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Abstract: The global prevalence of obesity presents a pressing challenge to public health and health-
care systems, necessitating accurate prediction and understanding for effective prevention and
management strategies. This article addresses the need for improved obesity prediction models by
conducting a comprehensive analysis of existing machine learning (ML) and deep learning (DL)
approaches. This study introduces a novel hybrid model, Attention-based Bi-LSTM (ABi-LSTM),
which integrates attention mechanisms with bidirectional Long Short-Term Memory (Bi-LSTM) net-
works to enhance interpretability and performance in obesity prediction. Our study fills a crucial gap
by bridging healthcare and urban planning domains, offering insights into data-driven approaches
to promote healthier living within urban environments. The proposed ABi-LSTM model demon-
strates exceptional performance, achieving a remarkable accuracy of 96.5% in predicting obesity
levels. Comparative analysis showcases its superiority over conventional approaches, with superior
precision, recall, and overall classification balance. This study highlights significant advancements in
predictive accuracy and positions the ABi-LSTM model as a pioneering solution for accurate obesity
prognosis. The implications extend beyond healthcare, offering a precise tool to address the global
obesity epidemic and foster sustainable development in smart cities.

Keywords: obesity prediction; deep learning; attention; multi-class classification; smart health of
residents; smart living towards sustainable city development

1. Introduction

Over the last three decades, the mean body mass index (BMI; weight in kilograms
divided by square height in meters) has increased worldwide by 0.4 kg m−2 per decade,
which causes obesity [1]. Obesity is an abnormal condition in which excess fat accumulates
in adipose tissue to the point of affecting health. Too many fat cells or increased body
fat lead to obesity. As a result of the abundance of food consumed, sedentary lifestyles,
and lack of physical activity, obesity is a complex issue [2,3]. Approximately 13% of the
adult population worldwide was obese in 2016, according to the World Health Organization
(WHO) [4]. A significant portion of the obese population is from younger generations since
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over 34 million children under 5 are overweight [5]. These alarming statistics illustrate that
effective strategies are needed to stem obesity’s rising tide [6].

Many researchers accounted for a cohort effect for combined time and age effects by
analyzing cross-sectional data on obesity prevalence [7]. Many researchers have adopted
a holistic approach to obesity risk assessment, employing lifestyle, genetic, and dietary
data [8–10]. Physiological and demographic factors were used to predict obesity risk in
ref. [11]. Despite its impressive accuracy in initial trials, the model struggled to handle
non-linear relationships within the dataset. As a result, obesity’s multifactorial etiology
poses a challenge because complex interactions are required to capture them. Another
study used neural networks, they developed intricate neural architectures for forecasting
obesity onset, achieving commendable predictions [12]. Nevertheless, it could be limited
in its application when limited data are available due to its reliance on substantial labeled
training data. The field’s progress depends on balancing predictive power with data quality
and practicality in practice.

There have been various approaches to obesity prediction, resulting in insights accom-
panied by inherent limitations [13]. Longitudinal studies incorporate lifestyle and genetic
data for dynamic risk forecasting, but retrospective self-reporting introduces bias [14]. En-
semble models in machine learning enhance prediction performance, but it also demands
robust data quality [15–17]. Real-time health monitoring is essential for risk assessment,
yet continuous data streams and privacy concerns present challenges [18–20]. By encom-
passing holistic influences, mitigating biases, and striking a balance between innovation
and practicality, these models reveal the complexity of obesity prediction. With the advent
of neural networks, obesity prediction has gained a new dimension [21]. In addition to
using intricate neural architectures for predicting obesity onset, Landscape pushed the
boundaries of model complexity [22]. These models demonstrated a commendable level of
predictive accuracy. Despite this, such architectures require a substantial amount of labeled
training data, potentially limiting their utility in scenarios with limited access to data. Al-
though these pioneering studies contribute to our understanding of obesity prediction, they
also highlight certain limitations. There are inherent challenges associated with lifestyle
changes, genetic influences, and their interaction within the obesity ecosystem due to their
dynamic nature. Additionally, these models are susceptible to self-reported data biases. It
becomes increasingly apparent that obesity prediction models need to be refined as the
field advances. By considering both individual characteristics as well as societal factors,
a comprehensive and integrated approach could yield more robust solutions.

In this paper, we propose a novel solution to address the pressing global issue of
obesity by introducing the Attention-based Bi-LSTM (ABi-LSTM) model. The proposed
ABi-LSTM model leverages the power of machine learning and deep learning to enhance
obesity level prediction and significantly improve performance in terms of accuracy, preci-
sion, recall, and f1 score. With an accuracy of 96.5%, the ABi-LSTM model outperforms
all existing state-of-the-art models, constituting a revolutionary breakthrough towards
accurate obesity forecasting. Our research presents an innovative method for accurately
predicting obesity levels, showcasing substantial improvements in predictive performance.
The discoveries have far-reaching implications for public health and related research areas,
offering a robust and precise mechanism to tackle the worldwide obesity crisis. Moreover,
our investigation underscores the importance of comprehensive data collection through
questionnaires and sensor data, enabling us to explore the intricate interactions among
environmental influences, genetic effects, and lifestyle variables. Our study bridges the
gap between healthcare and urban planning, illuminating the potential of data-driven
techniques to promote healthy living in urban environments in a world that is fast evolving
and where the idea of smart cities is gaining traction. Additionally, the hybrid technique
we presented makes a number of noteworthy additions, which are enumerated as follows:

• Introduction of the Attention-based Bi-LSTM (ABi-LSTM) model, achieving a remark-
able accuracy of 96.5% in obesity prediction.
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• Advancements in predictive accuracy surpass existing models, offering a superior tool
for obesity prognosis.

• Significance for public health and healthcare systems, addressing the global obesity
epidemic with a precise and robust solution.

• Emphasis on comprehensive data collection, utilizing surveys and sensor data to cap-
ture the complex interactions between lifestyle, genetics, and environmental factors.

• Bridging the gap between healthcare and urban planning in the context of smart cities,
offering insights into promoting healthier living within urban environments.

2. Related Work

Obesity prediction has evolved with various methodologies, addressing its intricate
nature. In the early stages of research, statistical approaches were employed, as demon-
strated by Anderson et al. [23] in their meta-analysis of long-term weight loss trends.
A further breakthrough was made by Jiménez-Santos et al. in federated learning for secure
medical data sharing [24]. The inclusion of genetic and non-genetic attributes has enriched
predictive models. Using electronic health records, Chu et al. [25] identified key risk factors
using decision trees. The researchers combined genetic markers with dietary habits to
improve prediction accuracy by using random forests. Network-based strategies were
developed using multi-omics data to construct obesity-related interaction networks [26].

We investigated temporal trends in predictors [27] using recurrent neural networks
(RNNs) for time series analysis. A natural language processing approach was used to
identify obesity-related language patterns in unstructured clinical text by Seddik et al. [28].
Choi et al. [29] incorporated an attention mechanism into deep learning for interpretabil-
ity. Hybrid models, such as Bhavya et al.’s [30] ensemble model that combines support
vector machines with random forests to predict disease, received attention. Using domain
knowledge, Pan et al. [31] enhanced predictive capabilities by integrating deep learning
with domain knowledge. In addition, in [32–34], the authors introduced deep learning
models based on RNNs to enhance the prediction performance by investigating temporal
data patterns for sustainable city development. Jain et al. [35] also used a random forest
approach to optimize prediction accuracy by selecting genetic features. Wang et al. [36]
presented the FL-STNet model, leveraging the Swin-Transformer network with focal loss
for identifying pathological subtypes of lung adenocarcinoma. It demonstrates superior
accuracy in classifying lung adenocarcinoma subtypes compared to pathologists, with an
average classification accuracy of 85.71%. In [37,38], the authors investigated different
parameters towards sustainable city development. Similarly, in [39], the authors attempted
to determine a monotonic relationship between temporal parameters. Different analyses
are employed in [40] to investigate the seasonal coherence in temporal data for sustainable
city development. In [41], Huang et al. proposed the LA-ViT model for grading laryngeal
squamous cell carcinoma (LSCC) based on histopathological images. It employs trans-
formers constrained by learned-parameter-free attention to enhance interpretability and
reduce the proportion of low-effect background semantic information, improving accuracy
in LSCC grading.

Interdisciplinary research has flourished as a means of predicting obesity more com-
prehensively. From genetic and metabolic data, Watanabe et al. [42] developed a deep
learning model to predict body mass index. Feretzakis et al. [43] explored domain-specific
data to enhance classification performance. Using deep learning, they predicted nosoco-
mial infections. Multimodal approaches have also gained traction. The multimodal deep
learning model developed by Yoo et al. [44] integrates genetic, clinical, and behavioral
data. Marcos et al. [45] examined how genetic and dietary factors interact in interaction
networks. By leveraging textual information, they could predict obesity using natural
language processing. Using ensemble machine learning, Zhang et al. [46] enhanced obe-
sity risk assessment by including genetic and lifestyle factors. Lin et al. [47] investigated
genotypic and phenotype information integration with multi-omics data. Khan et al. [48]
applied automated ML on multi-source data in response to the advent of big data of pa-
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tients rehabilitation. In addition, Ven et al. [49] used multidimensional models to predict
obesity by combining genetic, clinical, and environmental factors. Similarly, in [50,51],
the authors introduced a hybrid model by combining U-Net and spatial transformation
network to enhance prediction using temporal data. In [52], the authors used a Monte
Carlo-based analysis method to analyze spatially distributed data for enhancing sustainable
city development. Using multi-source data, Safaei et al. [53] enhanced the accuracy of
obesity risk prediction by integrating deep learning.

Machine learning techniques were used by Siddiqui et al. [54] to predict early obesity
based on longitudinal data. Callens et al. [55] combined random forests with gradient
boosting to improve prediction accuracy. Through the integration of wearable device data,
Gholamhosseini et al. [56] developed a model for assessing obesity risk in real time. Social
network analysis shows Nam et al. [57] could predict obesity based on social interactions
and behavior patterns. Si et al. [58] proposed a transfer learning approach to account for
varying data distributions.

According to Jiang et al. [59], the interdisciplinary exploration extended to image-based
prediction based on medical images. In addition, Chong et al. [60] used graph-based models
to capture the complex relationships between genetic markers and obesity. A deep learning
model for obesity prediction based on explainable AI was introduced by Gupta et al. [61].
Huang et al. [62] also focused on machine learning interpretability when selecting features
and explaining models in obesity prediction. As a result, obesity prediction research has
embraced diverse methodologies, each bringing a unique perspective to its multifaceted
nature. This field is characterized by the synergy of several techniques, including traditional
statistics, deep learning, network analysis, image analysis, and interpretability methods.

3. Methodology

Obesity is a growing issue on a global and local level that transcends socioeconomic
and geographic barriers. Obesity is seen as a serious public health issue and is linked to
many annual deaths. It is important to look into factors contributing to obesity, such as
insufficient exercise, seasonal work-hour differences, and diminishing activity. Further-
more, advanced techniques can be employed to analyze the cohort effect of obesity over
time for enhanced evaluation. In this research, advanced deep learning techniques, such
as bidirectional long short-term memory (Bi-LSTM) models with attention mechanisms,
are used to forecast and analyze obesity levels. By incorporating attention mechanisms,
our approach allows for a deep exploration of temporal patterns and cohort effects asso-
ciated with obesity, offering valuable insights for public health interventions and policy
formulation. In this section, the methodology unfolds in three parts: starting with the data
description and preprocessing, followed by an examination of the causes and effects of
obesity. The section concludes by detailing the proposed framework, the Attention-based
Bi-LSTM (Abi-LSTM), along with the functionality of the attention layer.

3.1. Data Description and Preprocessing

The obesity dataset utilized in our study is structured and tabular in nature. It
comprises multiple attributes representing various aspects of individuals’ eating behaviors,
physical conditions, and demographic information. Each row in the dataset corresponds to
an individual, while each column represents a specific feature or attribute.

The dataset contains a mix of categorical, numerical, and textual data. Categorical data
include variables such as gender, mode of transportation, and consumption of high-calorie
food, which are represented as discrete categories. Numerical data include features such as
age, weight, and frequency of physical activity, represented as numerical values. Textual
data include qualitative information or descriptions of certain features, such as dietary
habits or lifestyle choices.

Before model training, we conducted extensive data preprocessing steps to clean and
prepare the dataset for analysis. This included handling missing values through imputation
techniques, encoding categorical variables using methods like one-hot encoding, scaling
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numerical features to a standard range, and performing feature engineering to extract
relevant information from the raw data.

Table 1 provides a comprehensive summary of the dataset attributes categorized by
eating habits, physical condition, and other variables, along with detailed descriptions of
their meanings and significance in obesity prognosis. Each feature in the dataset holds
significance in understanding and predicting obesity. Attributes related to eating habits,
physical conditions, and demographic information provide valuable insights into individu-
als’ lifestyles and health statuses. For instance, frequent consumption of high-calorie foods,
physical activity frequency, and transportation choices are indicative factors influencing
obesity risk.

Table 1. A summary of the obesity data used in experiments.

Category Feature Description Meaning

Eating
Habits

FAVC Frequent consump-
tion of high-calorie
food

Frequent consumption of high-calorie foods can lead to weight gain and
obesity-related health issues, emphasizing the importance of moderating
such intake for better health.

FCVC Frequency of con-
sumption of vegeta-
bles

The frequency of consumption of vegetables is a crucial dietary aspect linked
to overall health. Regularly consuming vegetables has numerous health bene-
fits, including improved digestion, lower risk of chronic diseases, and weight
management. It underscores the significance of incorporating a variety of
vegetables into one’s diet to maintain a balanced and healthy lifestyle.

NCP Number of main
meals

The number of main meals is pivotal in obesity. Irregular eating disrupts
metabolism, affecting weight. Consistency in meals aids in weight control.

CAEC Consumption of
food between meals

Consumption of food between meals influences obesity risk. Excessive snack-
ing may lead to overconsumption, contributing to weight gain.

CH2O Consumption of wa-
ter daily

Consumption of water daily plays a crucial role in managing obesity. Proper
hydration can aid metabolism and control appetite, helping in weight man-
agement.

CALC Consumption of alco-
hol

Consumption of alcohol pertains to the amount and frequency of alcohol
intake. Excessive alcohol consumption is linked to weight gain and can
contribute to obesity, making it crucial to monitor and moderate alcohol
consumption for a healthier lifestyle.

Physical
Condition

SCC Calories consump-
tion monitoring

Calorie consumption monitoring involves keeping track of calorie intake.
This awareness can be instrumental in managing weight and preventing
obesity by ensuring a balanced diet.

FAF Physical activity fre-
quency

Physical activity frequency refers to how often an individual engages in
physical activities. Regular physical activity is essential for maintaining a
healthy weight and preventing obesity, underscoring the importance of a
consistent exercise routine in one’s lifestyle.

TUE Time using technol-
ogy devices

Time using technology devices highlights how much time individuals spend
using various gadgets such as smartphones, computers, and tablets. Excessive
screen time can contribute to a sedentary lifestyle, which is associated with a
higher risk of obesity. Therefore, monitoring and managing technology usage
are essential aspects of a healthy lifestyle.

MTRANS Transportation used Transportation choice, indicated by MTRANS, significantly impacts obesity
rates. Reliance on sedentary modes like automobiles or public transportation
often correlates with a higher risk of obesity due to reduced physical activity.
Encouraging more active transportation methods can be a crucial strategy in
obesity prevention.

Other
Variables

Gender, Age,
Height, Weight

— Gender, age, height, and weight are fundamental variables in assessing and
understanding obesity. These demographic and physiological factors play
pivotal roles in determining an individual’s risk of obesity and contribute to
the complexity of obesity-related research and interventions.
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These features work together to forecast the prevalence of obesity (NObeyesdad)
amongst the individuals in the dataset. Using these data, we harness these characteristics
to delve into and create an Abi-LSTM predictive model that unveils the complex interplay
between lifestyle elements, physical well-being, and the probability of obesity. This dataset
serves as a valuable tool for gaining insights into the various factors that influence obesity,
essential for crafting effective interventions and strategies in public health.

3.2. Causes and Effects of Obesity

A strong link exists between obesity and health, well-being, and society’s equilibrium,
underscoring the need for comprehensive understanding and intervention [57,63]. Despite
obesity’s burgeoning prevalence, little research has been conducted to examine its impact
on employee engagement, safety, and productivity. This knowledge gap is particularly
pronounced in the context of physically demanding and time-sensitive big data labor.
Due to physical limitations, obesity could possibly affect the ability to schedule, impede,
or postpone work activities, which warrants a thorough investigation. There are multiple
dimensions to obesity’s impact, including food supply, economic stability, and community
vitality, as shown in Figure 1. It is imperative to conduct comprehensive research to
understand the repercussions of obesity on individuals’ ability to contribute effectively to
the workforce. Physically demanding tasks and strict deadlines are inherent in extensive
data work. Understanding how obesity impacts work efficiency, safety, and productivity
requires rigorous exploration. By recognizing the effects of obesity, initiatives can be
launched to promote healthier habits, facilitating weight loss or maintenance. These
insights can also be used to develop comprehensive worker health programs, enhancing
the industry’s capacity to address obesity-related issues. Considering obesity in the context
of work procedures can provide opportunities to redesign tasks to make them safer and
more efficient for obese workers. Taking this approach contributes to fostering a culture
of inclusion at work. As a result, an in-depth analysis of obesity’s multifaceted effects
is imperative. Research on obesity, workforce productivity, and safety can contribute to
societal well-being, economic stability, and the optimization of work processes.

Figure 1. Causes of obesity in human body because of daily life routine.
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3.3. An Overview of the Proposed Model

This section thoroughly describes the proposed model, moving from the initial raw
data through several crucial preprocessing processes, as shown in Figure 2. The first point
of the voyage is the raw data, which form the basis of our investigation. We use a multi-step
preparation method to enhance the quality and usability of these data. In this pipeline,
irrelevant attributes are removed, categorical-to-numeric transformation is used to handle
non-numeric data, missing values are imputed to complete the data, the best features are
chosen for high performance and low computational cost, and normalization is used to
ensure uniform scaling throughout the dataset. Together, these preprocessing procedures
set up the data for analysis and model training, constituting a critical first stage in our study.

Eating HabitsEating Habits

Physical 
Condition
Physical 

Condition

Demographic 
Information

Demographic 
Information

Input Obesity Dataset

Raw Data

Data 
Preprocessing

Structured 
Data

Features 
Selection

Promising 
Features 

Proposed Model
(Bi-LSTM + 
Attention) 

Existing Models
(Bi-LSTM, LSTM, 

CNN, RNN) 

Obesity Prediction Results
Comparative Analysis

PrecisionPrecision

RecallRecall F1 ScoreF1 Score

AccuracyAccuracy

TransformationTransformationImputationImputationNormalizationNormalization
Removal of 
irrelevant 
features

Removal of 
irrelevant 
features

ResultsResults

Literature 
Work

Sen
so

rs
Su

rvey

Figure 2. A detailed framework of the proposed ABi-LSTM.

Once the data are preprocessed, they are channeled into our proposed Bi-LSTM with
attention model, a cornerstone of our research. Simultaneously, we compare the same
prepared data to other state-of-the-art deep neural network (DNN) models, including CNN,
RNN, LSTM, Bi-LSTM, and TabNet. This comprehensive set of models forms the basis
of our comparative analysis. In the following “Comparison Analysis” step, we carefully
evaluate and compare the results produced by each model. This thorough comparison
demonstrates the benefits of our proposed ABi-LSTM with a focus on design and offers
insightful information about how it performs in contrast to leading-edge models. These
findings greatly influence our conclusions, which demonstrate how well our suggested
approach works when applied to actual problems.

3.4. Proposed Framework

In this research, we introduce a novel framework designed for multilabel classification
tasks, leveraging the capabilities of a Bidirectional Long Short-Term Memory (Bi-LSTM)
network enhanced with an attention mechanism. We utilized ABi-LSTM, which excels
in processing data sequences and is suitable for tasks involving sequential data, such as
our obesity level prediction problem. As a variant of a recurrent neural network (RNN),
the ABi-LSTM model is well-suited to handle sequential data, like the obesity dataset we
used. The ability to proficiently capture temporal dependencies and patterns within the
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data is crucial for comprehending the intricate linkages that exist between obesity levels
and lifestyle factors throughout time. This framework suits scenarios where each input
instance can be associated with multiple labels. The architecture of our model begins with
data preprocessing, where the input data are appropriately reshaped for compatibility with
the subsequent layers. We then employ three successive Bidirectional LSTM layers, each
serving a unique purpose. The first Bi-LSTM layer, utilizing the rectified linear unit (ReLU)
activation function, captures initial patterns in the data. The second Bidirectional LSTM
layer, employing the hyperbolic tangent (tanh) activation function, further refines these
patterns, followed by a third Bidirectional LSTM layer with a similar activation function to
capture nuanced dependencies.

In the proposed study, the attention layer dynamically assigns weights to different
input features based on their relevance to predicting obesity. The attention mechanism
focuses more on certain features such as height, weight, and physical activity levels while
making predictions about obesity. The attention mechanism allows the model to weigh
these features differently for each input sample, enhancing the model’s ability to capture
complex relationships within the data. A soft attention mechanism calculates the attention
weights using a learned function that considers the similarity between the current input
and the context vector. The attention weights are then applied to the output of the Bi-LSTM
layer to produce a context vector, which is used for making predictions. Soft attention
mechanisms are effective for tasks where different parts of the input sequence contribute
unequally to the output. The details of the parameters used in the experiments are listed
in Section 4.4.

The attention-based Bi-LSTM model’s parameter selection is essential for multilabel
classification, especially when predicting obesity. Every parameter has a unique effect
on the design and behavior of the model, which directly affects how well it can handle
the complexity of our data. By specifying the input dimension, you can make sure that
the model can handle the characteristics—like height, weight, and degree of physical
activity—that are important for predicting obesity. Because of its bidirectional architecture,
the model can record relationships in both forward and backward directions, which makes
it easier to comprehend the input sequence in its entirety. The hidden dimension and
number of layers are two other factors that affect the model’s ability to identify complex
patterns and correlations in the data. By allowing it to concentrate on the most informative
components of the input sequence, the attention mechanism improves prediction accuracy
and the model’s performance. In general, elaborating on these factors offers a significant
understanding of how our model is customized to handle the intricacies of multilabel
classification jobs, ultimately leading to more precise and dependable obesity predictions.

An essential addition to our framework is the Attention layer, which dynamically
weights the outputs of the LSTM layers, focusing on the most informative elements within
the input sequence. This attention mechanism enhances the model’s ability to make precise
predictions. Finally, the output layer employs a Dense layer with sigmoid activation,
producing a probability vector for each label, where each element signifies the likelihood
of the respective label’s presence in the input. A summary of the proposed framework is
illustrated in Figure 3.

Forward LSTM:

it = σ(Wxi · xt + Whi · ht−1 + Wci · ct−1 + bi)

ft = σ(Wx f · xt + Wh f · ht−1 + Wc f · ct−1 + b f )

gt = tanh(Wxg · xt + Whg · ht−1 + bg)

ot = σ(Wxo · xt + Who · ht−1 + Wco · ct−1 + bo)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)
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Backward LSTM:

i′t = σ(W′xi · xt + W′hi · h
′
t+1 + W′ci · c′t+1 + b′i)

f′t = σ(W′x f · xt + W′h f · h
′
t+1 + W′c f · c

′
t+1 + b′f )

g′t = tanh(W′xg · xt + W′hg · h
′
t+1 + b′g)

o′t = σ(W′xo · xt + W′ho · h
′
t+1 + W′co · c′t+1 + b′o)

c′t = f′t ⊙ c′t+1 + i′t ⊙ g′t
h′t = o′t ⊙ tanh(c′t)

Attention mechanism:

et = tanh(Wa · h∗t + ba)

αt =
exp(et)

∑T
k=1 exp(ek)

ct =
T

∑
k=1

αkh∗k

yt = tanh(Wc · ct + Ws · st + b)

X1 X2 X3 Xn

Softmax Softmax Softmax Softmax

h1 h2 h3 hn

Y

LSTM

LSTM

LSTM

LSTMLSTMLSTM

LSTM LSTM

Output

Attention 
Layer

Activation

Bi-LSTM

Input

Figure 3. Proposed attention-based Bi-LSTM for obesity prediction.

Here, σ denotes the sigmoid activation function, tanh denotes the hyperbolic tangent
activation function, W and b are weight matrices and bias vectors, ⊙ represents element-
wise multiplication, ht and h′t are the cell and hidden states of the forward and backward
LSTMs, h∗t is the concatenated hidden state, et represents the energy score, αt is the attention
weight, ct is the context vector, and yt is the attention output.

To evaluate the effectiveness of the proposed framework, we adopt the Adam opti-
mizer for training. The Adam optimizer’s efficiency in optimizing deep neural networks
complements our model’s architecture. Experimental evaluation involves fitting the model
to the training data and assessing its performance using various metrics, including accuracy,
precision, recall, and F1-score. Throughout this paper, we visually represent our framework
to help readers grasp its architecture intuitively. Furthermore, we present the results of our
experiments, highlighting the framework’s ability to achieve accurate multilabel predic-
tions. Combining Bidirectional LSTMs and attention mechanisms, our proposed approach
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demonstrates promising potential in tackling complex multilabel classification tasks across
different domains.

4. Experimental Results and Performance Analysis

This section provides an overview of the implementation environment, evaluation met-
rics, and the experimental results obtained from the proposed ABi-LSTM model, designed
for obesity level classification.

4.1. Experiment Environment

This section presents an overview of our advanced preprocessing pipeline tailored
for supervised regression tasks. We provide a summary of the essential tools and tech-
nologies utilized in processing obesity classification data, as outlined in Table 2. Our
primary programming language for implementing these experiments is Python. We lever-
age critical Python libraries such as Sklearn, Keras, TensorFlow, and Seaborn to facilitate
our data processing pipeline. The entire process is meticulously designed and executed
using Python.

Furthermore, we employ the Microsoft Comma Separated Values (CSV) format to
support our work on classification tasks to store the original obesity data and house the
processed data. This format enhances compatibility and accessibility, ensuring that our
data are readily available and well-suited for classification analysis.

Table 2. System configuration and description.

System Components Description

Operating System Windows 10 for PC Server

Main Memory 64 GB RAM

Processor 12th Gen Intel(R) Core(TM) i9-12900K 3.20 GHz

Programming Language Python 3

IDE PyCharm Professional

Storage MS Excel, MySQL

Core Libraries Pandas, Scikit-Learn, Keras, TensorFlow, Seaborn, Matplotlib, etc.

4.2. Algorithm for the Proposed Model

In Algorithm 1, we divide obesity level classification into two primary phases. In the
first phase, data preprocessing is conducted. This phase involves the removal of irrelevant
attributes, the transformation of non-numeric data into a numeric format, the imputation
of missing values, the selection of optimal features, and normalization to ensure uniform
scaling. These steps collectively prepare the raw obesity dataset for further deep analysis.

In the second phase, multiple deep neural network (DNN) models, including CNN,
RNN, LSTM, Bi-LSTM, TabNet, and the proposed model, are trained on the preprocessed
dataset and evaluated using various performance metrics. The highest-performing model
is then determined through an in-depth study, which also analyzes how each model stands
up against the most effective in terms of efficiency. The outcomes of this comparison evalu-
ation provide significant insight on the benefits of the suggested ABi-LSTM architecture,
especially in resolving real-world issues with obesity level classification. The aforemen-
tioned algorithm ensures a logical and well-defined sequence of actions throughout the
process by operating as a structured and systematic foundation for the research direction.
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Algorithm 1 Obesity Level Classification Pipeline
Input: Raw obesity dataset Xdata, List of DNN models Mmodels =

{CNN, RNN, LSTM, Bi− LSTM, TabNet, Proposedmodel}
Output: Comparison of different DNN models for obesity level classification.
Step 1: Data Preprocessing

Xcleaned ← RemoveIrrelevantAttributes(Xdata)
Xnumeric ← CategoricalToNumeric(Xcleaned)
Ximputed ← ImputeMissingValues(Xnumeric)
Xselected ← FeaturesSelection(Ximputed)
Xnormalized ← NormalizeData(Xselected)

Step 2: Model Training and Comparison
for model ∈ Mmodels do

Substep 2.1: Model Training
Tmodel ← TrainModel(model, Xnormalized)

Substep 2.2: Model Evaluation
Xtest, ytest ← SplitTestData(Xnormalized)
ŷ← EvaluateModel(Tmodel , Xtest)

Substep 2.3: Performance Metrics Calculation
metrics← CalculatePerformanceMetrics(ytest, ŷ)

Substep 2.4: Store Model Performance
Rper f ormance[model]← metrics

end
Step 3: Comparison Analysis
Substep 3.1: Identify Best Model
best_model ← FindBestModel(Rper f ormance)

Substep 3.2: Assess Model Performance
for model ∈ Mmodels do

Subsubstep 3.2.1: Compare to Best Model
CompareModels(model, best_model)

end
Step 4: Conclusion
Analyze the outcomes and highlight the advantages of the proposed Bi-LSTM with
attention architecture in addressing real-world challenges.

4.3. Evaluation Metrics

We rely on the usefulness of a confusion matrix to thoroughly assess the performance
of our model. This matrix is a crucial tool for evaluating classification outcomes and
also allows us to calculate important performance metrics like accuracy, precision, recall,
and the F1 score. These metrics are crucial for measuring how effectively the proposed
model categorizes instances into different classes.

The confusion matrix is a systematic representation that enables a deeper understanding
of the model’s classification outcomes. Figure 4 exhibits the multi-class confusion metrics:

True Labels represent the actual class labels. Predicted Labels represent the class labels
predicted by our model. At the top of the confusion matrix, we have seven classes in the
target column.

Accuracy is a fundamental metric for assessing the correctness of our model’s predic-
tions across all classes. It is calculated as the ratio of correctly predicted instances (TP and
TN) to the total number of instances. The formula for Accuracy is as follows:

Accuracy =
1
N

N

∑
i=1

I(yi = ŷi) (1)

Here is an explanation of the components of the formula:

• N: Total number of samples in the dataset.
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• yi: The true class label for the i -th sample.
• ŷi: The predicted class label for the i-th sample.
• I(yi = ŷi): An indicator function that returns 1 if yi is equal to ŷi (i.e., if the true label

matches the predicted label) and 0 otherwise.

Figure 4. Evaluation of the obesity prediction experiments.

This formula calculates the accuracy by summing up the indicator function values for
all samples and dividing by the total number of samples.

Equation (2) represents the standard formula for precision. Precision is a measure
of the accuracy of the positive predictions made by a classification model. It quantifies
the model’s ability to correctly identify relevant instances out of all instances predicted as
positive. Precision can be interpreted as the probability that a positive prediction made
by the model is indeed correct. Higher precision values indicate fewer false positives,
which means the model is more reliable in identifying positive instances. Precision is
particularly useful in cases where the cost of false positives is high, and it complements other
performance metrics, such as recall and F1-score, in evaluating the overall effectiveness of
a classification model.

Precision =
TP

TP + FP
(2)

where:

• TP (True Positives) represents the number of instances correctly classified as positive;
• FP (False Positives) represents the number of instances incorrectly classified as positive.

Precision can be interpreted as the probability that a positive prediction made by the
model is indeed correct. Higher precision values indicate fewer false positives, which means
the model is more reliable in identifying positive instances. Precision is particularly useful in
cases where the cost of false positives is high, and it complements other performance metrics
such as recall and F1-score in evaluating the overall effectiveness of a classification model.
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Recall measures the model’s ability to identify all positive instances correctly for a
specific class out of all actual positive instances for that class. It quantifies the model’s ability
to capture relevant instances and is particularly useful when the cost of false negatives
is high.

The standard formula for recall is:

Recall =
TP

TP + FN
(3)

where:

• TP (True Positives) represents the number of instances correctly classified as positive;
• FN (False Negatives) represents the number of instances incorrectly classified as

negative when they are actually positive.

Equation (3) represents the standard formula for recall. Recall measures the ability to
identify relevant instances correctly. Higher recall values indicate fewer false negatives,
meaning the model is better at capturing all positive instances. Recall is essential when
missing positive instances can have severe consequences, such as in medical diagnosis or
fraud detection. It complements other performance metrics such as precision and F1-score
in evaluating the overall effectiveness of a classification model.

The F1 score is a metric that combines both precision and recall into a single value,
providing a balanced assessment of a model’s performance. It quantifies the harmonic mean
of precision and recall, giving equal weight to both metrics. The F1 score is particularly
useful when there is an uneven class distribution or when false positives and false negatives
have different consequences.

The standard formula for the F1 score is:

F1 Score =
2 · Precision · Recall
Precision + Recall

(4)

where:

• Precision is the precision of the model, as defined earlier;
• Recall is the recall of the model, as defined earlier.

Equation (4) represents the standard formula for the F1 score. It balances precision and
recall, providing a single metric for model performance across all classes. A higher F1 score
indicates better overall performance, with values closer to 1 indicating a better balance
between precision and recall. The F1 score is commonly used in binary classification tasks
but can also be extended to multi-class classification by taking the mean of F1 scores for
each class.

These evaluation metrics, derived from the confusion matrix, provide a comprehensive
understanding of our model’s performance, aiding in decision making and optimization
across various domains and class labels.

4.4. Experimental Results and Analysis

In this comprehensive research study, we have undertaken a series of diverse experi-
ments employing the cutting-edge ABi-LASTM model in conjunction with conventional
DL models. These experiments are meticulously designed and conducted utilizing the
Obesity Levels & Lifestyle dataset as our primary data source [64]. Furthermore, we have
rigorously applied various data preprocessing techniques to optimize the dataset before
feeding it into the selected models for a thorough and insightful comparison. Additionally,
the dataset comprises 2.1 k instances, and we employ a train–test split, where 70% of the
data are used for the training of the proposed model and 30% are used for testing.

Table 3 shows a configuration setup of our proposed model.
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Table 3. Configuration of attention-based Bi-LSTM model.

Parameter Value

Input Dimension 16
Hidden Dimension 64
Number of Layers 3
Dropout Rate 0.4
Bidirectional Yes
Attention Mechanism Soft Attention
Attention Dimension 64
Activation Functions Tanh
Learning Rate 0.001

Additionally, the dataset comprises 10.5 k instances, and we employ 10-fold cross-
validation for robust evaluation. The proposed approach is evaluated extensively, with de-
tailed descriptions of the training and testing data provided. Specifically, the training
data are processed with various data preprocessing techniques before being fed into the
selected models, ensuring a thorough and insightful comparison. Moreover, the evaluation
of the proposed approach includes metrics such as accuracy, precision, recall, and F1-score,
providing a comprehensive understanding of model performance across different obesity
levels and lifestyle factors.

4.4.1. Analysis of Results Using Confusion Matrices

The confusion matrices shown in Figure 5 provide clear evidence of the proposed ABi-
LSTM model’s superiority over other models in predicting obesity levels. The ABi-LSTM
model consistently achieves higher accuracy and precision, with minimal misclassifications
across all obesity levels. In detail, it correctly identifies 88 instances of obesity level 0
with only two misclassifications, at obesity level 1, 86 instances correctly predicted with
only seven misclassificatiuons, and similar results for other obesity levels, as shown in
Figure 5f, showcasing its exceptional predictive capabilities. In contrast, models like CNN,
RNN, LSTM, Bi-LSTM, and TabNet exhibit higher misclassification rates, particularly
in distinguishing between different obesity levels. The Bi-LSTM model, for instance,
misclassifies 18 instances of obesity level 1 as other obesity levels, as shown in Figure 5d,
indicating a higher confusion between these classes. The TbaNet model outperforms other
models, although its performance is slightly below the proposed ABi-LSTM model.

Moreover, the ABi-LASTM model demonstrates remarkable consistency in its predic-
tions, with minimal variations in misclassifications. This consistency is vital for applications
requiring reliable and uniform predictions. Furthermore, the ABi-LASTM model demon-
strates a higher level of resilience, leading to a reduced occurrence of misclassifications
across different classes when compared to alternative models. To recap, the analysis of
the confusion matrix strongly affirms that the ABi-LASTM model outperforms traditional
models such as CNN, RNN, LSTM, Bi-LSTM, and TabNet in predicting obesity levels.
Its superior accuracy, stability, and robustness establish it as the preferred option for this
particular task, bearing noteworthy implications for healthcare applications and predictive
modeling in related fields.
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(a) CNN (b) RNN (c) LSTM

(d) Bi-LSTM-sub (e) TabNet (f) Proposed ABi-LSTM

Figure 5. An in-depth analysis of the proposed ABi-LSTM with conventional DL models using a
confusion matrix.

4.4.2. Assessing Model Effectiveness: Accuracy, Precision, Recall, and F1 Score

In our quest for precise obesity level prediction, we conducted a thorough assessment
of a range of deep learning models, encompassing CNN, RNN, LSTM, Bi-LSTM, and
TabNet. In this section, we present the performance metrics, which include Accuracy,
Precision, Recall, and F1 Score, to evaluate the effectiveness of these models. In Table 4, we
provide a detailed comparative analysis using different performance metrics for each of
the models:

Table 4. Model effectiveness: Accuracy, Precision, Recall, and F1 Score analysis.

Models Accuracy (%) Precision (%) Recall (%) F1 Score (%)

CNN 92.3 92.4 92.0 91.8

RNN 93.7 93.9 92.8 93.1

LSTM 85.3 86.2 85.1 84.9

Bi-LSTM 93.2 93.5 93.1 92.0

TabNet 96.0 95.8 95.9 95.8

ABi-LSTM 96.5 96.2 95.9 96.1

The results presented in Table 4 show the outstanding performance of our proposed
ABi-LSTM model in predicting obesity levels. With an impressive Accuracy of 96.5%, our
model showcases its ability to make accurate predictions.

Moreover, the ABi-LSTM model demonstrates a remarkable Precision score of 96.2%,
signifying its precision in correctly classifying obesity levels. The Recall score of 95.9%
emphasizes the model’s capacity to effectively identify true positive cases. The F1 Score,
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a harmonic mean of Precision and Recall, attains an exceptional 96.1%, reflecting the
model’s overall balance in classification performance.

In comparison to the other state-of-the-art DL models tested, the ABi-LSTM model
clearly outperforms them across all evaluated metrics. Notably, it surpasses the closest
competitor, TabNet, by a clear margin, as shown in Figure 6.

Figure 6. A visual illustration of the model results.

The ABi-LSTM model’s Accuracy surpasses TabNet by 0.5%, Bi-LSTM by 3.3%, indi-
cating its superior overall prediction accuracy. In terms of Precision, our model excels by
0.4% and 2.7% compared to TabNet and Bi-LSTM, respectively, underlining its precision
in classifying obesity levels. The Recall rate of ABi-LSTM exceeds that of Bi-LSTM by
2.8%, indicating its ability to capture more true positive instances. Lastly, the F1 Score of
ABi-LSTM outperforms TabNet and Bi-LSTM by 0.3% and 4.1%, respectively, showcasing
its exceptional balance between Precision and Recall.

These results affirm the substantial performance advantages of the proposed ABi-
LSTM model over existing DL approaches, making it a highly promising solution for
accurate obesity level prediction.

5. Discussion

In the presented Table 5, we conduct a comprehensive evaluation of various machine
learning and deep learning models used in the domain of obesity prediction, each of-
fering a unique approach to this critical health issue. The models analyzed encompass
diverse techniques, including Classification and Regression Trees (CART), Support Vector
Machines (SVM), deep neural networks (DNNs), and Random Forest, reflecting the ver-
satility of methods applied in addressing the problem of obesity prediction. Among the
models evaluated, the work by Thamrin et al. [65] stands out as one of the pioneering
studies. Their research explores the use of machine learning techniques, such as CART,
Naïve-Bayes, and Logistic Regression, to classify individuals into obese and non-obese
categories using the RISKESDAS 2018 dataset. The achieved accuracy of 79.8% suggests
a reasonable level of predictive performance, although this study lacks certain advanced
neural network architectures.

Furthermore, Montañez et al. [66] proposed an ML approach for obesity prediction
based on publicly available genetic profiles. Leveraging SVM, they achieved an impressive
accuracy of 90.5%. However, the precision and recall values are not reported, leaving
room for a more comprehensive assessment of the model’s predictive power. Similarly,
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Kim et al. [67] tackle the challenge of predicting obesity risk from nutritional intake using
the 4–7th Korea National Health and Nutrition Examination Survey (KNHANES). Their
use of deep neural networks (DNNs), Logistic Regression, and Decision Tree models in a
multi-class classification setting results in a moderate accuracy of 70.3%. Unfortunately,
the reported precision, recall, and F1 Score values are not mentioned in the paper, making
it challenging to assess the model’s performance fully.

In [68], Dugan et al. focus on early prediction of childhood obesity after age two using
the CHICA dataset. They employ a Decision Tree model (ID3) and attain an accuracy of
85%. The model also exhibits competitive precision, recall, and F1 Score values of 84%, 89%,
and 88%, respectively, suggesting a balanced performance. These notable studies in the
obesity prediction domain set the stage for comprehensively evaluating our proposed ABi-
LSTM model. The results are striking, with the ABi-LSTM model achieving an exceptional
Accuracy of 96.5%. This places it firmly at the forefront of predictive accuracy in the field,
surpassing all the models examined. Furthermore, the precision score of 96.2% signifies
the model’s precision in correctly classifying obesity levels, while the recall score of 95.9%
emphasizes its ability to identify true positive cases effectively. This demonstrates the
model’s remarkable accuracy and proficiency in producing precise and comprehensive
predictions. The F1 Score, an amalgamation of precision and recall, attains an outstanding
value of 96.1%, underlining the model’s overall balance in classification performance.
The proposed ABI-LSTM model’s performance is exceptional and cements its position as a
top-tier solution for accurate obesity level prediction.

Table 5. Machine learning models for obesity prediction.

Ref Research Goals Data Source Models Used Classification
Type

Accuracy
(%)

Precision
(%)

Recall
(%)

F1 Score
(%)

[65] Predicting Obesity in
Adults Using Machine
Learning Techniques

RISKESDAS 2018 CART, Naïve-
Bayes, Logistic
Regression

Binary 79.8 69.56 — 71.49

[66] Machine Learning Ap-
proaches for the Prediction
of Obesity

DTCGT from PGP
(NHGRI)

SVM Binary 90.5 — 64.7 —

[67] Classification and Predic-
tion on the Effects of Nutri-
tional Intake

KNHANES DNN, Logistic Re-
gression, Decision
Tree

Multi-class 70.3 — — —

[69] Machine Learning Ap-
proach for the Early
Prediction of Obesity

UK’s Millennium
Cohort Study (MCS)

Multilayer Percep-
tron

Binary 96 96 92 93.96

[70] Obesity Prediction Using
Ensemble Machine Learn-
ing Approaches

— Ensemble ML
Model

Binary 89.68 — — —

[68] Machine Learning Tech-
niques for Prediction of
Early Childhood Obesity

CHICA Decision Tree
(ID3)

Binary 85 84 89 88

[71] Using Machine Learning
to Predict Obesity in High
School Students

Biennial YRBSS k-NN Binary 88.82 — — —

[72] A Hybrid Approach Based
on Machine Learning to
Identify the Causes of Obe-
sity

ASFHC in Turkey Hybrid of LR and
LDT

Binary 91.4 94.9 90.4 90.4

[73] Machine Learning Tech-
niques to Predict Over-
weight or Obesity

Collected through a
survey

Random Forest Binary 78 79 78 78

Proposed
Abi-LSTM

Obesity level prediction us-
ing advanced Bi-LSTM in-
corporating with Attention
mechanism.

Obesity Levels &
Life Style

ABi-LSTM Multi-class 96.5 96.2 95.9 96.1

In a direct comparison with state-of-the-art deep learning models such as CNN, RNN,
LSTM, Bi-LSTM, and TabNet, the ABi-LSTM model outperforms them across all evaluated
metrics. The advantages are significant, with the ABi-LSTM model surpassing the clos-
est competitor, Bi-LSTM, by substantial margins in terms of Accuracy, Precision, Recall,
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and F1 Score. In summary, the proposed ABI-LSTM model not only showcases exceptional
accuracy but also excels in precision, recall, and the overall balance between these key per-
formance measures. Its superior performance substantiates its role as a pioneering solution
in the domain of obesity prediction, offering robust and precise predictive capabilities that
surpass existing models in the field.

These compelling results underscore the substantial advancements of the proposed
work that contribute to the field of obesity prediction, with far-reaching implications for
healthcare and related research.

6. Conclusions

In this study, we have conducted an extensive analysis of various ML and DL models
employed in obesity prediction, incorporating a wide array of methodologies, from tree-
based models and support vector machines to deep neural networks and random forests.
These multifarious approaches have made vital contributions to our understanding of the
factors that are highly impacting obesity and have paved the way for the introduction of our
novel ABi-LSTM model. The proposed ABi-LSTM model marks a significant advancement
in the realm of obesity level prediction in multi-label classification problems. Additionally,
as the global trend toward smart city initiatives gains momentum, our research plays a
vital role in connecting healthcare with urban development. It illuminates how data-driven
approaches can be harnessed to encourage healthier lifestyles within urban environments.

Achieving an impressive accuracy rate of 96.5%, ABi-LSTM outperforms all the exist-
ing frameworks we evaluated in this paper, showcasing an exceptional level of predictive
precision. Furthermore, its Precision score of 96.2% highlights its capacity for making
highly precise classifications, while the Recall score of 95.9% underscores its effectiveness
in identifying true positive cases. The remarkable F1 Score of 96.1% further attests to the
model’s overall balance in classification performance.

Comparing our ABi-LSTM model with state-of-the-art deep learning models such as
CNN, RNN, LSTM, Bi-LSTM, and TabNet, it surpasses them across all key metrics, marking
a significant breakthrough in the field of obesity prediction. The proposed model excels not
only in predictive accuracy but also in precision and recall, reinforcing its position as an
innovative solution.

In conclusion, our study underscores the substantial performance advantages of
the ABi-LSTM model over existing deep learning approaches. Its exceptional precision,
recall, and overall balance in these vital performance measures signify its robustness and
effectiveness in predicting obesity levels. We firmly believe that this model holds profound
implications for healthcare and related research, offering an exceptionally accurate tool for
obesity level prediction.

7. Future Suggestions

As we look to the horizon, several exciting avenues for research beckon. Expanding
the breadth of our model to incorporate a wider range of health-related data sources,
including the integration of socio-economic factors and dietary habits, has the potential to
significantly enhance predictive accuracy. Furthermore, with the rise of smart cities and the
ever-increasing volume of data they generate, exploring the synergy between our model and
the data streams from urban environments could be transformative. The inclusion of real-
time data from smart city infrastructure offers the opportunity for continuous monitoring,
enabling a dynamic approach to obesity prediction and prevention. In addition, applying
our model to different demographic populations and diverse healthcare settings could
provide invaluable insights into tailoring interventions and strategies. Future research
might also address the intricate ethical and privacy considerations associated with using
health data within the context of smart cities. These collective efforts will continue to
advance our understanding of obesity prediction and its potential to enhance public health
and patient care within the evolving landscape of smart cities.
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