks and improving patient outcomes. In rehabilitation, AI-
powered exoskeletons and prosthetics are anticipated to offer greater mobility and
independence to patients.

3. AI hardware accelerators: As AI applications in healthcare grow, the demand for
efficient processing capabilities rises. AI hardware accelerators like GPUs, TPUs, and
FPGAs optimize AI model performance, enabling real-time medical data processing
with minimal latency. Integrating these accelerators into medical devices promises
faster diagnosis, treatment planning, and analysis, thereby enhancing patient care
outcomes. Developing dedicated AI hardware accelerators tailored to healthcare
needs is a promising future direction for improving the efficiency and accessibility of
AI-driven healthcare solutions.

4. AI-enhanced medical imaging: Future developments in AI are likely to produce even
more advanced medical imaging techniques [183]. These advancements could provide
clearer, more detailed images and enable the earlier detection of diseases, potentially
even identifying health risks before symptoms appear.

5. Integrating AI with IoT and wearables: The integration of AI with the Internet of
Things (IoT) and wearable technology is an emerging trend [184]. This combination
could lead to real-time health monitoring systems that not only track health data but
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also provide proactive recommendations and alerts. AI can also be integrated into
existing wearable technologies to provide further information regarding health and
performance [185].

8.3. Healthcare System Optimization

In guiding future research, emphasis should be placed on healthcare system optimiza-
tion, which can include the following:

1. Enhancing patient outcomes and system efficiency: The transformative potential
of AI in healthcare can revolutionize patient care and system efficiency. Future AI
applications aim to detect diseases earlier, customize treatments, and significantly
personalize patient care, leading to improved recovery times and reduced mortality
rates. AI’s role extends to optimizing healthcare resources, reducing costs, and
improving care accessibility, especially for underserved communities [186]. Moreover,
AI will support healthcare professionals by augmenting decision-making, promising
equitable health improvements and a more efficient healthcare delivery system.

2. Global health monitoring systems: The significance of AI in addressing pandemics
and global health emergencies is increasingly recognized as crucial [187]. By integrat-
ing and analyzing diverse data streams, AI is adept at quickly detecting the emergence
of disease outbreaks, projecting their spread, and guiding effective public health inter-
ventions. During the COVID-19 pandemic, AI-powered models were used to predict
the disease’s trajectory, showcasing the potential of AI in navigating the complexities
of pandemic management [188]. Moreover, AI’s capabilities extend to enhancing
public health strategies, enabling the expedited development and dissemination of
vaccines and therapeutic solutions in times of crisis.

8.4. Data Management

Recognizing the critical role of data management, future research should prioritize its
advancement. Data management involves the following:

1. Addressing data scarcity: The scarcity of labeled data in healthcare poses a significant
challenge for AI development, especially in areas like rare disease research where
data are inherently limited. A practical solution to this problem is the implementation
of semi-supervised and weakly supervised learning techniques [189]. By utilizing a
combination of a small set of labeled data and a larger volume of unlabeled data, these
methods improve AI’s learning efficiency from minimal information, offering a viable
strategy for advancing research and treatment in fields where comprehensive labeled
datasets are scarce. However, for certain applications in healthcare, even obtaining a
small amount of labeled data can be difficult. In such cases, emerging techniques in the
field of machine learning offer intriguing possibilities. Few-shot learning: Few-shot
learning requires only a small number of labeled examples for a new concept. This
could be beneficial for situations where obtaining even a small amount of labeled data
for a rare disease is possible. By learning from these few examples, the model could
potentially generalize to similar cases [190,191]. Zero-shot learning (ZSL): In theory,
ZSL could allow AI models to learn about new diseases or medical conditions even
with no labeled data for those specific cases. ZSL leverages existing knowledge and
relationships between concepts to make predictions for unseen categories. While ZSL
is still under development, it holds promise for healthcare applications where data
are extremely limited [192]. Meta-learning: This approach focuses on training models
to “learn how to learn” efficiently. A meta-learning model could be trained on various
healthcare-related tasks with limited datasets for each task. This acquired knowledge
about learning itself could then be applied to new, unseen medical problems with
minimal data, potentially improving performance [193].

2. Ensuring model versatility: Achieving versatility in AI models is essential for their
effective application across the diverse landscape of healthcare settings and patient
demographics. Techniques such as domain adaptation and transfer learning stand
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out as effective solutions, enabling AI models trained on one dataset to adjust and
perform accurately on another with little need for retraining [194]. This capability is
particularly valuable in healthcare, where patient characteristics, disease profiles, and
treatment responses can vary widely [195]. By fostering such adaptability, these tech-
niques ensure that AI can be deployed more universally, enhancing its effectiveness
and utility for a broad spectrum of patients.

8.5. Ethical Considerations and Trust Building

Acknowledging the importance of ethical considerations and trust-building, future
research should concentrate on these aspects. Ethical considerations and trust-building
involve the following:

1. Ensuring data privacy: Addressing data privacy concerns in healthcare has become
increasingly crucial with the rise in AI applications. An exemplary solution to this
challenge is federated learning, a novel AI model training approach that enables algo-
rithms to learn from data stored on local servers across different healthcare institutions
without the need for direct data sharing [196]. This method significantly enhances
privacy and security and offers a strategic advantage in the healthcare industry where
the sensitivity and confidentiality of patient data are of utmost importance.

2. Stakeholder acceptance: Ensuring trust and acceptance among stakeholders is critical
for the successful integration of AI into healthcare practices [197]. This encompasses
not only patients and clinicians but also policymakers, regulatory bodies, healthcare
administrators, and other relevant parties. Patients may express concerns regarding
the reliability and accountability of AI-driven decision-making processes. Therefore,
transparent communication about the role of AI in treatment plans and the potential
benefits it offers is essential to foster patient acceptance. Similarly, clinicians may have
reservations about entrusting AI algorithms with decision-making responsibilities,
fearing loss of autonomy or professional judgment, as well as doubting the accuracy of
AI decisions. Establishing comprehensive training programs and collaborative frame-
works that empower clinicians to understand and validate AI tools effectively can
mitigate these concerns. Furthermore, building trust extends to engaging stakeholders
such as policymakers, regulatory bodies, and healthcare administrators. Transparency
in AI development and deployment, coupled with clear communication about eth-
ical, legal, and regulatory considerations, is crucial for gaining stakeholder trust.
Establishing robust governance frameworks that address these concerns can enhance
confidence in AI systems and ensure accountability.

3. Building trust with Explainable AI: Explainable AI (XAI) aims to make AI decision-
making processes transparent and understandable to humans, a crucial aspect for
clinical applications [198]. By providing insights into how AI models arrive at their
conclusions, XAI fosters trust among healthcare professionals and patients, ensur-
ing that AI-supported decisions are well informed and ethically sound. This trans-
parency is vital for integrating AI into sensitive healthcare decisions, where under-
standing the rationale behind AI recommendations can significantly impact patient
care and outcomes.

To sum up, the future of AI in healthcare is bright and filled with possibilities. While
challenges remain, particularly in terms of ethics, regulation, and integration, the potential
benefits are immense. As AI technology continues to evolve, it promises to revolutionize
healthcare, making it more personalized, efficient, and responsive to global health needs.

9. Conclusions

This paper has provided an in-depth examination of the significant role played by AI
in revolutionizing healthcare. Across various domains, including clinical decision-making,
hospital operations, medical imaging, diagnostics, and patient care through wearable
technologies and virtual assistants, AI has showcased its transformative impact. By en-
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abling enhanced diagnostic accuracy, facilitating personalized treatments, and optimizing
operational efficiency, AI holds promise for reshaping the healthcare landscape.

However, alongside these advancements, AI implementation in healthcare also raises
important ethical considerations. Concerns surrounding data privacy, consent, and bias
necessitate careful integration and adherence to regulatory standards. Balancing the poten-
tial benefits of AI with ethical considerations is imperative for ensuring its responsible and
effective utilization in healthcare settings. In addition, equitable access and affordability
are key building blocks for the future.

Looking towards the future, AI holds immense potential for personalized medicine,
advanced drug discovery, and addressing global health crises. By leveraging AI technolo-
gies, healthcare delivery can become more efficient, data-driven, and patient-centric. Yet,
realizing this potential requires a concerted effort from various stakeholders including
technology developers, healthcare providers, policymakers, and patients.

Author Contributions: Conceptualization, M.F.; methodology, M.F.; investigation, S.M.V. and M.F.;
resources, M.F.; writing—original draft preparation, S.M.V.; writing—review and editing, M.F.;
visualization, S.M.V.; supervision, M.F.; project administration, M.F.; funding acquisition, M.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rajpurkar, P.; Chen, E.; Banerjee, O.; Topol, E.J. AI in health and medicine. Nat. Med. 2022, 28, 31–38. [CrossRef] [PubMed]
2. McCorduck, P.; Cfe, C. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence; CRC Press:

Boca Raton, FL, USA, 2004.
3. Alpaydin, E. Introduction to Machine Learning; MIT Press: Cambridge, MA, USA, 2020.
4. Brynjolfsson, E.; McAfee, A. The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies; WW Norton &

Company: New York, NY, USA, 2014.
5. Russell, S.J.; Norvig, P. Artificial Intelligence a Modern Approach; Pearson: London, UK, 2010.
6. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
7. Wang, F.; Preininger, A. AI in health: State of the art, challenges, and future directions. Yearb. Med. Inform. 2019, 28, 16–26.

[CrossRef] [PubMed]
8. DuBois, K.N. Deep medicine: How artificial intelligence can make healthcare human again. Perspect. Sci. Christ. Faith 2019, 71,

199–201.
9. Davenport, T.H. The AI Advantage: How to Put the Artificial Intelligence Revolution to Work; MIT Press: Cambridge, MA, USA, 2018.
10. Kaur, S.; Singla, J.; Nkenyereye, L.; Jha, S.; Prashar, D.; Joshi, G.P.; El-Sappagh, S.; Islam, M.S.; Islam, S.R. Medical diagnostic

systems using artificial intelligence (ai) algorithms: Principles and perspectives. IEEE Access 2020, 8, 228049–228069. [CrossRef]
11. Cortez, N. Digital Health: Scaling Healthcare to the World; Springer: Cham, Switzerland, 2018; pp. 249–269.
12. Hosny, A.; Parmar, C.; Quackenbush, J.; Schwartz, L.H.; Aerts, H.J. Artificial intelligence in radiology. Nat. Rev. Cancer 2018, 18,

500–510. [CrossRef] [PubMed]
13. Kagiyama, N.; Shrestha, S.; Farjo, P.D.; Sengupta, P.P. Artificial intelligence: Practical primer for clinical research in cardiovascular

disease. J. Am. Heart Assoc. 2019, 8, e012788. [CrossRef] [PubMed]
14. Bardhan, I.; Chen, H.; Karahanna, E. Connecting systems, data, and people: A multidisciplinary research roadmap for chronic

disease management. MIS Q. 2020, 44, 185–200.
15. Huang, S.; Yang, J.; Fong, S.; Zhao, Q. Artificial intelligence in cancer diagnosis and prognosis: Opportunities and challenges.

Cancer Lett. 2020, 471, 61–71. [CrossRef]
16. Binhowemel, S.; Alfakhri, M.; AlReshaid, K.; Alyani, A. Role of Artificial Intelligence in Diabetes Research Diagnosis and

Prognosis: A Narrative Review. J. Health Inform. Dev. Ctries. 2023, 17, 1–12.
17. Guan, Z.; Li, H.; Liu, R.; Cai, C.; Liu, Y.; Li, J.; Wang, X.; Huang, S.; Wu, L.; Liu, D. Artificial intelligence in diabetes management:

Advancements, opportunities, and challenges. Cell Rep. Med. 2023, 4, 101213. [CrossRef] [PubMed]
18. Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare.

Artif. Intell. Med. 2020, 104, 101822. [CrossRef] [PubMed]
19. Eloranta, S.; Boman, M. Predictive models for clinical decision making: Deep dives in practical machine learning. J. Intern. Med.

2022, 292, 278–295. [CrossRef] [PubMed]

https://doi.org/10.1038/s41591-021-01614-0
https://www.ncbi.nlm.nih.gov/pubmed/35058619
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1055/s-0039-1677908
https://www.ncbi.nlm.nih.gov/pubmed/31419814
https://doi.org/10.1109/ACCESS.2020.3042273
https://doi.org/10.1038/s41568-018-0016-5
https://www.ncbi.nlm.nih.gov/pubmed/29777175
https://doi.org/10.1161/JAHA.119.012788
https://www.ncbi.nlm.nih.gov/pubmed/31450991
https://doi.org/10.1016/j.canlet.2019.12.007
https://doi.org/10.1016/j.xcrm.2023.101213
https://www.ncbi.nlm.nih.gov/pubmed/37788667
https://doi.org/10.1016/j.artmed.2020.101822
https://www.ncbi.nlm.nih.gov/pubmed/32499001
https://doi.org/10.1111/joim.13483
https://www.ncbi.nlm.nih.gov/pubmed/35426190


Bioengineering 2024, 11, 337 32 of 38

20. Nezamabadi, K.; Sardaripour, N.; Haghi, B.; Forouzanfar, M. Unsupervised ECG analysis: A review. IEEE Rev. Biomed. Eng. 2022,
16, 208–224. [CrossRef] [PubMed]

21. Coronato, A.; Naeem, M.; De Pietro, G.; Paragliola, G. Reinforcement learning for intelligent healthcare applications: A survey.
Artif. Intell. Med. 2020, 109, 101964. [CrossRef] [PubMed]

22. Sarvamangala, D.; Kulkarni, R.V. Convolutional neural networks in medical image understanding: A survey. Evol. Intell. 2022, 15,
1–22. [CrossRef] [PubMed]

23. Yang, Y.; Zhang, L.; Du, M.; Bo, J.; Liu, H.; Ren, L.; Li, X.; Deen, M.J. A comparative analysis of eleven neural networks
architectures for small datasets of lung images of COVID-19 patients toward improved clinical decisions. Comput. Biol. Med. 2021,
139, 104887. [CrossRef] [PubMed]

24. Rim, B.; Sung, N.-J.; Min, S.; Hong, M. Deep learning in physiological signal data: A survey. Sensors 2020, 20, 969. [CrossRef]
[PubMed]

25. Bahrami, M.; Forouzanfar, M. Sleep apnea detection from single-lead ECG: A comprehensive analysis of machine learning and
deep learning algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 4003011. [CrossRef]

26. Yi, X.; Walia, E.; Babyn, P. Generative adversarial network in medical imaging: A review. Med. Image Anal. 2019, 58, 101552.
[CrossRef]

27. Hu, Y.; Kothapalli, S.V.; Gan, W.; Sukstanskii, A.L.; Wu, G.F.; Goyal, M.; Yablonskiy, D.A.; Kamilov, U.S. DiffGEPCI: 3D MRI
Synthesis from mGRE Signals using 2.5 D Diffusion Model. arXiv 2023, arXiv:2311.18073.

28. Wang, J.; Liu, X. Medical image recognition and segmentation of pathological slices of gastric cancer based on Deeplab v3+ neural
network. Comput. Methods Programs Biomed. 2021, 207, 106210. [CrossRef] [PubMed]

29. Nagabushanam, P.; Thomas George, S.; Radha, S. EEG signal classification using LSTM and improved neural network algorithms.
Soft Comput. 2020, 24, 9981–10003. [CrossRef]

30. Kawazoe, Y.; Shibata, D.; Shinohara, E.; Aramaki, E.; Ohe, K. A clinical specific BERT developed using a huge Japanese clinical
text corpus. PLoS ONE 2021, 16, e0259763. [CrossRef] [PubMed]

31. Torfi, A.; Fox, E.A.; Reddy, C.K. Differentially private synthetic medical data generation using convolutional GANs. Inf. Sci. 2022,
586, 485–500. [CrossRef]

32. Lin, X.; Quan, Z.; Wang, Z.-J.; Ma, T.; Zeng, X. KGNN: Knowledge Graph Neural Network for Drug-Drug Interaction Prediction; IJCAI:
Pasadena, CA, USA, 2020; pp. 2739–2745.

33. Zhou, B.; Yang, G.; Shi, Z.; Ma, S. Natural language processing for smart healthcare. IEEE Rev. Biomed. Eng. 2022, 17, 4–18.
[CrossRef]

34. Yang, X.; Chen, A.; PourNejatian, N.; Shin, H.C.; Smith, K.E.; Parisien, C.; Compas, C.; Martin, C.; Costa, A.B.; Flores, M.G. A
large language model for electronic health records. NPJ Digit. Med. 2022, 5, 194. [CrossRef] [PubMed]

35. McKinney, S.M.; Sieniek, M.; Godbole, V.; Godwin, J.; Antropova, N.; Ashrafian, H.; Back, T.; Chesus, M.; Corrado, G.S.; Darzi, A.
International evaluation of an AI system for breast cancer screening. Nature 2020, 577, 89–94. [CrossRef]

36. Jian, Y.; Pasquier, M.; Sagahyroon, A.; Aloul, F. A machine learning approach to predicting diabetes complications. Healthcare
2021, 9, 1712. [CrossRef]

37. Fan, Y.; Long, E.; Cai, L.; Cao, Q.; Wu, X.; Tong, R. Machine learning approaches to predict risks of diabetic complications and
poor glycemic control in nonadherent type 2 diabetes. Front. Pharmacol. 2021, 12, 665951. [CrossRef]

38. Yuan, X.; Chen, J.; Zhang, K.; Wu, Y.; Yang, T. A stable AI-based binary and multiple class heart disease prediction model for
IoMT. IEEE Trans. Ind. Inform. 2021, 18, 2032–2040. [CrossRef]

39. Ali, F.; El-Sappagh, S.; Islam, S.R.; Kwak, D.; Ali, A.; Imran, M.; Kwak, K.-S. A smart healthcare monitoring system for heart
disease prediction based on ensemble deep learning and feature fusion. Inf. Fusion 2020, 63, 208–222. [CrossRef]

40. Vieira, S.; Pinaya, W.H.; Mechelli, A. Using deep learning to investigate the neuroimaging correlates of psychiatric and neurological
disorders: Methods and applications. Neurosci. Biobehav. Rev. 2017, 74, 58–75. [CrossRef] [PubMed]

41. Gautam, R.; Sharma, M. Prevalence and diagnosis of neurological disorders using different deep learning techniques: A
meta-analysis. J. Med. Syst. 2020, 44, 49. [CrossRef] [PubMed]

42. Murugan, S.; Venkatesan, C.; Sumithra, M.; Gao, X.-Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A deep learning model
for early diagnosis of Alzheimer diseases and dementia from MR images. IEEE Access 2021, 9, 90319–90329. [CrossRef]

43. Bartsch, G., Jr.; Mitra, A.P.; Mitra, S.A.; Almal, A.A.; Steven, K.E.; Skinner, D.G.; Fry, D.W.; Lenehan, P.F.; Worzel, W.P.; Cote, R.J.
Use of artificial intelligence and machine learning algorithms with gene expression profiling to predict recurrent nonmuscle
invasive urothelial carcinoma of the bladder. J. Urol. 2016, 195, 493–498. [CrossRef] [PubMed]

44. Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial intelligence in drug discovery and development.
Drug Discov. Today 2021, 26, 80. [CrossRef] [PubMed]

45. Gupta, R.; Srivastava, D.; Sahu, M.; Tiwari, S.; Ambasta, R.K.; Kumar, P. Artificial intelligence to deep learning: Machine
intelligence approach for drug discovery. Mol. Divers. 2021, 25, 1315–1360. [CrossRef] [PubMed]

46. Hasselgren, C.; Oprea, T.I. Artificial Intelligence for Drug Discovery: Are We There Yet? Annu. Rev. Pharmacol. Toxicol. 2024, 64,
527–550. [CrossRef]

47. Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.; Bridgland, A. Improved
protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [CrossRef]

https://doi.org/10.1109/RBME.2022.3154893
https://www.ncbi.nlm.nih.gov/pubmed/35226604
https://doi.org/10.1016/j.artmed.2020.101964
https://www.ncbi.nlm.nih.gov/pubmed/34756216
https://doi.org/10.1007/s12065-020-00540-3
https://www.ncbi.nlm.nih.gov/pubmed/33425040
https://doi.org/10.1016/j.compbiomed.2021.104887
https://www.ncbi.nlm.nih.gov/pubmed/34688974
https://doi.org/10.3390/s20040969
https://www.ncbi.nlm.nih.gov/pubmed/32054042
https://doi.org/10.1109/TIM.2022.3151947
https://doi.org/10.1016/j.media.2019.101552
https://doi.org/10.1016/j.cmpb.2021.106210
https://www.ncbi.nlm.nih.gov/pubmed/34130088
https://doi.org/10.1007/s00500-019-04515-0
https://doi.org/10.1371/journal.pone.0259763
https://www.ncbi.nlm.nih.gov/pubmed/34752490
https://doi.org/10.1016/j.ins.2021.12.018
https://doi.org/10.1109/RBME.2022.3210270
https://doi.org/10.1038/s41746-022-00742-2
https://www.ncbi.nlm.nih.gov/pubmed/36572766
https://doi.org/10.1038/s41586-019-1799-6
https://doi.org/10.3390/healthcare9121712
https://doi.org/10.3389/fphar.2021.665951
https://doi.org/10.1109/TII.2021.3098306
https://doi.org/10.1016/j.inffus.2020.06.008
https://doi.org/10.1016/j.neubiorev.2017.01.002
https://www.ncbi.nlm.nih.gov/pubmed/28087243
https://doi.org/10.1007/s10916-019-1519-7
https://www.ncbi.nlm.nih.gov/pubmed/31902041
https://doi.org/10.1109/ACCESS.2021.3090474
https://doi.org/10.1016/j.juro.2015.09.090
https://www.ncbi.nlm.nih.gov/pubmed/26459038
https://doi.org/10.1016/j.drudis.2020.10.010
https://www.ncbi.nlm.nih.gov/pubmed/33099022
https://doi.org/10.1007/s11030-021-10217-3
https://www.ncbi.nlm.nih.gov/pubmed/33844136
https://doi.org/10.1146/annurev-pharmtox-040323-040828
https://doi.org/10.1038/s41586-019-1923-7


Bioengineering 2024, 11, 337 33 of 38

48. Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [CrossRef]
[PubMed]

49. Bica, I.; Alaa, A.M.; Lambert, C.; Van Der Schaar, M. From real-world patient data to individualized treatment effects using
machine learning: Current and future methods to address underlying challenges. Clin. Pharmacol. Ther. 2021, 109, 87–100.
[CrossRef]

50. Vettoretti, M.; Cappon, G.; Facchinetti, A.; Sparacino, G. Advanced diabetes management using artificial intelligence and
continuous glucose monitoring sensors. Sensors 2020, 20, 3870. [CrossRef] [PubMed]

51. Low, D.M.; Bentley, K.H.; Ghosh, S.S. Automated assessment of psychiatric disorders using speech: A systematic review.
Laryngoscope Investig. Otolaryngol. 2020, 5, 96–116. [CrossRef] [PubMed]

52. Graham, S.; Depp, C.; Lee, E.E.; Nebeker, C.; Tu, X.; Kim, H.-C.; Jeste, D.V. Artificial intelligence for mental health and mental
illnesses: An overview. Curr. Psychiatry Rep. 2019, 21, 116. [CrossRef] [PubMed]

53. Nasrullah, S.; Jalali, A. Detection of Types of Mental Illness through the Social Network Using Ensembled Deep Learning Model.
Comput. Intell. Neurosci. 2022, 2022, 9404242. [CrossRef] [PubMed]

54. Guntuku, S.C.; Yaden, D.B.; Kern, M.L.; Ungar, L.H.; Eichstaedt, J.C. Detecting depression and mental illness on social media: An
integrative review. Curr. Opin. Behav. Sci. 2017, 18, 43–49. [CrossRef]

55. Czerwinski, M.; Hernandez, J.; McDuff, D. Building an AI That Feels: AI systems with emotional intelligence could learn faster
and be more helpful. IEEE Spectr. 2021, 58, 32–38. [CrossRef]

56. Torab-Miandoab, A.; Samad-Soltani, T.; Jodati, A.; Rezaei-Hachesu, P. Interoperability of heterogeneous health information
systems: A systematic literature review. BMC Med. Inform. Decis. Mak. 2023, 23, 18. [CrossRef]

57. Díaz-Rodríguez, N.; Del Ser, J.; Coeckelbergh, M.; de Prado, M.L.; Herrera-Viedma, E.; Herrera, F. Connecting the dots in
trustworthy Artificial Intelligence: From AI principles, ethics, and key requirements to responsible AI systems and regulation. Inf.
Fusion 2023, 99, 101896. [CrossRef]

58. Gurevich, E.; El Hassan, B.; El Morr, C. In Equity within AI systems: What can health leaders expect? Healthc. Manag. Forum 2023,
36, 119–124. [CrossRef]

59. Dwivedi, Y.K.; Hughes, L.; Ismagilova, E.; Aarts, G.; Coombs, C.; Crick, T.; Duan, Y.; Dwivedi, R.; Edwards, J.; Eirug, A. Artificial
Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and
policy. Int. J. Inf. Manag. 2021, 57, 101994. [CrossRef]

60. Jebbor, S.; Raddouane, C.; El Afia, A. A preliminary study for selecting the appropriate AI-based forecasting model for hospital
assets demand under disasters. J. Humanit. Logist. Supply Chain Manag. 2022, 12, 1–29. [CrossRef]

61. Galli, L.; Levato, T.; Schoen, F.; Tigli, L. Prescriptive analytics for inventory management in health care. J. Oper. Res. Soc. 2021, 72,
2211–2224. [CrossRef]

62. Tien, P.W. Deep Learning-Powered Vision-Based Energy Management System for Next-Gen Built Environment; University of Nottingham:
Nottingham, UK, 2023.

63. Zamzam, A.H.; Hasikin, K.; Wahab, A.K.A. Integrated failure analysis using machine learning predictive system for smart
management of medical equipment maintenance. Eng. Appl. Artif. Intell. 2023, 125, 106715. [CrossRef]

64. Mizan, T.; Taghipour, S. Medical resource allocation planning by integrating machine learning and optimization models. Artif.
Intell. Med. 2022, 134, 102430. [CrossRef]

65. Munavalli, J.R.; Boersma, H.J.; Rao, S.V.; Van Merode, G. Real-time capacity management and patient flow optimization in
hospitals using AI methods. Artif. Intell. Data Min. Healthc. 2021, 2021, 55–69.

66. Adhikari, A.; Joshi, R.; Basu, S. Collaboration and coordination strategies for a multi-level AI-enabled healthcare supply chain
under disaster. Int. J. Prod. Res. 2023, 2023, 1–27. [CrossRef]

67. Samadhiya, A.; Yadav, S.; Kumar, A.; Majumdar, A.; Luthra, S.; Garza-Reyes, J.A.; Upadhyay, A. The influence of artificial
intelligence techniques on disruption management: Does supply chain dynamism matter? Technol. Soc. 2023, 75, 102394.
[CrossRef]

68. Sun, W.; Bocchini, P.; Davison, B.D. Applications of artificial intelligence for disaster management. Nat. Hazards 2020, 103,
2631–2689. [CrossRef]

69. Tang, A.; Tam, R.; Cadrin-Chênevert, A.; Guest, W.; Chong, J.; Barfett, J.; Trump, D.; Noorbakhsh-Sabet, N.; Zand, R.; Zhang, Y.
Health information management: Implications of artificial intelligence on healthcare data and information management. Yearb.
Med. Inform. 2019, 28, 56–64.

70. Hoogendoorn, M.; Szolovits, P.; Moons, L.M.; Numans, M.E. Utilizing uncoded consultation notes from electronic medical records
for predictive modeling of colorectal cancer. Artif. Intell. Med. 2016, 69, 53–61. [CrossRef] [PubMed]

71. Thesmar, D.; Sraer, D.; Pinheiro, L.; Dadson, N.; Veliche, R.; Greenberg, P. Combining the power of artificial intelligence with the
richness of healthcare claims data: Opportunities and challenges. Pharmacoeconomics 2019, 37, 745–752. [CrossRef]

72. Baudry, M.; Robert, C.Y. A machine learning approach for individual claims reserving in insurance. Appl. Stoch. Models Bus. Ind.
2019, 35, 1127–1155. [CrossRef]

73. Samorani, M.; Blount, L.G. Machine learning and medical appointment scheduling: Creating and perpetuating inequalities in
access to health care. Am. Public Health Assoc. 2020, 110, 440–441. [CrossRef]

74. Chong, L.R.; Tsai, K.T.; Lee, L.L.; Foo, S.G.; Chang, P.C. Artificial intelligence predictive analytics in the management of outpatient
MRI appointment no-shows. Am. J. Roentgenol. 2020, 215, 1155–1162. [CrossRef] [PubMed]

https://doi.org/10.1038/s41586-023-05905-z
https://www.ncbi.nlm.nih.gov/pubmed/37100941
https://doi.org/10.1002/cpt.1907
https://doi.org/10.3390/s20143870
https://www.ncbi.nlm.nih.gov/pubmed/32664432
https://doi.org/10.1002/lio2.354
https://www.ncbi.nlm.nih.gov/pubmed/32128436
https://doi.org/10.1007/s11920-019-1094-0
https://www.ncbi.nlm.nih.gov/pubmed/31701320
https://doi.org/10.1155/2022/9404242
https://www.ncbi.nlm.nih.gov/pubmed/35378814
https://doi.org/10.1016/j.cobeha.2017.07.005
https://doi.org/10.1109/MSPEC.2021.9423818
https://doi.org/10.1186/s12911-023-02115-5
https://doi.org/10.1016/j.inffus.2023.101896
https://doi.org/10.1177/08404704221125368
https://doi.org/10.1016/j.ijinfomgt.2019.08.002
https://doi.org/10.1108/JHLSCM-12-2020-0123
https://doi.org/10.1080/01605682.2020.1776167
https://doi.org/10.1016/j.engappai.2023.106715
https://doi.org/10.1016/j.artmed.2022.102430
https://doi.org/10.1080/00207543.2023.2252933
https://doi.org/10.1016/j.techsoc.2023.102394
https://doi.org/10.1007/s11069-020-04124-3
https://doi.org/10.1016/j.artmed.2016.03.003
https://www.ncbi.nlm.nih.gov/pubmed/27085847
https://doi.org/10.1007/s40273-019-00777-6
https://doi.org/10.1002/asmb.2455
https://doi.org/10.2105/AJPH.2020.305570
https://doi.org/10.2214/AJR.19.22594
https://www.ncbi.nlm.nih.gov/pubmed/32901567


Bioengineering 2024, 11, 337 34 of 38
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