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Abstract: This study aims to explore how artificial intelligence can help ease the burden on caregivers,
filling a gap in current research and healthcare practices due to the growing challenge of an aging
population and increased reliance on informal caregivers. We conducted a search with Google Scholar,
PubMed, Scopus, IEEE Xplore, and Web of Science, focusing on AI and caregiving. Our inclusion
criteria were studies where AI supports informal caregivers, excluding those solely for data collection.
Adhering to PRISMA 2020 guidelines, we eliminated duplicates and screened for relevance. From
947 initially identified articles, 10 met our criteria, focusing on AI’s role in aiding informal caregivers.
These studies, conducted between 2012 and 2023, were globally distributed, with 80% employing
machine learning. Validation methods varied, with Hold-Out being the most frequent. Metrics
across studies revealed accuracies ranging from 71.60% to 99.33%. Specific methods, like SCUT in
conjunction with NNs and LibSVM, showcased accuracy between 93.42% and 95.36% as well as F-
measures spanning 93.30% to 95.41%. AUC values indicated model performance variability, ranging
from 0.50 to 0.85 in select models. Our review highlights AI’s role in aiding informal caregivers,
showing promising results despite different approaches. AI tools provide smart, adaptive support,
improving caregivers’ effectiveness and well-being.

Keywords: artificial intelligence; machine learning; informal caregiver; quality of life; burnout;
ambient intelligence; digital health

1. Introduction

More than 43 million family caregivers in the United States alone provide complex
medical care to relatives, with nearly half performing nursing tasks, often learning in-
dependently [1,2]. Technology aimed at supporting these caregivers should incorporate
personalized systems based on user personas. For example, the CarePortfolio platform
in the TOPIC project serves as an information resource, emotional support, and commu-
nication tool between informal and formal caregivers, enhancing task management and
scheduling [3]. Meanwhile, in countries like Italy with aging populations and caregiver
shortages, initiatives like the GUARDIAN ecosystem offer robotic assistance and mobile
applications to improve the daily lives and care quality of the elderly through human–robot
interactions [4]. Moreover, artificial intelligence (AI) has been proven to be beneficial in
patient care, from facilitating communication for those with cerebral palsy using facial
recognition-based Morse codes to preventing pressure ulcers in immobile patients and
detecting early signs of Alzheimer’s disease [5–7]. AI-driven wearable devices also enable
remote patient monitoring [8]. Despite these advancements, the full potential of AI in
enhancing informal caregiver support remains largely untapped.
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1.1. Background

The aging global population has led to a surge in the demand for informal caregivers.
Currently, millions of caregivers tend to family members with chronic and life-limiting
conditions. In the United States alone, over 43 million family caregivers play a crucial role
in supporting the healthcare system [1,9,10].

An informal caregiver is generally a close friend or family member who offers consis-
tent support to a patient. While the contributions of these caregivers are invaluable, the
responsibility of caring for a loved one, often coupled with a lack of choice in assuming the
caregiver role, can impose significant stress and burdens, with female carers experiencing
particular strain [11–14].

Caregivers confront a range of challenging situations, from managing the pain of
terminally ill patients to overseeing at-home rehabilitation post-stroke [15,16]. Despite
these hurdles, a mere 7.3% of them receive training for their crucial role [9]. It is important
to integrate caregiver assessment and management into every patient’s care process [11].
This involves regular evaluations for conditions like post-traumatic stress disorder [17],
the provision of digital tools aimed at bridging the knowledge gap [18–20], and offering
enhanced support [3,21–26].

Artificial intelligence (AI) empowers machines to perform tasks that typically require
human intelligence, such as logical reasoning, learning, and problem solving [27]. In health-
care, the rapid advancement of innovative solutions like digital healthcare management,
and particularly those driven by AI, addresses both longstanding and emerging chal-
lenges [28]. Algorithms from AI subsets, like machine learning (ML) and natural language
processing (NLP), have consistently complemented various facets of patient care [29,30].
When combined with human input, AI enhances precision and efficiency, with ML, in
particular, aiding in pattern recognition, decision making, and facilitating personalized
interventions [30].

Various AI solutions, including an array of support robots [31–34], have been devel-
oped to address the need for assistance in care. AI-enabled devices have the potential to
significantly enhance the independence of older adults in managing their health. This
technological support not only promotes autonomy and self-reliance among the elderly but
also helps in reducing the burden on caregivers [35]. This is achieved through facilitating
coordinated care and analyzing data from various facets of a patient’s life and care, taking
into account their frailty [36]. Such data encompass aspects like sleep quality [37] as well
as seniors’ mobility, cognitive functions, and communication abilities [38]; however, these
tools predominantly serve patients or professional caregivers in hospitals and nursing
centers [39–41], or solely collect patient data through smart homes and ambient assisted
living, offering little to no guidance or information to informal caregivers [42–44]. These
tools are crucial in caregiving, significantly easing the burden on caregivers; however,
they primarily focus on the routine and daily care of elderly individuals [45,46], rather
than addressing the specific needs of patients. This distinction is important, as the care
required for a patient can vastly differ from that for a healthy elderly person or child,
and addressing these unique needs can greatly impact the lives of caregivers. Research
focusing on aiding caregivers of patients with diverse needs remains limited. These studies
primarily investigate the application of AI to directly support informal caregivers, rather
than indirectly through patient care. Methodologies vary from evaluating burnout risk
among informal caregivers of patients undergoing dialysis or suffering from amyotrophic
lateral sclerosis (ALS) to enhancing their quality of life [47–49], as well as providing care-
giving knowledge [50]. AI assistance may include robotic aid [51] and initiatives aimed at
reducing the caregiving burden by improving caregivers’ work–life balance [52]; however,
challenges such as ethical concerns over invasions of privacy due to data recording, the
risk of system malfunctions, or providing inaccurate information, may arise. Furthermore,
caregivers might become excessively dependent on these AI services [53].
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1.2. Problem Statement and Research Questions

The majority of research focusing on AI aid for informal caregivers primarily targets
those caring for patients with Alzheimer’s and dementia (35–37), neglecting the unique
assistance needs of caregivers for patients with other chronic diseases. As the need for
long-term care grows daily and informal caregivers play a pivotal role, we explored AI-
driven solutions addressing informal caregiver burdens beyond those of dementia and
Alzheimer’s patients.

Our systematic review aims to answer the following questions:

1. How does AI impact the support of informal caregivers for patients?
2. How well do various AI strategies perform in caregiver-related tasks for informal caregivers?
3. What obstacles prohibit the integration of AI solutions in caregiving?
4. What weaknesses exist in the present research, and which areas are recommended for

future exploration?

2. Methods

In this section, we detail the structured methodologies applied to identify and analyze
the relevant literature on the use of artificial intelligence in assisting informal caregivers.
Section 2.1. outlines the comprehensive search strings, including most related search
terms and keywords, and describes our search methods across multiple databases. We
then proceed with the study eligibility and selection process in Section 2.2., providing our
PRISMA flow diagram. The quality of the studies is evaluated in Section 2.3. Finally, we
conclude with a data synthesis and analysis in Section 2.4.

2.1. Databases Searched and Search Strategy

We combined research terms and keywords from different units using Boolean operators—
AND, OR, and NOT—to refine our literature search. ‘AND’ was used to narrow results to
documents containing all specified terms, enhancing search specificity. ‘OR’ broadened
the search to include documents with any terms, increasing coverage. ‘NOT’ excluded
irrelevant terms, streamlining the dataset for a more focused analysis. Table 1: Two
independent investigators conducted a systematic search across four electronic databases
and the Google Scholar search engine to identify relevant studies on artificial intelligence’s
role in supporting informal caregivers. The selected databases were PubMed, Scopus, IEEE
Xplore, and Web of Science. We conducted our search on 1 September 2023, without any
date restrictions. The search string was tailored to suit the unique features of each database.
For detailed search strings per database, see Supplemental File S1.

Table 1. Research units and search terms.

Research Unit Search Terms/Keywords

Technologies AI, ML, NLP, artificial intelligence, machine learning, deep
learning, neural networks, and natural language processing

Care context

home caregivers, home care, care at home, family caregivers,
home caretaker, home carers, home patient caregivers,

home-based patient care, home caregivers for patients, home care
for patients, non-professional caregiver, informal caregiver,

unpaid caregiver, unpaid informal carer, and relative caregiver

Exclusion criteria healthy child, general child care, nurse, doctor, physician, and
medical professional

2.2. Study Eligibility and Selection Process

We included studies that utilized AI-based tools or algorithms to assist informal
caregivers of patients.

We excluded studies if AI’s primary function was solely data collection from patients
(e.g., sensors, ambient assisted living (AAL)), they were without empirical data involv-
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ing human subjects (e.g., literature reviews, book reviews, commentaries), they did not
involve family or informal caregivers as participants, they mainly centered on diagnos-
ing/screening dementia patients or aiding caregivers of Alzheimer’s disease patients, their
investigations were not centered on AI technology, they were focused on caregivers tending
to healthy individuals, articles were not available in English, or we could not retrieve the
full texts.

We structured our review based on the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) 2020 guidelines [54] (Figure 1). After searching
the mentioned databases using our search string, we systematically reviewed each pa-
per’s sections for completeness. Articles were included if they matched our search crite-
ria or contained relevant substrings. Duplicates were removed using Endnote software
(version 20.4.1).
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2.3. Data Quality and Risk of Bias Assessment

We employed a three-step approach to assess the quality and relevance of articles.
Initially, titles and abstracts were screened for relevance. Subsequently, articles were
skimmed for pertinent details before a thorough assessment was made in relation to our
research questions. Given the diverse nature of AI methodologies in caregiving and the
absence of standardized reporting, instead of traditional risk of bias tools we crafted a
tailored approach. Each study was critically appraised by the first two authors, focusing on
its design, AI methodology clarity, and validation techniques. In cases of disagreement,
the third author made the final determination. Emphasis was placed on studies with
transparent reporting, and we consulted domain experts to ensure depth of understanding.
Potential biases inherent to our review process are acknowledged in the limitations section.
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2.4. Data Synthesis and Analysis

We extracted key details from the selected studies aligned with our review focus,
including author names, publication year, and study location.

3. Results
Characteristics of Included Studies

Our initial search produced 947 articles. After applying the eligibility criteria, 10 arti-
cles remained, discussing the use of artificial intelligence to support informal caregivers
of patients.

The studies in the reviewed articles were conducted from 2012 to 2023 across various
countries, including the Netherlands [53], Thailand [55], Italy [47], Canada [56], Ger-
many [50,52], Ireland [48,49], Korea [51], and United States [57].

Eight of these studies primarily employed machine learning models [47–52,55,57], one
utilized a chatbot [56], and another incorporated model-based reasoning [53]. Addition-
ally, one study developed a novel health risk analysis system, based on a risk analysis
classifier (RAC) and using the SCUT algorithm [55]. Regarding validation methods, four
studies [47,49,50,57] implemented Hold-Out validation, one solely used 10-fold CV [48],
and another deployed both 2-fold CV and 10-fold CV [52]. It is noteworthy that two studies
did not specify their validation methods [51,56].

In studies using SCUT with neural networks (NNs) and LibSVM, accuracy ranged from
93.42% to 95.36%. Global accuracy varied between 71.60% and 78.70%, while Caregiver
Quality of Life Index-Revised (CQLI-R) metrics demonstrated 68% to 92% accuracy based
on categories like physical and social characteristics. Metrics from different datasets showed
accuracy between 80.00% and 99.33%. Precision for SCUT (NNs and LibSVM) was between
94.81% and 95.95%. CQLI-R metrics’ precision varied from 45% to 92%, and certain dataset
metrics approached near-perfect precision scores (0.9993). Recall values for SCUT (NNs and
LibSVM) spanned 93.42% to 95.40%. For CQLI-R metrics, the range was 45% to 92%. The
F-measure in SCUT (NNs and LibSVM) studies was between 93.30% and 95.41%. CQLI-R
metrics had F-measures from 52% to 84%. Area under the curve (AUC) values showcased
model variability. In quality of life (QoL) and clinical decision support system (CDSS)
models, AUC ranged from 0.50 to 0.85. Other metrics displayed AUC values from 0.72 to
0.83. Table 2 shows the characteristics of the included studies.
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Table 2. Included studies’ characteristics.

Author Location Study Aim Study Design Participants Type of AI Validation Method Metric Scores

Aziz et al.,
2012 [53] Netherlands

Designing an ambient
agent to assist caregivers

of patients
with depression.

Model development
and validation

Three fictional types
of caregivers (CG1,
CG2, and CG3) in

simulation
experiments

Model-based
reasoning

Simulation
experiments

Verification of
identified properties

N/A

Suksawatchon
et al., 2018 [55] Thailand

Introducing a new expert
system to assess

caregivers’ health risk
levels in mental, physical,
and social domains and

provide customized
interventions for each.

Model development
and validation

Data of
150 caregivers to

train and evaluate
the RAC model

RAC: HRAS
(classifier technique

and rule-based
classifier)

SCUT algorithm
(hybrid sampling

technique)
ML:

Decision tree
Naive Bayes (Kernel)

NN
LibSVM

k-fold CV
Experts with

annotated and
unseen data

Accuracy with SCUT:
NN: mental (ACC at 94.71%),

social (ACC at 95.36%);
LibSVM: physical (ACC

at 93.42%)
Precision with SCUT:
NN: mental (94.81%),

physical (94.81%), and
social (95.95%)

Recall with SCUT:
NN: mental (94.74%);

LibSVM: physical (93.42%);
NN: social (95.40%)

F-measure with SCUT:
NN: mental (94.67%);

LibSVM: physical (93.30%);
NN: social (95.41%)

Costa et al.,
2018 [47] Italy

Assessing burnout risk
in dialysis patient

caregivers and develop a
stress measurement tool.

Model development
and validation

Seven hundred and
thirteen family
caregivers of

dialysis patients

ML:
DNN Hold-Out validation

Sample training (%) and
sample test (%):

Correct forecast (no stress):
62.80, 72.00

Correct forecast (stress):
78.80, 83.70

Global accuracy: 71.60, 78.70
Area under ROC: 0.802, 0.802
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Table 2. Cont.

Author Location Study Aim Study Design Participants Type of AI Validation Method Metric Scores

Joerin et al.,
2018 [56] Canada

Examining how a mental
health chatbot provides
customized, immediate

emotional support to
family caregivers at a

non-profit organization.

Technical report

Relatives of patients
aged 20–59, with

most between
50 and 59

Tess chatbot N/A N/A

Wolff et al.,
2019 [50] Germany

Using a personalized
system to offer targeted
educational content to

caregivers based on
their needs.

Model development
and validation

Three thousand and
two hundred

artificially created
profiles for training

the ANN and six
hundred and forty

randomly generated
profiles for the
validation set

ML:
ANN

Hold-Out Validation
End-Validation Set

Utilized Termination
Criterion

Total training epochs:
374,700

Incorrectly ordered training
profiles: 8 out of 3200

Final MSE (training set):
8.585 × 10−8

Final MSE (validation set):
7.731 × 10−8

Antoniadi et al.,
2020 [48] Ireland

Predicting caregiver
burden in ALS patients

and identify related
features using

machine learning.

Model development
and validation

Ninety ALS patients
and their

primary caregivers

ML:
random forest 10-fold CV

Metric/model: Model M2,
Model M3, and Model M9
Ten-fold CV—sensitivity:

0.82, 0.80, and 0.71
Ten-fold CV—specificity:

0.77, 0.83, and 0.63
Independent test

data—sensitivity: 0.92, 0.80,
and 0.84

Independent test
data—specificity: 0.78, 0.78,

and 0.72
AUC: 0.85, 0.83, and 0.79
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Table 2. Cont.

Author Location Study Aim Study Design Participants Type of AI Validation Method Metric Scores

Antoniadi et al.,
2021 [49] Ireland

Identifying caregiver
QoL predictors and
creating models for

a CDSS.

Model development
and validation

Ninety patient and
caregiver pairs

ML:
LASSO

XGBoost
Hold-Out Validation

Model: F1, recall, precision,
and AUC

Predictors of QoL:
Baseline: 0.76, 0.72, 0.81,

and 0.72;
Full: 0.84, 0.83, 0.86, and 0.80;
M7: 0.83, 0.83, 0.83, and 0.77

CDSS models:
Baseline-CDSS: 0.52, 0.45,

0.62, and 0.50;
Full-CDSS: 0.71, 0.72, 0.70,

and 0.61;
M10-CDSS: 0.75, 0.79, 0.72,

and 0.65;
M6-CDSS: 0.70, 0.72, 0.68,

and 0.58

Kim et al.,
2022 [51] Korea

Developing “Dori,” a
robot for supporting frail

elderly at home,
balancing their dignity
and caregiver values

within the
HCAI framework.

Technical report Caregivers, nurses,
and clinicians ML N/A

Caregivers, medical staff,
T-value, and p-value

Cognitive activity: 6.05
(±1.77), 5.64 (±2.23), 0.96,

and 0.344
Emotional activity: 6.36
(±1.78), 5.6 (±3.04), 1.63,

and 0.109
Physical activity: 5.82

(±2.69), 5.32 (±2.62), 1.02,
and 0.311

Medication instruction: 6.05
(±2.59), 6.04 (±1.64), 0.01,

and 0.990
Caregiver management: 5.86

(±2.94), 5.4 (±2.32), 0.96,
and 0.342



Bioengineering 2024, 11, 483 9 of 18

Table 2. Cont.

Author Location Study Aim Study Design Participants Type of AI Validation Method Metric Scores

Demiris et al.,
2022 [57] United States

Evaluating ML classifiers’
relation to anxiety and
QoL based on spoken

words and features from
caregiver–therapist talks.

Model development
and validation

Dataset of
124 audio-recorded

conversations
between hospice

patient caregivers
and a therapist

ML:
LR (text and audio)
DL: (ASR System
(DeepSpeech2))

Hold-Out Validation

Classifier: precision, recall,
accuracy, and specificity

CQLI-R (total): 73%, 79%,
76%, and 73%

Physical: 80%, 86%, 83%,
and 80%

Financial: 69%, 90%, 81%,
and 75%

Social: 82%, 69%, 73%,
and 78%

Emotional: 77%, 63%, 68%,
and 75%

GAD: 92%, 88%, and 89%

Wunderlich
et al., 2023 [52] Germany

Using ML to guide
family caregivers in

healthcare decisions and
caregiving tasks.

Model development
and validation

Twenty-eight use
cases, crafted by

care experts

ML:
random forest

Two-fold and
ten-fold CV

Metrics: Dataset 100, Dataset
500, Dataset 1000

Accuracy: 80.00%, 99.33%,
and 99.33%

F1-score: 0.9306, 0.9993,
and 0.9993

Two-fold CV: 56%, 97.78%,
and 99.7%

Ten-fold CV: 73%, 99.2%,
and 99.8%

Hamming loss: 0.01764,
0.00039, and 0.00039

Coverage error: 6.06, 4.85,
and 4.94

Label ranking average
precision: 0.9209, 0.9993,

and 0.9993
Label ranking loss: 0.0648,

0.0011, and 0.0011

Abbreviations: ACC (accuracy), ANN (artificial neural network), ASR (automated speech recognition), AUC (area under the curve), CDSS (clinical decision support system), CQLI-R
(Caregiver Quality of Life Index-Revised), CV (cross-validation), DL (deep learning), DNN (deep neural network), final MSE (final mean squared error), GAD-7 (Generalized Anxiety
Disorder Scale, 7-item), HRAS (health risk analysis system), LASSO (least absolute shrinkage and selection operator), LR (logistic regression), ML (machine learning), NN (neural
network), RAC (risk analysis classifier), and XGBoost (extreme gradient boosting).
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4. Discussion

Although the volume of data on AI-powered tools that assist informal caregivers and
family members of patients is limited, there is growing research in this area, which is the
focus of our study. We analyzed the extracted data from these studies, categorizing and
discussing them in terms of how AI supports mental health, enhances decision making, and
reduces burdens to improve quality of life for caregivers. This comprehensive approach
enables us to clearly define the diverse roles that AI plays in caregiving contexts.

4.1. Implications and Key Findings

Our systematic review reveals that AI holds significant promise in aiding informal
caregivers of patients across various dimensions. Research has evidenced a range of
metric scores, contingent on different contexts. Notably, AUC is a key metric, providing
a comprehensive assessment of a classifier’s ability to distinguish effectively between
positive and negative classes. Additionally, accuracy reflects the model’s overall correctness,
with values closer to 100% indicating higher reliability. Some studies have explored the
development of an ambient agent to aid caregivers of depression patients, utilizing model-
based reasoning [53]. Meanwhile, other research has introduced advanced systems for
evaluating caregivers’ health risks across mental, physical, and social domains, offering
tailored interventions. Notably, a study achieved a maximum accuracy of 95.36% and a
precision of 95.95% in the social domain when using a neural network [55].

In evaluating burnout risk among caregivers of dialysis patients and creating a stress
measurement tool, one study reported a global accuracy of 78.70% and an AUC of 80.2%
using their test sample for a deep neural network (DNN) model [47]. Using chatbots, one
study examined providing customized, immediate emotional support to family caregivers
at a non-profit organization [56]. Another personalized system provided tailored educa-
tional content to caregivers. Their artificial neural network (ANN) model achieved a low
training error (MSE: 8.585 × 10−8) and demonstrated consistent performance on the valida-
tion set (MSE: 7.731 × 10−8), indicating no overfitting [50]. In 2020 a study [48] focused on
caregivers’ burdens using random forest algorithms and achieved the best AUC in their M2
group, indicating better classification capabilities. In the next year, the same group assessed
the QoL of the caregivers, and the full model for predictors achieved the best metrics across
F1 score, recall, precision, and AUC [49]. The F1 score is a comprehensive metric that
considers both precision and recall. Recall (sensitivity) and precision show the fraction of
correctly identified positives and the correctness of the positive predictions, respectively.
The p-value and T-value are metrics of statistical significance. In a report by [51] on “Dori”,
a robot assisting elderly individuals, they reported a T-value of 0.96 and a p-value of 0.342
for caregiver management, and a T-value of 0.01 with a p-value of 0.990 for medication
instruction. This suggests both groups—caregivers and medical staff—view these aspects
similarly, with minimal differences in their ratings. In [57], ML effectively analyzed spoken
conversations to assess caregivers’ anxiety and quality of life. The Generalized Anxiety
Disorder 7-item (GAD) metric showed the highest recall at 92%, and the overall CQLI-R
had an accuracy and specificity of 76% and 73%, respectively. The most recent study, from
2023, used an ML algorithm to assist family caregivers in making healthcare decisions
and executing caregiving tasks. For the datasets of sizes 100, 500, and 1000, the model
achieved accuracies of 80%, 99.33%, and 99.33% respectively, with corresponding F1-scores
and 10-fold CV results improving proportionally.

4.1.1. Mental Health Support for Family and Informal Caregivers

While taking care of loved ones can place a significant burden on patients’ family
members, the mental health of caregivers is often overlooked.

Joerin et al. [56] attempted to address this gap by using “Tess” as a low-cost, user-
friendly support system for various types of caregivers, especially the family members of
patients. Tess is a proprietary psychological AI-powered on-demand chatbot introduced by
X2AI Inc. (X2) (San Francisco, CA, USA). It can be accessed via text messaging or integrated
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with voice-enabled Amazon systems. While Tess previously demonstrated a reduction
in symptoms of anxiety and depression in students by 18% and 13%, respectively [58],
it was integrated with the “Elizz Caregiver” program at SE Health in Canada to assess
its suitability for caregivers’ needs in two phases. Tess exchanged 12,000 messages with
caregivers, and 88% of users found it helpful.

Offering a range of support, from cognitive behavioral to psychodynamic therapy,
chatbots such as Tess present affordable and flexible programming. This adaptability is
crucial when considering aids for caregivers. Furthermore, the absence of a control group
in the study might introduce bias, complicating determinations about the program’s true
effectiveness. It is worth mentioning that while digital solutions offer many advantages,
it is crucial to acknowledge their inherent limitations. Greater familiarity with such tools
often correlates with increased usage.

Studies show that many family caregivers face health issues due to insufficient exercise,
neglecting annual health check-ups, and experiencing sleep disturbances [55]. Utilizing
web-derived health data, Suksawatchon et al. [55] developed the health risk analysis system
(HRAS). This system processes caregiver information collected by nurses, transforming it
to evaluate health risks in mental, physical, and social domains. Based on these evaluations,
the HRAS suggests interventions to aid family caregivers of disabled individuals. Notably,
their use of NNs yielded an accuracy rate exceeding 90% across all datasets. In another
study by Aziz et al. [53], based on [59], an ambient support for caregivers of patients
with depression was developed and evaluated. They paid attention to three important
aspects of caregiving, these being incoming stressors, mediating conditions, and caregiver
outcomes. They examined a dynamic model focused on interactions during caregiving
under stressful conditions, and through computational modeling and simulation they
illustrated the impact of support or lack thereof on both caregivers and the individuals they
care for; however, the specificity of this computational model to a particular scenario raises
concerns about its generalizability to diverse contexts. Moreover, without benchmarking
against a recognized gold standard or empirical data, the veracity and validity of the results
remain uncertain.

4.1.2. How Does AI Enhance Decision Making for Caregivers?

Machine learning offers assistance to overwhelmed caregivers by providing a decision-
support system that guides them toward the most appropriate next steps in care. In a
newly published study [52], researchers implemented a machine learning-based digital case
manager designed to assist family caregivers in balancing their caregiving responsibilities
with their personal lives. Data were collected through a questionnaire completed by
caregivers. The algorithm was trained using seven distinct modules that outlined various
use cases and their corresponding schemas. Furthermore, labels indicating subsequent
steps were incorporated to guide caregiving actions. During the evaluation, their obtained
model’s performance significantly improved in metrics when moving from Dataset 100 to
Dataset 500/1000 in two-fold and ten-fold cross-validation (two-fold CV 56% to 99.7% and
ten-fold CV 73% to 99.8%). While the study employed the random forest classifier as its
model, employing more advanced and complex algorithms, like deep learning techniques,
could potentially yield better results; however, these sophisticated models require more
comprehensive data and usually do not perform well with limited datasets, such as the ones
utilized in this study. This limitation may compromise the reliability and generalizability
of the outcomes.

This is the same as in [50], which used a shallow artificial neural network that pos-
sessed a wide architecture. In comparison with methods like random forests, this neural
network can efficiently leverage parallel processing. With the appropriate training strategy,
it also managed to avoid overfitting.

Since informal carers often lack the formal nursing training required to care for their
loved ones optimally, Wolff et al. [50] tackled the knowledge gap in informal caregivers
through a personalized educational system. While their prior model utilized a statistical
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ranking to prioritize topics, they enhanced it by integrating a learning mechanism to factor
in user feedback. They trained this updated system on 3200 artificially generated profiles
and assessed its accuracy using another 640 profiles, specifically examining the system’s
topic ordering ability. Although their model can adapt based on real caregiver feedback,
its limited training data and specialized setup may constrain its generalizability, despite
decreasing training and validation errors.

Kim et al. [51] developed an adult-guided, caregiver-monitored robot named Dori to
support older adults, while also addressing ethical concerns and incorporating feedback
from stakeholders. Operating within the field of the human-centered artificial intelligence
(HCAI) framework, the authors tailored the programming of Dori, drawing from pref-
erences identified in caregiver groups from previous studies. The robot offers services
with effective design features such as search functions, medication instructions, cognitive
and physical activity prompts, and caregiver management tools. Additionally, it pro-
vides affective design services like emotional support; however, the robot has not been
tested in a long-term or real-world setting, which can decrease the generalizability of the
obtained model.

4.1.3. AI, Caregivers’ Burden, and Quality of Life

Informal caregiving often affects caregivers’ QoL, particularly impacting their mental
and physical well-being, especially when caring for patients with both motor and cognitive
issues. To devise an effective support system for caregivers, it is crucial to understand
the challenges they face and the underlying factors [60–62]. In a recent study, Antoniadi
et al. [49] examined the QoL of caregivers for patients with amyotrophic lateral sclerosis
(ALS). Their prior research [48] identified caregivers’ quality of life and psychological
distress as primary indicators of burden. This observation was quantified using a random
forest model as a predictor that demonstrated a sensitivity of 0.92 and specificity of 0.78.
Building on these findings, they further explored factors affecting caregiver QoL and
designed a machine learning alert system for clinical decision making support. Utilizing
the McGill QoL questionnaire, they preprocessed their data by handling missing values
and transforming variables. They initially employed a logistic regression model and
later advanced to the more powerful XGBoost for predictive modeling. This integrated
approach aims to enhance clinical decision making and interventions, potentially providing
caregivers with timely support and resources. Additionally, their utilization of SHAP
(SHapley Additive exPlanations) amplifies model explainability and feature importance
analysis in machine learning. It is worth noting that the inherently subjective nature of
assessing QoL, combined with the rarity of ALS and the subsequent small sample size, can
introduce challenges and potential prediction errors.

In a separate study focused on identifying burnout risk factors among caregivers of
patients with chronic degenerative diseases, particularly chronic kidney disease (CKD),
researchers [47] employed validated questionnaires. Following a principal component
analysis (PCA) with varimax rotation on 29 questionnaire items, they utilized the resulting
information as input variables for developing a neural network model. The model was
applied to four key components: emotional and physical impact, assistance burden, need
for interaction with medical professionals, and perceived tension.

In the test group, the predictions achieved 72% accuracy when caregivers were not
experiencing stress and 83.7% accuracy when they were, resulting in an overall accuracy
rate of 78.7%. Notably, the study identified care load and tension as the most significant
factors in predicting caregiver stress.

The NN model they developed has the potential to be incorporated into a mobile app,
which could alleviate the burden on caregivers while also reducing caregiving costs and
saving time. The same can be said about the study by Demiris et al. [57], which demon-
strated that, by utilizing ML classifiers, one can accurately predict QoL improvements
of caregivers of hospice patients. For the first time, their AI models employ a custom-
trained automated speech recognition system using DeepSpeech2 to transcribe speech, and
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a logistic-regression-based classifier to utilize both transcribed text and extracted acoustic
features to predict caregivers’ quality of life and anxiety levels. By integrating sound
dimensions, they achieved a precision of 92% and an accuracy of 89%.

Leveraging classical ML models is advantageous with smaller datasets, enabling the
real-time evaluation of new data; however, their inability to process extensive datasets limits
their generalizability. Alternatively, employing transfer learning enhances the accuracy
and generalizability of small datasets by utilizing DNNs, offering a viable solution for
achieving superior results [57]. In the field of artificial intelligence and machine learning
model deployment, the integrity, consistency, and methodology of data preprocessing hold
extensive importance in shaping outcomes. Equally crucial is the selection of a suitable
target population. For instance, research indicates that younger caregivers often face
a more pronounced decline in QoL [49]. Requirements based on the demographics of
caregivers, such as age, can significantly influence the effectiveness of the chosen model.
This, in turn, can impact the precision of the instrument and alter clinical decision-making
hierarchies. Such variations can be attributed to differing life aspirations and engagements,
underscoring the need to factor in these elements when exploring AI’s role in the caregiving
landscape. Figure 2 illustrates a spectrum of AI technologies that are enhancing the support
system for informal caregivers. These tools, including robots, chatbots, mobile applications,
wearables, and predictive tools for caregiver burden, are each tailored to address specific
aspects of caregiving. Collectively, they contribute to a more supportive and manageable
caregiving experience [63].
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4.2. Limitations

Although the studies highlight the high quality and utility of AI-powered tools in
reducing the burden on informal caregivers, several challenges affect their daily implemen-
tation. Caregivers may become overly dependent on these tools, potentially diminishing
direct interaction with patients. Additionally, there are privacy concerns, as these devices
collect sensitive information to offer appropriate assistance, and the risk of inaccuracies
due to algorithms being trained on limited datasets. This underscores the need for more
diverse caregiving scenarios to address various challenges [48,49,53].
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Web-based tools, such as [55], face accessibility issues related to Internet connectivity.
Moreover, both staff and caregivers require adequate training to utilize these tools effec-
tively, interpret results, and manage complex care directives, which can be time-consuming
and intricate [48–50,52,55]. Similarly, mobile applications demand a certain level of tech-
nological literacy from caregivers, which may not always be feasible [47]. Furthermore,
the training of these tools on hypothetical rather than real-world cases may compromise
their accuracy when applied in actual caregiving settings. Consequently, these tools can-
not replace comprehensive care management and often necessitate significant external
supervision [52].

In this systematic review, we encompassed studies from various settings and method-
ologies. The diversity in reported results and data across these studies precluded a consis-
tent assessment of bias risk, potentially neglecting inherent biases in the studies. Addition-
ally, due to these discrepancies, we refrained from comparing the derived algorithms. While
PROBAST [64] is a widely recognized tool for assessing the risk of bias in prediction model
studies, its application to our selection of studies was challenging due to the variety of AI
methodologies and the broad context in which they were used. As a result, a consistent risk
of bias assessment using PROBAST was not feasible. Instead, we aimed to critically discuss
the methodologies and results of each study, emphasizing their individual limitations
and strengths. Due to the abundance of research on family caregivers for dementia and
Alzheimer’s patients, we excluded related studies, potentially introducing a bias into our
assessment. Future reviews could benefit from a broader scope, including caregivers for
different conditions. While this review incorporated some studies based on models that
exhibit AI-like decision-making capabilities, some of these models might not align with
contemporary AI paradigms due to their publication era. It is essential for future research
to consider integrating state-of-the-art AI models, enhancing the accuracy and precision of
the algorithms, thus optimizing decision-making processes.

4.3. Recommendations for Future Research

Future research can expand the application of these models across diverse healthcare
settings, particularly in decision-making domains. Implementing these programs in real-
world scenarios and varied settings can provide a broader spectrum of caregivers. It is
essential to recognize that, for example, the support required by caregivers of paralyzed
patients might differ significantly from those tending to patients with major depressive
disorder; thus, tailoring solutions to specific caregiving situations is crucial. Furthermore,
increasing the sample size and employing more advanced AI algorithms can enhance the
accuracy of predictions and reduce the potential for bias in forecasting. In future systematic
reviews, it is advisable to consider conducting a meta-analysis to reduce the risk of bias
and yield more robust results.

5. Conclusions

In our in-depth analysis of 10 studies exploring the role of AI in supporting informal
caregivers, we examined the strengths and limitations of each methodology. These models
consistently produced impressive results, with AUC values ranging from 0.72 to 0.83 and
accuracies between 71.60% and 78.70%. Our findings highlight the significant contribution
of informal caregivers in patient care; however, considering their immense burden and
reduced quality of life, there is an urgent need for enhanced support for this population.
Leveraging AI-driven models can provide intelligent, efficient, and tailored assistance to
these caregivers.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/bioengineering11050483/s1, Supplemental File S1: The detailed search
strings per database.
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