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Abstract: Ultra-widefield (UWF) retinal imaging stands as a pivotal modality for detecting ma-
jor eye diseases such as diabetic retinopathy and retinal detachment. However, UWF exhibits a
well-documented limitation in terms of low resolution and artifacts in the macular area, thereby
constraining its clinical diagnostic accuracy, particularly for macular diseases like age-related macular
degeneration. Conventional supervised super-resolution techniques aim to address this limitation
by enhancing the resolution of the macular region through the utilization of meticulously paired
and aligned fundus image ground truths. However, obtaining such refined paired ground truths
is a formidable challenge. To tackle this issue, we propose an unpaired, degradation-aware, super-
resolution technique for enhancing UWF retinal images. Our approach leverages recent advancements
in deep learning: specifically, by employing generative adversarial networks and attention mecha-
nisms. Notably, our method excels at enhancing and super-resolving UWF images without relying
on paired, clean ground truths. Through extensive experimentation and evaluation, we demonstrate
that our approach not only produces visually pleasing results but also establishes state-of-the-art
performance in enhancing and super-resolving UWF retinal images. We anticipate that our method
will contribute to improving the accuracy of clinical assessments and treatments, ultimately leading
to better patient outcomes.

Keywords: unpaired super-resolution; retinal fundus image enhancement; ultra-widefield retinal image

1. Introduction

Ultra-widefield (UWF) retinal images have emerged as a revolutionary modality in
ophthalmology [1,2]. As depicted in Figure 1, UWF provides an extensive field of view that
enables the visualization of both central and peripheral retinal areas. This enables early
detection and monitoring of peripheral retinal conditions that are often missed in standard
fundus images. However, various artifacts, low macular area resolution, large data size,
and lack of interpretation standardization act as impediments to widespread clinical use of
UWF images.

Image enhancement techniques have the potential to improve UWF image quality,
empowering healthcare professionals to make more accurate diagnoses and treatment
plans. Ophthalmologists may better detect subtle early changes in the macular area and
identify peripheral early signs of disease, leading to better patient outcomes. But since
UWF images contain multiple degradation factors scattered throughout the fundus in a
complex manner, image enhancement is a significant challenge. Many recent conventional
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image enhancement techniques are based on supervised learning and require a ground
truth (GT) dataset of well-aligned low- and high-quality image pairs for training. Achieving
this paired dataset is a significant challenge in the case of UWF, where precise alignment
between image pairs is extremely difficult.

(a) (b)

Figure 1. Conventional fundus image vs. ultra-widefield (UWF) image. (a) UWF images drastically
increase the capability to observe the retina and can cover over 80%, which is more than a five-fold
increase compared to (b) conventional fundus images. The diagrams in the left of (a,b) are reproduced
from https://www.optomap.com/optomap-imaging/ accessed on 1 March 2022.

The application of deep learning algorithms has facilitated promising results in a wide
range of image enhancement tasks, including super-resolution, image denoising, and image
deblurring [3]. A variety of methods tailored for enhancement of retinal fundus images
have also been proposed [4,5]. These methods can automatically learn and apply complex
transformations to improve the visualization of critical structures such as blood vessels,
the optic disc, and the macula. Despite the necessity, there has yet to be a comprehensive
deep-learning-based enhancement method for UWF images.

We thus propose a comprehensive image enhancement method for UWF images,
with the specific goal of improving the quality of conventional fundus images. Figure 2
presents sample results of the proposed method. As image quality can be subjective, we
compare manual annotations of drusen from fundus images and UWF images after apply-
ing our enhancement method. Experimental evaluation demonstrates that the similarity
between annotations after enhancement is considerably improved compared to annotations
made on images before enhancement. Quantitative measurements of image quality are also
assessed, demonstrating state-of-the-art results on several datasets. Based on our goal and
the experimental findings, we refer to the enhanced images as fundus quality (FQ)-UWF
images. We believe that our approach has the potential to improve the accuracy of clinical
assessments and treatments, ultimately leading to better patient outcomes.

The proposed method is based on the generative adversarial network (GAN) frame-
work to avoid the requirement of pairs of aligned high-quality images in pixelwise supervi-
sion. We employ a dual-GAN structure to jointly perform super-resolution, enhancing the
low resolution of the macula in UWF, which has a critical impact on clinical practice. As
image pairs are not required, training data are acquired by simply collecting sets of UWF
and fundus images. We also incorporate appropriate attention mechanisms in the network
for enhancement with regard to various degradations such as noise, blurring, and artifacts
scattered throughout the UWF.

We summarize our contributions as follows:

• We establish a method for UWF image enhancement and super-resolution from un-
paired UWF and fundus image sets. We evaluate the clinical utility in the context of
detecting and localizing drusen in the macula.

• We propose a novel dual-GAN network architecture capable of effectively addressing
diverse degradations in the retina while simultaneously enhancing the resolution of
UWF images.

• The proposed method is designed to be trained on unpaired sets of UWF and fundus
images. We further present a corresponding multi-step training scheme that combines

https://www.optomap.com/optomap-imaging/
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transfer learning and end-to-end dataset adaptation, leading to enhanced performance
in both quantitative and qualitative evaluations.
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Figure 2. Sample results of the proposed UWF enhancement method. The top row depicts the input
UWF images, and the bottom row depicts the FQ-UWF images enhanced by the proposed method.
Numbered boxes are enlarged sample views of representative local regions. The clarity of anatomical
structures such as vessels is greatly improved in the FQ-UWF images.

2. Related Works
2.1. Retinal Image Enhancement

Due to the relatively invariable appearance, methods based on traditional image
processing techniques continue to be proposed [6,7]. But the majority of methods leverage
deep neural networks, as in [5,8], and especially GANs in particular [4].

Pham and Shin [9] considered additional factors such as drusen segmentation masks
to not only improve image quality but also preserve crucial disease information during
the enhancement process, addressing a common challenge in existing image enhancement
techniques. To overcome the challenges of constructing a clean true ground truth (GT)
dataset for retinal image data, particularly due to factors such as alignment, Yang et al. [4]
introduced an unpaired image generation method for enhancing low-quality retinal fundus
images. Lee et al. [5] proposed an attention module designed to automatically enhance
low-quality retinal fundus images afflicted by complex degradation based on the specific
nature of their degradation.

2.2. Blind and Unpaired Image Restoration

Blind image restoration is a computational process aimed at enhancing or recover-
ing degraded images without prior knowledge of the degradation model or parameters.
Traditionally, methods for blind image restoration have employed approaches involving
the prediction of the estimation of degradation model parameters [10] or the degradation
kernels [11]. Recently, there has been a trend towards directly generating high-quality
images through training using deep learning models [12]. Shocher et al. [13] conducted
super-resolution without relying on specific training examples of the target resolution dur-
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ing the model’s training phase. Yu et al. [14] proposed a blind image restoration toolchain
for multiple tasks with reinforcement learning.

Unpaired image restoration focuses on learning the difference between pairs of image
domains rather than pairs of individual images. Multiple methods using GAN-based
models [15] have been proposed [16,17] to learn the mapping between the low-quality and
high-quality images while also incorporating a cycle-consistency constraint [18] to improve
the quality of the generated images.

2.3. Hierarchical or Multi-Structured GAN

Recently, there has been significant progress in mitigating the instability associated
with GAN training, leading to the emergence of various proposed approaches that involve
connecting two or more GANs for joint learning. Several works showed stable translation
between two different image domains using coupled-GAN architectures [19]. Further works
extended their usage to multiple domains or modalities [20,21]. And more works extended
this approach beyond random image generation to tasks such as image restoration [16],
and exploration into more complex architectures has also been proposed [22].

2.4. Transfer Learning for GANs

Pre-trained GAN models have demonstrated considerable efficacy across various com-
puter vision tasks, particularly in scenarios characterized by limited training data [23,24].
Typically trained on extensive datasets comprising millions of annotated images, these
models offer a foundation of learned features. Through the process of fine-tuning on novel
datasets, one can capitalize on these pre-trained features, leading to the attainment of
state-of-the-art performance across a diverse spectrum of tasks.

Early works confirmed successful generation in a new domain by transferring a pre-
trained GAN to a new dataset [25,26]. Other works enabled transfer learning for GANs
with datasets of limited size [27,28]. Li et al. [29] proposed an optimization method for
transfer learning for GAN that was free from biases towards specific classes and resilient
to mode collapse and achieved by fine-tuning only the class embedding layer, which is
part of the GAN architecture. Mo et al. [30] proposed a method wherein the lower layers of
the discriminator are fixed; then, it is partitioned into a feature extractor and a classifier.
Subsequently, only the classifier is fine-tuned. Fregier and Gouray [26] performed transfer
learning for GAN on a new dataset by freezing the low-level layers of the encoder, thereby
preserving pre-trained knowledge to the maximum extent possible.

3. Methods
3.1. Overview of FQ-UWF Generation

To get a final enhanced FQ-UWF result IFQ−UWF, we split the process of FQ-UWF
generation into two steps: (i) degradation enhancement (DE) and (ii) super-resolution
(SR). Figure 3 presents a visual overview of the framework. The order of the processes is
tailored to maximize the quality of the output FQ-UWF images. The generator networks of
each process, which we respectively denote as GDE and GSR, are coupled with adversarial
discriminator networks DDE and DSR that are designed to enforce that the generators’
output images have similar image characteristics as the fundus images from the training set.

GDE performs degradation enhancement on input image IUWF to get IDE−UWF. Train-
ing of GDE is guided by DDE so that the DDE output score values are similar for the given
pair of IE−UWF and IDS− f undus, which is a ×4 bicubically downsampled version of I f undus.
DDE is trained to make the score value of the given pair of images significantly differ.

GSR performs ×4 super-resolution on IE−UWF to get IFQ−UWF. GSR and DSR are
trained in the same manner as GDE and DDE, respectively, with the pair of IFQ−UWF and
I f undus. For DSR, we also impose cyclic constraints, as in [18,31], by applying the GSR
operation to not only IE−UWF but to IDS− f undus as well. For each module, we empirically
determined appropriate network architectures. The following subsections describe further
details of each module.
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Figure 3. The overall architecture of the proposed method. IUWF with severe degradations and
artifacts is first enhanced to IE−UWF via GDE, for which the output is fed to GSR to generate ×4
up-scaled IFQ−UWF. I f undus is down-scaled to IDS− f undus with a scaling factor of 4. DDE and DSR

measure the similarity between IE−UWF and IDS− f undus to train GDE and the similarity between
IFQ−UWF and I f undus to train GSR, respectively.

3.2. Architecture Details
3.2.1. GDE

We apply U-net [32] as the base architecture, as U-net has been proven to be effective
for medical image enhancement [33]. Within the encoder–decoder structure of U-net,
we embed attention modules to better enhance local degradation or artifacts scattered
throughout the input image. We apply the attention layer structure proposed by [5], as it
has been demonstrated to be effective for retinal image enhancement. The network structure
is depicted in the top row of Figure 4.

The Conv box comprises a 3 × 3 convolutional layer so that the spatial size of the
feature is reduced to 1/4, where both the height and the width of the feature are reduced to
1/2, and the channel dimension is doubled. The Deconv box comprises a 3 × 3 deconvolu-
tional layer so that the spatial size of the feature is quadrupled, where both the height and
the width of the feature are doubled, and the channel dimension is halved. The attention
(Att) box comprises a sequentially connected batch normalization, activation, operation-
wise attention module, and activation, where the operation-wise attention module enables
the degradations to be better attended.

3.2.2. GSR

The network structure is depicted in the middle row of Figure 4. The FeatureExtractor
box comprises a 3 × 3 convolutional layer followed by activation. The Conv + BN box
comprises a 3× 3 convolutional layer followed by batch normalization. The Conv+Shu f f le
box comprises a 3 × 3 convolutional layer followed by a pixel shuffler for expanding the
height and width of the feature by a factor of two each. Channel calibration is designed
for reducing the dimension of the feature to three, maintaining the spatial dimension of
the feature. The Residual Block comprises series of Conv + BN, activation, Conv + BN,
and residual connections for element-wise summing. We note that this structure is adopted
from [15].
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Figure 4. The detailed structure of generators and discriminators. The detailed structure of generator
GDE, GSR, and the discriminator shared between DDE and DSR is illustrated. Note that even though
DDE and DSR utilize the same structure, they are fundamentally distinct discriminative networks.

3.2.3. DDE and DSR

The structures of the discriminator models DDE and DDE are depicted in Figure 4. The
FeatureExtractor box comprises a 3 × 3 convolutional layer followed by activation. The
Conv+ BN box comprises a 3× 3 convolutional layer followed by batch normalization. The
Conv Block comprises series of Conv + BN and activation. At the final layer of the network,
there exists a score function for evaluating the similarity of input images, accompanied
by a Dense layer aimed at reducing the dimension of the feature to a single scalar score
value. We follow the structure of the discriminator in [15] for DDE. The input images for
DDE are pairs of downsampled real fundus images IDS− f undus and generated enhanced
low-resolution UWF images IE−UWF. The input images for DSR are pairs of real fundus
images I f undus and generated FQ-UWF images IFQ−UWF.

3.3. Loss Functions and Training Details

Given that end-to-end training of an architecture composed of multiple networks is
highly challenging, we take three steps to train the full network architecture composed of
(i) GDE training, (ii) GSR training, and (iii) overall fine-tuning.

3.3.1. GDE Training

We first impose adversarial loss on GDE and DDE as follows:

LL =Ex∼IDS− f undus [ log DDE(x) ]

+Ez∼IUWF [ 1 − log DDE(GDE(z)) ].
(1)

The identity mapping loss is important when performing tasks such as super-resolution
or enhancement, as it helps to maintain the style (color, structure, etc.) of the source do-
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main’s image while applying the target domain’s information [18]. Thus, we use the loss
function defined as:

LI = Ez∼IUWF∥ GDE(z)− z ∥. (2)

We especially impose L2 regularization [34] loss LR on the weight of GDE to retain
knowledge by preventing the abrupt change of the weight as much as possible when we
use pre-trained GDE with other datasets. Finally, the loss function LE to adapt the GDE to
the fundus-UWF retinal image dataset is defined as:

LE = LL + λI LI + λR LR, (3)

where λI and λR control the relative importance of LI and LR, respectively.
For more efficient adversarial training, we initialize the network parameters by pre-

training using [5]. We then freeze the encoder parameters and only update the
decoder parameters.

3.3.2. GSR Training

In this step, we freeze all trainable parameters in GDE to generate IE−UWF from IUWF.
After the adaptation process for GDE is done, we apply adversarial loss to GSR, which
takes IE−UWF from GDE as an input and outputs the FQ-UWF result IFQ−UWF, which is
defined as:

LH =Ex∼I f undus [ log DSR(x) ]

+Ez∼IE−UWF [ 1 − log DSR(GSR(z)) ].
(4)

We also impose a cycle constraint [18], which maintains consistency between the two
domains, resulting in more realistic and coherent image translations on
I f undus → IDS− f undus → IFQ−UWF. This can be denoted as follows:

LC = Ex∼I f undus∥ GSR(DSR(x))− x ∥. (5)

As mentioned in [17], by applying one-way cycle loss, the network can learn to handle
various degradations by opening up the possibility of one-to-many generation mapping.

Overall, the loss function for GSR training is expressed as follows:

LR = LH + λC LC, (6)

where λC controls the relative importance of LC.

3.3.3. Overall Fine-Tuning

In the previous training steps, GDE and GSR are trained independently. But to ensure
stability and integration between the two generators, a final calibration process is performed
on the entire architecture. Additionally, to improve the network’s performance in clinical
situations, where the diagnosis of lesions is mainly based on the macular region rather than
the periphery of the fundus, we again employ the same loss combinations as follows, only
using patches from the macular region to fine-tune the entire model:

LM = LE + LR. (7)

4. Experiments
4.1. Datasets and Settings

We used 3744 UWF images and 3744 fundus images acquired from the Kangbuk Sam-
sung Medical Center (KBSMC) Ophthalmology Department from 2017 to 2019. Although
UWF and fundus images were acquired in pairs, we anonymized and shuffled the image
sets and did not use information of paired images during training. To train the model
proposed in this paper, we used 3370 UWF and 3370 fundus images (unpaired). We set
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the scaling factor for super-resolution to 4, which was close to the approximate average
difference in resolution between the UWF and fundus images. To test the model, we used
374 UWF images that were not used during training.

4.2. Implementation Details

We use the AdamW [35] optimizer with learning rate = 1e − 3, β1 = 0.9, β2 = 0.999,
and ϵ = 10−8 to train GDE and GSR, with weight decay every 100K iterations with a decay
rate of 1e − 2. We set the learning rate to be halved every 200K iterations and the batch
size as 16, and we train the model for more than 5 × 106 iterations using an NVIDIA RTX
2080Ti GPU. We feed two 128 × 128-sized IUWF and I f undus patches that are randomly
extracted from the UWF and fundus retinal images, respectively. During training, we apply
additional dataset augmentations using rotation and flipping for IUWF and I f undus.

We set λI , λR, and λC, which adjust the degree of importance of LI , LR, and LC to be
0.5, 0.1, and 0.5, respectively.

4.3. Baselines for Comparison

We choose the following baselines to compare with the proposed method on the KB-
SMC dataset: (i) ZSSR [13], (ii) cycle-in-cycle GAN [36], (iii) KMSR [37], (iv) CinCGAN [16],
and (v) RLrestore [14] + bicubic upsampling. We train these five baselines on the KBSMC
dataset from scratch.

4.4. Evaluation Metrics

As we do not assume paired images for training, we avoid the use of reference-based
metrics such as the PSNR [38] or SSIM [39] that require paired GTs. Instead, we measure
the LPIPS [40] and the FID [41]. Both metrics indicate a closer distance between the two
images when their values are smaller.

Additionally, given the nature of retinal images with various degradations, achieving
sharp images is also an important consideration. To measure this, we measure γ [42,43]. A
lower value of the γ metric implies a higher level of sharpness in the generated images,
and therefore, the model is considered to deliver higher performance. We further sub-
stantiate the statistical validity of our comparisons by employing two-sided tests. We first
utilize ANOVA [44] to ascertain whether there were significant differences in the means
among groups. Subsequently, to identify specific groups where differences exist, we employ
Bonferroni’s correction [45]. These analyses are conducted using p-values for confirmation.

Furthermore, we attempt to measure the clinical impact of our method by comparative
evaluation of the visibility of drusen in the IUWF images before improvement, the IFQ−UWF
images after improvement, and the I f undus images. In this process, medical practitioners
annotated drusen masks in the order of IUWF → IFQ−UWF → I f undus to minimize potential
biases that might arise.

4.5. Experiments on the KBSMC Dataset

Figure 2 depicts samples of the enhancement by the proposed method. Improved
clarity of vessel lines and background patterns can be observed.

4.5.1. Domain Distance Measurement Results

Table 1 shows the γ, LPIPS, and FID results of the baselines for comparison and our
method. The proposed method yields the best results in terms of the γ and LPIPS metrics
and the second-best results in terms of the FID. Figure 5 shows the corresponding sample
results before and after the improvements with the given methods. We can see visible
improvements in the patterns of vessels and the macula. This is corroborated by the γ
values in Table 1. The low p-values < 0.001 in the table show the statistical significance of
our method in terms of LPIPS, FID, and γ.
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Figure 5. The enhanced FQ-UWF results. Input IUWF images are improved using various methods.

Table 1. Quantitative evaluation of KBSMC dataset.

Method r ↓ (p-Value) LPIPS ↓ (p-Value) FID ↓ (p-Value)

ZSSR [13] 0.775 (<0.001) 0.624 (<0.001) 117.193 (<0.001)
cycle-in-cycle GAN [36] 0.803 (<0.001) 0.552 (<0.001) 103.010 (<0.001)
KMSR [37] 0.590 (<0.001) 0.435 (<0.001) 15.192 (<0.001)
CinCGAN [16] 0.726 (<0.001) 0.653 (<0.001) 89.511 (<0.001)
RLrestore [14] + bicubic upsampling 0.514 (<0.001) 0.595 (<0.001) 54.118 (<0.001)

Ours: GDE w/o LE → bicubic upsampling 0.520 (<0.009) 0.318 (<0.001) 30.991 (<0.001)
Ours: GDE w/ LE → bicubic upsampling 0.499 (<0.001) 0.297 (<0.001) 25.120 (<0.001)
Ours: GDE w/o LE → GSR 0.503 (<0.001) 0.284 (<0.001) 27.055 (<0.001)
Ours: GSR only 0.654 (<0.001) 0.305 (<0.001) 41.317 (<0.001)
Ours: GSR → GDE w/o LE 0.671 (<0.001) 0.300 (<0.001) 26.114 (<0.001)
Ours: GSR → GDE w/ LE 0.585 (<0.001) 0.288 (<0.001) 26.017 (<0.001)
Ours: full 0.317 0.231 17.235

Values are mean ± standard deviation. For γ, LPIPS, and FID, smaller values indicate better performance. Bold
values denote the most effective method corresponding to each evaluation metric.

4.5.2. Enhancement Results for Severe Degradations

Figure 6 illustrates the comparison with various unpaired super-resolution methods
and our method for the challenging scenario wherein the input image is corrupted with
the following synthetic degradations: (i) Gaussian blur with σ = 7, where the image is
degraded with a Gaussian blur kernel of size σ × σ as in [46]; (ii) Illumination with γ = 0.75,
where the brightness of the image is unevenly illuminated by gamma correction with γ
as in [47]; (iii) JPEG compression with rate = 0.25, where the compression ratio = rate as
in [48]; (iv) Bicubic downsampling with scale = 0.25, where the size of neighborhoods
for interpolation is scale × scale as in [49]. Table 2 presents the corresponding results in
terms of the r, LPIPS, and FID metrics. When considering these results collectively, our
method demonstrates the most consistent and effective improvement across the majority of
degradation types.
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Figure 6. The enhanced FQ-UWF results. Different types of degradation are applied to IUWF images.
Degraded images are improved using various methods.

Table 2. Quantitative comparison on degraded KBSMC dataset.

Degradation Type Methods r ↓ LPIPS ↓ FID ↓

Gaussian Blur
(σ = 7)

ZSSR [13] 0.724 0.836 137.739
cycle-in-cycle GAN [36] 0.799 0.889 140.350
KMSR [37] 0.509 0.802 49.957
CinCGAN [16] 0.710 0.790 92.041
RLrestore [14] + bicubic upsampling 0.663 0.811 98.818
Ours 0.471 0.599 31.535

Illumination
(γ = 0.75)

ZSSR [13] 0.632 0.777 109.176
cycle-in-cycle GAN [36] 0.601 0.818 104.073
KMSR [37] 0.456 0.659 23.717
CinCGAN [16] 0.643 0.751 79.990
RLrestore [14] + bicubic upsampling 0.589 0.612 88.235
Ours 0.375 0.363 20.532

JPEG Compression
(rate = 0.25)

ZSSR [13] 0.721 0.809 119.501
cycle-in-cycle GAN [36] 0.638 0.829 90.1199
KMSR [37] 0.557 0.771 26.181
CinCGAN [16] 0.699 0.832 84.595
RLrestore [14] + bicubic upsampling 0.600 0.793 91.932
Ours 0.497 0.552 34.172
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Table 2. Cont.

Degradation Type Methods r ↓ LPIPS ↓ FID ↓

Bicubic Downsampling
(scale = 0.25)

ZSSR [13] 0.703 0.813 163.115
cycle-in-cycle GAN [36] 0.637 0.847 112.752
KMSR [37] 0.553 0.728 36.114
CinCGAN [16] 0.729 0.797 104.969
RLrestore [14] + bicubic upsampling 0.581 0.607 82.032
Ours 0.413 0.595 39.001

Values are mean ± standard deviation. For γ, LPIPS, and FID, smaller values indicate better performance. Bold
values denote the most effective method corresponding to each evaluation metric and each degradation type.

4.5.3. Drusen Detection Results

Figure 7 presents samples of IUWF, IFQ−UWF, and I f undus images with corresponding
manually annotated drusen region masks. Quantitative comparative evaluations of the
drusen region masks for IUWF and IFQ−UWF are presented in Table 3. Assuming the I f undus
drusen mask as GT, we measure the mean average precision (mAP) as the intersection over
union (IoU) [50] averaged across the number of images. The increase in mAP highlights
the improved diagnostic capabilities through the enhanced IFQ−UWF images.

U
W
F

FQ
-U
W
F

fu
nd
us

Figure 7. Qualitative drusen detection results.

Table 3. Quantitative drusen detection results.

Image Pair mAP

IUWF-I f undus 46.3%
IFQ−UWF-I f undus 62.4%
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4.6. Ablation Study

Table 1 illustrates the performance results of method variations such as the inclusion of
pre-trained GDE through LE for training, the utilization of GDE and GSR, and the consider-
ation of their configuration order. When utilizing pre-trained GDE before super-resolution
without a separate degradation enhancement process, significantly better results in terms
of γ, LPIPS, and FID metrics were observed compared to cases where only super-resolution
was performed. And training GDE via LE and utilizing it for super-resolution led to
overwhelmingly superior results. Also, the configuration order of GDE and GSR shows a
substantial numerical difference, justifying the subsequent structure of the modules.

Table 4 shows the performance changes when specific components of the loss functions
that constitute the entire network are used. According to these results, the most significant
performance improvement in our model, which is composed of both GDE and GSR, is
achieved when fine-tuning GDE to suit the IDS− f undus image domain. Furthermore, we
can observe that utilizing GDE, even when employing the bicubic upsampling method,
outperformed the results using only the SRM network. This suggests that super-resolution
without adequate degradation removal has limitations in enhancing retinal images. Figure 8
illustrates the importance of the process for removing degradations before super-resolution.
We can see that using the improved IE−UWF through the GDE to generate IFQ−UWF show-
cases a significantly superior enhancement capability compared to generating IFQ−UWF
directly from IUWF without the prior degradation removal process.

Table 4. Ablation study.

Loss Combination r ↓ LPIPS ↓ FID ↓
LH 0.683 0.508 81.392
LH + LE 0.415 0.329 37.508
LR + LE 0.301 0.256 23.125
LR + LE + LM 0.317 0.231 17.235

Values are mean ± standard deviation. For γ, LPIPS, and FID, smaller values indicate better performance. Bold
values denote the most effective method corresponding to each evaluation metric.

(a) (b) (c) (e)(d)

Figure 8. The interim improvement results (a) Input image, (b) IUWF, (c) IE−UWF, (d) IFQ−UWF,
and (e) direct super-resolution results using GSR of (b).

5. Discussion

The proposed method can be trained on unpaired UWF and fundus image sets. By
reducing dependency on paired and annotated data, our method becomes more pragmatic
for integration into real-world medical settings, where the acquisition of such data is often
a logistical challenge. The enhanced image quality facilitated by our approach holds the
potential to significantly improve diagnostic accuracy. The ability to detect subtle changes
in the retinal structure, often indicative of early-stage pathologies, is critical for timely
interventions and effective disease management.
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Despite the promising outcomes, our study prompts further investigation into several
critical areas. The robustness and generalizability of our model need to be rigorously
examined across a spectrum of imaging conditions, including instances with various
ocular pathologies and diverse qualities of image acquisition. The influence of different
imaging devices and settings on our model’s performance demands scrutiny to ensure
broad applicability in clinical settings.

To validate the real-world impact of our enhancement method, collaboration with
domain experts and comprehensive clinical validation are imperative. Ophthalmologists’
insights will provide essential perspectives on how the enhanced image quality translates
into improved diagnostic accuracy and treatment planning. The feasibility of implementa-
tion in diverse clinical settings warrants further exploration considering factors such as
computational requirements, integration with existing diagnostic workflows, and user-
friendly interfaces for healthcare professionals.
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