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Abstract: In recent decades, much work has been implemented in heart rate (HR) analysis using
electrocardiographic (ECG) signals. We propose that algorithms developed to calculate HR based on
detected R-peaks using ECG can be applied to seismocardiographic (SCG) signals, as they utilize
common knowledge regarding heart rhythm and its underlying physiology. We implemented the
experimental framework with methods developed for ECG signal processing and peak detection to be
applied and evaluated on SCGs. Furthermore, we assessed and chose the best from all combinations
of 15 peak detection and 6 preprocessing methods from the literature on the CEBS dataset available on
Physionet. We then collected experimental data in the lab experiment to measure the applicability of
the best-selected technique to the real-world data; the abovementioned method showed high precision
for signals recorded during sitting rest (HR difference between SCG and ECG: 0.12 ± 0.35 bpm) and
a moderate precision for signals recorded with interfering physical activity—reading out a book
loud (HR difference between SCG and ECG: 6.45 ± 3.01 bpm) when compared to the results derived
from the state-of-the-art photoplethysmographic (PPG) methods described in the literature. The
study shows that computationally simple preprocessing and peak detection techniques initially
developed for ECG could be utilized as the basis for HR detection on SCG, although they can be
further improved.

Keywords: seismocardiography; heart rhythm; accelerometers; electrocardiogram

1. Introduction

Implementing accelerometer-based heart analysis techniques to analyze the cardio-
vascular system can make healthcare manageable in remote regions and regions where
healthcare procedures, such as echocardiography, are unavailable. The accelerometers
suitable for heart activity monitoring are common, low-cost, unobtrusive, and easy to use.
One of the core methodologies to measure the activity of the cardiovascular system and
the state of health in general is the analysis of the heart rhythm. The implementation of
photoplethysmography (PPG) has made the study of heart rhythm affordable; at the same
time, this method lacks precision in various conditions, is extremely sensitive to motion
artifacts, and is known not to give reliable measurements for people with dark skin [1].
Recent studies show a common disparity between commercially available wearable tech-
nology heart rate (HR) monitors and methods based on electrocardiography (ECG) [2]; we
might expect comparable precision from accelerometer-based methods.

Much research and many papers are dedicated to the ongoing research on reliable
and robust R-peak detection algorithms for ECG. ECG signals are stable and are among
the most reliable sources of information on heart rhythm. Nonetheless, the ECG has
drawbacks: susceptibility to electromagnetic interference, the imperative for consistent
electrode placement (prone to slipping or detachment), optimal skin-electrode impedance
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(which worsens with gel drying), and associated electrical hazards. Consequently, it may
prove unsuitable for continuous, long-term monitoring, especially in daily life scenarios,
and often entails discomfort. Portable alternatives, like the Holter monitor, have been
utilized for continuous measurement, although they typically allow recordings of no more
than 3 days [3]. Moreover, ECG demands the expertise of skilled clinical professionals.
However, accessing a healthcare professional for this task may pose challenges, particularly
in developing and rural locales.

Ballistocardiography (BCG) [4] and seismocardiography (SCG) [5] can be utilized
instead of ECG when non-invasive monitoring of the mechanical aspects of cardiac function,
such as body recoil movements or chest wall vibrations, is required. BCG is a non-invasive
technique that measures the mechanical activity of the heart by detecting the body’s
recoil movements as blood is ejected with each heartbeat. SCG, on the other hand, is a
non-invasive method that records the vibrations of the chest wall induced by the heart’s
mechanical actions, particularly the opening and closing of heart valves and the myocardial
movements. The primary difference between the two lies in their focus: BCG measures the
whole body’s recoil forces, while SCG captures localized chest wall vibrations.

BCG and SCG signals are more complicated to utilize as they are prone to disturbances
from a wide range of internal and external noise sources. They are also dependent on the
placement of the sensor and body composition. If we can precisely detect heart rhythm us-
ing BCG/SCG, we can perform heart rate variability (HRV) analysis without acquiring ECG
signals, giving us much flexibility and many possible applications. For SCG, for instance,
the well-detected heartbeats can be used to acquire the averaged SCG heartbeats to obtain
information about the mechanical functioning of the heart derived from fiducial points.

The peak detection method can be presented in two steps:

1. Signal preprocessing (this mainly implies filters and basic mathematical operations),
which has signal samples (points) on the input and the output;

2. Peak detection, which takes the signal samples and outputs the sequence of peak
timestamps, a one-point pro heartbeat, which is then used to calculate HR and
HRV parameters.

The recent review on the topic [6] depicts a wide variety of SCG applications, includ-
ing HR detection. The paper presented by Garcia-Gonzales et al. [7] proposed using the
continuous wavelet transform (CWT) on a filtered signal. Similar methods have also been
previously used for ECG. The recent paper by Centracchio et al. [8] utilized template match-
ing based on normalized cross-correlation, which showed promising results in patients
with heart diseases. Another paper [9] used a template-based method to detect systoles
and diastoles separately.

Other recent studies have acquired comparable precision using algorithms based on
the Hilbert transform [10] and signal energy thresholding [11]. These are more accessible
than deep learning techniques but are still computationally intensive. Both strategies are
highly dependent on the cleanliness of the signal. Some papers propose machine-learning
techniques to detect heartbeat intervals, such as convolutional neural networks (CNNs) for
classification [12], U-Net neural networks for semantic segmentation [13,14], unsupervised
segmentation [15], deep dominant frequency regressor [16], BiLSTM networks [17], and
data-adaptive variational mode decomposition (VMD) [18]. Recent studies have also
proved the possibility of recording SCG using cameras with a precision that exceeds the
PPG method [19]. Those have shown promising results but are hard to implement on
edge devices.

Sometimes, research only partially considers signals from various activities and new
patients. Studies often test methods in isolation, limiting comparability across approaches.
In addition, many research papers have included manual procedures, such as discarding
signal parts affected by motion artifacts or other disturbances, which we still want to
capture and process automatically. In a real-world scenario, making an algorithm work
fully automated without interacting with the final user is necessary.
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Although many papers are dedicated to developing peak detection algorithms for
SCG signals, the knowledge and practice put into HR detection in ECG can land a basis
for effective application in SCG. Morphologically, SCG heartbeat has similar features
as ECG—mainly, the most prominent peak pro heartbeat (which in SCG case might be
correspondent to either systole or diastole depending on sensor placement and selected
axis) and similar frequency spectrum, which makes ECG peak detection and preprocessing
methods applicable for SCG in the first precision.

We aim to compare various methods and techniques in a single framework based on
data from multiple sources and to select the algorithm with the highest HR evaluation
quality in SCG compared to ECG (the gold standard). For that, we identify a set of
algorithms developed for ECG peak detection, apply them to the SCG signals derived
from open-source datasets and new experimental data, and evaluate their accuracy. The
detection quality for the best functioning algorithm is then compared with the SOTA
JJ-interval detection algorithms developed directly for SCG in Section 4.

2. Materials and Methods

We proceed in three steps to clarify the research question:

1. In the first step, HR detection algorithms from ECG diagnostics were identified using
a literature and software search.

2. In the second step, the precision of these algorithms was tested using a test data set of
ECG (gold standard) and SCG data collected in parallel to identify the best methods.
The quality of the method is determined by the highest precision in determining the
HR (lowest deviation from the gold standard).

3. In the third step, the applicability and precision of the best algorithm are tested on
real-life data in an experiment under resting conditions (sitting) and light activity
(reading) interference.

2.1. Identification of ECG HR Algorithms and Implementation of Signal Preprocessing and Peak
Detection Methods
2.1.1. Identification

We investigated the recent systematic reviews [20–22] and code realizations for various
techniques to select the set of peak detection and preprocessing methods for HR evaluation
of ECG. At the beginning of the study, the choice was made to compare the algorithms
already implemented in open-source code to have the possibility to assess and validate them.
Utilizing the validated pipelines implemented in open-source packages helped us narrow
the room for possible mistakes during code preparation and significantly diminish the
implementation time. Therefore, non-open-source realizations of HR detection algorithms,
such as those implemented in Kubious HRV software (v.4.0) [23], and methods presented
in scientific papers without open-access code publication were excluded from the analysis.

We systematically searched available open-source packages for ECG processing and
HRV analysis using the GitHub platform. We selected all relevant packages with at least
5 stars and which contained peak detection algorithms. We evaluated the algorithm
implementations presented in the following packages: BioSPPy (v.2.2.2) [24], HeartPy
(v.1.2.7) [25], HRV (v.0.2.10) [26], neurokit2 (v.0.2.7) [27], pyHRV (v.0.4.1) [28], PySiology
(v.0.0.9.6) [29], RapidHRV (v.0.2.4) [30], and Systole (v.0.3.0) [31] packages. The neurokit2
package (v.0.2.7) [27] was selected as the most adequate for the research goals. It provides
the most extensive set of well-described, widely accepted, and computationally non-greedy
algorithms, which were most tested and underwent quality assessment.

The application of preprocessing and peak detection methods derived from a well-
cited package allowed us to foster the transparency and reproducibility of our research, as
we make it easy for researchers to cross-validate our study.

All calculations and visualization in the research were carried out using Python 3.11.4
programming language [32]. We developed the experimental framework based on the
neurokit2 package (v.0.2.7) [27]. We tested the feasibility of the package’s peak detection
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methods and preprocessing pipelines, initially developed for ECG, on recorded SCG
signals. We also provide open access to the source code developed during the preparation
of this manuscript.

2.1.2. Signal Preprocessing Pipelines

The following preprocessing pipelines were applied in the framework. Cleanup
methods filter an ECG signal to remove noise and improve peak-detection accuracy. In
total, 6 implemented cleanup methods were implemented and tested using the neurokit2
package together with our proposed filter approach and a raw signal bypass, Table 1.

Table 1. Description of signal preprocessing pipelines.

Codename Source Description

neurokit Neurokit2 package [27] 0.5 Hz high-pass Butterworth filter (order = 5), followed by
powerline filtering (50 Hz)

biosppy Biosppy package [24]
a finite impulse response filter with the order defined as
[0.3 × sampling rate] with bandpass cut-off frequencies

3 and 45 Hz

pantompkins1985 Pan and Tompkins (1985) [33] a 1-order bandpass Butterworth filter with 5 and 15 Hz
cut-off frequencies

hamilton2002 Hamilton et al. (2002) [34] a combination of 1-order Butterworth 8 Hz high-pass and
16 Hz low-pass filters

elgendi2010 Elgendi et al. (2010) [35] a 2-order bandpass Butterworth filter with 8 and 20 Hz
cut-off frequencies

current_paper Current paper a 4-order bandpass Butterworth filter with 5 and 35 Hz
cut-off frequencies

engzeemod2012 Lourenco et al. (2012) [36] a 5-order bandstop Butterworth filter with 48 and 52 Hz
cut-off frequencies

Specified preprocessing methods were effectively utilized in practical applications as
a stage in the heartbeat detection pipelines. Their aims are:

1. to eliminate the low-frequency component with no morphological features below
the HR;

2. to eliminate high-frequency distortions induced by motion and other sources;
3. to eliminate the 50 Hz magnetically induced interference, interference currents in the

body, and interference currents in the electrode leads;
4. in some cases, to eliminate substantial signal components not directly associated

with the primary wave in the signal corresponding to the core fiducial point, usually
R-peak (this applies to filters with a short bandpass zone).

Although 50 Hz filtering is irrelevant for HR detection in SCG signals, the presented
filtering solutions contain low-pass and high-pass filters that are highly relevant to sig-
nals derived from accelerometers. In their work, Elgendi et al. [35] proved that cut-off
frequencies influenced the quality of heartbeat detection and proposed the best cut-off
frequencies for low-pass and high-pass filters. We anticipate the same will apply to SCG
signals. The additional filtering method we present for comparison in the paper has shown
the best artifact elimination with signal wave retention for further fiducial points analysis
on previously obtained experimental data.

2.1.3. Peak Detection Methods

Peak detection methods take the signal as an input and output the sequence of R-peaks
(or corresponding core fiducial points on SCG). Altogether, 15 peak detection methods
were compared in the testing framework—Table 2. The selected list includes well-cited
and widely used algorithms in the literature suitable for real-time peak detection, starting
from the classical Pan and Tompkins (1985) [33] algorithm and up to the introduced
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in the 2023 approach by Emrich et al. [37]. The methods were implemented using the
neurokit2 package.

Table 2. Description of peak detection methods.

Codename Source Description

neurokit Neurokit2 package [27]
QRS complexes are detected based on the steepness of the
absolute gradient of the ECG signal; subsequently, R-peaks

are detected as local maxima in the QRS complexes
pantompkins1985 Pan and Tompkins (1985) [33] an algorithm based on dynamically changing thresholds

hamilton2002 Hamilton (2002) [34] adaptive thresholding
zong2003 Zong et al. (2003) [38] a low-pass filter, slope sum function, and a decision rule

martinez2004 Martinez et al. (2004) [39] combined adaptive filters

christov2004 Christov et al. (2004) [40]

two parallel running algorithms with a combination of three
adaptive thresholds: steep-slope, integrating threshold for

high-frequency signal components, and beat
expectation threshold

gamboa2008 Gamboa et al. (2008) [41] the first derivative and restrictions on possible RR lengths

elgendi2010 Elgendi et al. (2010) [35] potential blocks generated based on two moving averages
and the following thresholding

engzeemod2012 Lourenco et al. (2012) [36] 5-s intervals to determine adaptive threshold linearly
changing in defined intervals

manikandan2012 Manikandan and Soman (2012) [42] Shannon energy envelope (SEE)
kalidas2017 Kalidas and Tamil (2017) [43] stationary wavelet transform (SWT)

nabian2018 Nabian et al. (2018) [44] Pan-Tompkins inspired algorithm with moving windows
and highest peak detection

rodrigues2021
Sadhukhan and Mitra (2012) [45],
Gutiérrez-Rivas et al. (2015) [46],
and Rodrigues et al. (2021) [47]

double derivative, squaring, moving window integration as
preprocessing and a finite-state-machine

for decision-making

emrich2023 Koka et al. (2022) [48] and Emrich
et al. (2023) [37]

the fast natural visibility graph (FastNVG) algorithm based
on the visibility graph detector; the algorithm transforms

the ECG into a graph representation and extracts exact
R-peak positions using graph metrics

promac Neurokit2 package [27]

combination of several R-peak detectors in a probabilistic
way: for a given peak detector, the binary signal

representing the peak locations is convolved with a
Gaussian distribution, resulting in a probabilistic

representation of each peak location; the procedure is
repeated for all selected methods, accumulating the

resulting signals; a threshold is used to accept or reject the
peak locations

The chosen methods are based on standard signal processing techniques and are
computationally inexpensive, which makes them feasible for real-time calculations. We
do not target complex machine learning and, especially, deep learning techniques to make
calculations on cheaper edge devices possible. This makes the final solution affordable and
feasible for implementation on wearable devices, avoiding high computational complexity.

We also considered only the algorithms that work fully automatically, without any
anticipated ad-hoc configuration from the user side.

2.2. Application of the Identified Algorithms to the Test Dataset
2.2.1. Evaluation Strategy

We will refer to the SCG signal’s main anchor points corresponding to the R-peaks on
the ECG as J-peaks. In most cases, this point is the peak of the SCG’s systolic or diastolic
complex, depending on sensor placement and selected axis.

For each recording, we ran calculations on the 60 s episode, which gives enough signal
length to make a precise HR measurement that is not strongly affected by the HRV and
signal cut and is widely used in other papers [49]. HR was evaluated based on the number
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of detected peaks and the signal fragment’s length. To avoid a mismatch between the
number of peaks resulting from a non-complete heartbeat at the beginning and the end of
the fragment (e.g., when the last R-peak is included in the fragment while the last J-peak is
not), we deleted the j-peaks before the first R-peak, the last R-peak, and all J-peaks after the
last R-peak. Then, these sequences of detected peaks were used to calculate the HR. The
HR was calculated as 60 s divided by the mean length of the RR interval for the segment.

We evaluated the detection accuracy of J-peaks on the SCG with the following
approach:

• the detected R-peaks on ECG were taken as ground truth;
• the first peak on SCG that hit the particular RR interval was treated as a true positive

(TP), while every following peak in the interval was treated as a false positive (FP);
• each RR interval without any peaks on SCG hitting it is treated as a false-negative (FN).

Precision (positive predictive value), recall (sensitivity), and F1-score were calculated
using the standard formulas and TP, FP, and FN values:

Precision =
TP

TP + FP
, (1)

Recall =
TP

TP + FN
, (2)

F1 =
2 · Precision · Recall
Precision + Recall

. (3)

We did not specify the particular window size after the R-peak for the J-peak to hit to
be treated as TP, as it does not affect the accuracy of HR calculation (considering it correctly
hit the RR interval).

2.2.2. Reference Dataset

We used the CEBS dataset [7] available at PhysioNet to compare the methods and
choose the best approach. The SCG recording in this dataset was acquired using a triaxial
accelerometer (LlS344ALH, ST Microelectronics) and a filter with a bandwidth between
0.5 Hz and 100 Hz. The conventional ECG (leads I and II, respectively) was recorded with a
bandwidth between 0.05 Hz and 150 Hz. The subjects were asked to be awake and supine
on a comfortable conventional single bed during the measurement. The dataset consists of
records obtained from 20 subjects.

The dataset contains recordings from a single accelerometer patch with combined
axes for 20 healthy subjects in three stages: before listening to the music (up to 5 min
of recordings), during music listening (up to 45 min), and after the music (up to 5 min).
We evaluated algorithms based on the signals recorded during the second stage, which
contains data for the most stable part of the experiment.

Before applying the algorithms, we downsampled the dataset signals to 1 KHz sam-
pling frequency. We used the I lead from ECG to detect the R-peaks.

The complete description of the dataset is available in the original paper [7].

2.3. Testing the Best Algorithm in a Real-Life Setting in Rest and Interfering Activity Conditions
2.3.1. Experiment

We conducted an experiment to evaluate the selected best method on new test data.
SCG and ECG were measured in subjects without heart diseases in two modes:

• 5 min seated, physical rest;
• 5 min seated, reading the book aloud without any additional physical activity.

The reading was selected as an exercise as speaking is currently among the most
critical and frequent sources of disturbances in the SCG. The interference from muscle
movements and rapid inhalations during speaking greatly disturbs the waves related to
the circulatory system in SCGs.
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The inclusion criteria were the capacity to give consent, 18–60 years of age, any gender,
fit for duty, and no heart or cardiovascular disease. The exclusion criteria were lack of
capacity to consent and known allergy/intolerance to electrode gel/wound dressing.

Study procedure: The study participants were informed about the study. The inclusion
and exclusion criteria were requested and checked when they consent to participate in
the study. Age, weight, height, and body mass index (BMI) were collected and recorded.
While seated, the study participants were taped with 2 SCG sensors and ECG electrodes
(Figure 1). The participants were asked to relax and avoid physical activity during the first
part of the measurement. The participants were asked to read out loud from a book while
avoiding other types of physical activity during the second part of the measurement. The
duration of each part of the experiment was 5 min.
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Figure 1. The experimental scheme of the measurement. Patch 1 (yellow) is for sternal accelerometers;
patch 2 (green) is for apex cordis accelerometers. The other patches belong to the reference ECGs.

Schedule: The subject is fitted with the accelerometer sensors (sternal, apex cordis) and
the 1-channel ECG. Before taking the measurements, the operator and the test subject check
the available equipment and its functionality. The positions of the reference sensors are
approved. The operator then tests the connectivity and checks the data recording. When
all readings are satisfactory and no adjustments are required, the operator starts logging
data, and the measurement begins. After the last experiment, the logging is stopped, the
data is stored and backed up, and the operator and the test subject are released from their
positions. The sensors and the ECG are then removed.

A fused sensor system of commercially available 3D accelerometers was used to
determine the micro-accelerations. The ECG (electrical potential differences) serves as a
reference system.

The study protocol was approved by the Westphalia-Lippe Ethics Committee (act ref.
l 2024-134-f-S, 19 March 2024).
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2.3.2. Sensor System

The two sensor patches and the ECG are connected to a processing unit (PU) to
interface, preprocess, and transmit the measured data. Custom implementation was neces-
sary to support differential Seismocardiogram (SCG) sensing for each patch and ensure
time-synchronous acquisition of ECG data, allowing for clock-synchronous interfaces (see
Figure 2). The system is described in detail in [50,51].
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3. Results

In Section 3, we describe first the algorithm selection approach and then the results of
testing the selected algorithm on the experimental data.

3.1. Finding the Best Approach Using the CEBS Dataset

For the comparison between algorithms, we took five randomly selected 60-s episodes
of the music-listening part of the recording. We applied each preprocessing method (8) and
peak detection method (15) for five 60-s parts of 20 recordings, totaling 12,000 runs.

One of the 15 algorithms, emrich2023, could not work with the SCG (it outputted
empty results). All the other combinations provided results with various detection qualities.

The number of heartbeats was calculated for each of the selected sixty-second record-
ings. The best method was chosen from the iteration with the lowest HR difference
between HR detected using ECG and SCG signals. The correctness of the detected R-
peaks on the ECG (ground truth) was additionally manually checked using signal vi-
sualization to ensure proper labeling. Table 3 shows the resulting accuracy metrics for
the top three detection methods, the complete table with all methods is presented in
Supplementary Materials Table S1.

Table 3. Comparison of peak detection algorithms in combination with the best passing preprocess-
ing pipeline.

Rank Detection
Method

Preprocessing
Method

HR
(SCG), bpm

HR
(ECG), bpm

HR
diff, bpm Precision Recall F1-Score

1 nabian2018 hamilton2002 70.8 ± 9.8 70.1 ± 9.8 0.9 ± 2.4 98.7 ± 3.1 99.7 ± 0.9 0.992 ± 0.018
2 neurokit hamilton2002 85.0 ± 21.5 70.1 ± 9.8 15.0 ± 21.0 85.6 ± 17.0 99.4 ± 1.5 0.91 ± 0.11
3 elgendi2010 hamilton2002 86.0 ± 22.0 70.2 ± 9.8 15.8 ± 20.2 84.3 ± 16.7 98.9 ± 2.1 0.901 ± 0.106

The best peak detection methods were the nabian2018, neurokit, and elgendi2010.
Figure 3 shows an example of the algorithm working on a 10-s signal fragment.
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Figure 3. The detection example for the hamilton2002 preprocessing and nabian2018 peak detection
combination of methods. Gray curve—raw signal, orange curve—signal after being processed with
the hamilton2002 pipeline, black curve in the bottom plot—ECG signal, red vertical lines—timestamps
of R-peaks detected on ECG, blue vertical lines—J-peaks detected on SCG, the numbers next to blue
vertical lines show the distance from the previous and to the next peak in ms. For the selected
interval: precision = 100%, recall = 100%, F1-score = 1.00, HR: 61.9 bpm, n(j_peaks) = n(R_peaks) = 9.
The accuracy calculation does not include peaks close to the plot’s border. Signal magnitudes are
normalized for demonstrational purposes.

The combination of the nabian2018 peak detection method with a hamilton2002 has
shown the best quality of peak detection, resulting in an average error in HR estimation
below 1 bpm. nabian2018 also has a very low computation complexity. This algorithm
employs a sliding window of 400 ms duration, moving one sample at a time to scan the
entire signal. During each scan, the highest point within the window is identified as a
potential R peak when it occurs in the center of the window. This process allows for the
detection of resembling R peaks across the entirety of the input ECG signal. The nabian2018
method has shown good results partly because it targeted the highest point in the windows
and not the first high point in the window, unlike many other HR detection algorithms
based on peak detection principles. The Neurokit2 package [27] contains a simplified
version of the Nabian et al. algorithm compared to the one presented in the original
paper [44], omitting the post-detection with additional restrictions on peak amplitudes and
interpolating missing peaks. We implemented both approaches in the code and compared
them back-to-back. The resulting precision for HR detection for the version without peaks
post-processing has shown better results for SCG signals.

Table 4 compares various preprocessing techniques when combined with the nabian2018
peak detection method. The cleanup methods had a relatively minor effect on the result.

Table 4. Comparison of preprocessing pipelines in combination with the peak detection method from
Nabian et al. [44].

Rank Detection
Method

Preprocessing
Method

HR
(SCG), bpm

HR
(ECG), bpm

HR
diff, bpm Precision Recall F1-Score

1 nabian2018 hamilton2002 70.8 ± 9.8 70.1 ± 9.8 0.9 ± 2.4 98.7 ± 3.1 99.7 ± 0.9 0.992 ± 0.018
2 nabian2018 pustozerov2024 69.9 ± 9.5 70.1 ± 9.8 0.9 ± 2.1 98.6 ± 4.5 98.3 ± 4.5 0.985 ± 0.043
3 nabian2018 elgendi2010 71.3 ± 10.1 70.1 ± 9.8 1.4 ± 3.6 92.0 ± 9.7 93.4 ± 9.4 0.926 ± 0.093
4 nabian2018 pantompkins1985 71.2 ± 10.0 70.1 ± 9.8 1.5 ± 3.9 98.0 ± 4.7 99.4 ± 1.8 0.986 ± 0.029
5 nabian2018 biosppy 70.3 ± 9.5 70.8 ± 9.4 1.8 ± 3.9 98.3 ± 4.5 97.7 ± 5.6 0.979 ± 0.045
6 nabian2018 none 70.3 ± 9.5 71.5 ± 9.9 2.5 ± 6.7 98.0 ± 4.8 96.7 ± 8.4 0.972 ± 0.061
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Table 4. Cont.

Rank Detection
Method

Preprocessing
Method

HR
(SCG), bpm

HR
(ECG), bpm

HR
diff, bpm Precision Recall F1-Score

7 nabian2018 engzeemod2012 70.3 ± 9.5 71.7 ± 10.0 2.7 ± 7.2 98.1 ± 4.8 96.6 ± 8.8 0.971 ± 0.063
8 nabian2018 neurokit 71.1 ± 9.6 71.4 ± 9.8 3.2 ± 6.8 97.0 ± 5.3 96.8 ± 8.3 0.967 ± 0.060

3.2. Testing the Approach on the Experimental Data

The previous section shows that the HR evaluation method initially developed for
ECG can be successfully applied to SCG signals for subjects lying still and in laboratory
conditions. To evaluate the application of the selected best algorithm to other conditions
and recording hardware, we ran experiments with subjects performing varying activities.
The measurements were taken from 3 healthy subjects (male, age = 42.7 ± 6.9) in accordance
with the protocol described in Section 2.

We applied the chosen best preprocessing and peak detection methods combination
(1) to each patch (2) and axes (3) for five 1-min signal parts per each recording (6), total-
ing 180 runs. The results for each subject and averaged values for resting and activity
interference recordings are shown in Table 5.

Table 5. The resulting precision of selected methods when applied to the experimental data (n = 30),
detection method: nabian2018, preprocessing method: hamilton2002.

Subject State Best Patch
and Axes

HR
(SCG), bpm

HR
(ECG), bpm

HR
diff, bpm

p-
Value Precision Recall F1-Score

1 Rest Patch1_z 67.4 ± 0.7 67.4 ± 0.6 0.1 ± 0.1 0.733 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0
1 Interference Patch1_y 72.4 ± 1.8 76.6 ± 1.1 4.2 ± 1.1 0.001 89.2 ± 3.9 83.9 ± 3.7 0.864 ± 0.037
2 Rest Patch0_z 83.5 ± 2.7 83.5 ± 2.7 0.0 ± 0.0 0.071 100.0 ± 0.0 100.0 ± 0.0 1.0 ± 0.0
2 Interference Patch1_z 82.2 ± 2.9 91.8 ± 1.3 9.7 ± 2.5 0.001 98.0 ± 1.2 87.7 ± 3.6 0.926 ± 0.025
3 Rest Patch1_x 68.6 ± 2.1 68.3 ± 1.6 0.3 ± 0.6 0.332 99.7 ± 0.6 100.0 ± 0.0 0.999 ± 0.003
3 Interference Patch1_x 73.6 ± 1.1 79.1 ± 1.4 5.5 ± 1.9 0.003 92.5 ± 2.3 86.2 ± 2.0 0.892 ± 0.018

All Rest various 73.2 ± 7.8 73.1 ± 7.8 0.1 ± 0.3 0.278 99.9 ± 0.4 100.0 ± 0.0 1.000 ± 0.002
All Interference various 76.1 ± 4.9 82.5 ± 7.0 6.5 ± 3.0 <0.001 93.2 ± 4.5 86.0 ± 3.4 0.894 ± 0.036
All Both various 74.6 ± 6.6 77.8 ± 8.7 3.3 ± 3.8 <0.001 96.6 ± 4.6 93.0 ± 7.5 0.947 ± 0.059

Contrary to the CEBS dataset with a single integrated SCG signal, our data allows
for selecting patches and axes before HR evaluation. The signal examples for various
patches and axes are shown in Figure 4. Similar examples for other subjects and states are
presented in Supplementary Materials, Figures S1–S6. The patches for each measurement
were selected based on the minimal difference between HR measured in SCG and ECG. In
some cases, the difference in precision between various patches was minimal.

There was no statistical difference between HR measured with ECG and SCG for
signals recorded while resting (paired two-sided t-test, n = 5; t: 0.365 (p = 0.733), −2.448
(p = 0.071), 1.102 (p = 0.332); normal distribution according to the Kolmogorov–Smirnov
test; KS: 0.500 (p = 0.111), 0.500 (p = 0.112), 0.501 (p = 0.111) for HR diff distributions for
subjects 1, 2 and 3 respectively). For the recordings with interference, the HR measured
from SCG signals tends to be lower than that measured from ECG. The average absolute
difference between the recordings compared for all activities was 3.3 ± 3.8 bpm, slightly
less than reported for commercially available HR monitors [2].

As for the computational complication, the initial realization of the Nabian et al. algo-
rithm in the neurokit2 package was already among the fastest implemented algorithms with
a processing time comparable with the Pan–Tomkins algorithm. The further optimization
of the algorithm (compare-and-swap utilization, inner loop elimination by comparing with
a previous peak) and code implementation in the Rust programming language [52] allowed
us to reduce the processing time for a 5-min recording from 139.38 ms to 0.20 ms when
executed on a MacPro M1 2020 16 GB machine, which leaves a sufficient resource margin
to be applicable for runtime execution on practically any edge device.
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Figure 4. The detection results for the hamilton2002 preprocessing and nabian2018 peak detection
combination on the experimental data. Gray curve—raw signal, orange curve—signal after being
processed with hamilton2002 algorithm, black curve in the bottom plot—ECG signal, red vertical
lines—timestamps of R-peaks detected on ECG, blue vertical lines—J-peaks detected on SCG, the
numbers around blue vertical lines show the distance from the previous and to the next peak
in ms. The patch with the best precision is shown with a blue frame. For the selected interval:
precision = 100%, recall = 100%, F1-score = 1.00, HR: 81.2 bpm, n(j_peaks) = n(R_peaks) = 12.
The accuracy calculation does not include peaks close to the plot’s border. Signal magnitudes are
normalized for demonstration purposes.
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3.3. Analysis of Heartbeat Detection Precision

The detection of HR on the 60-s interval allows for precise HR evaluation even when
particular peak occurrence times were not indicated correctly. At the same time, detecting
precise beat-to-beat intervals enables HRV analysis and instant HR evaluation, although
being especially sensitive to disturbances that affect precise peak time occurrence. We
calculated the precision of heartbeat interval evaluation between RR and JJ pairs. For
the CEBS dataset, the mean difference between the RR and JJ intervals detected with the
selected method was 1.8 ± 1.7 ms (with the mean RR-interval: 849.7 ± 122.1 and the mean
J-interval: 849.5 ± 125.1; 5-min recording per subject, 20 subjects). The same values on
the new experimental data were 20.8 ± 32.0 ms and 129.8 ± 90.2 ms for relaxation and
recorded during interference accordingly (with the mean R-interval: 847.9 ± 122.3 and fg;
the mean J-interval: 847.7 ± 125.4 and fg; 5-min recording per subject, 3 subjects each). The
other investigated methods have shown lower precision in comparison to the nabian2018
and hamilton2002 combination.

Figure 5 compares the signals recorded during rest and while speaking for three
subjects in the experiment. Although the HR can be evaluated for a recording made during
reading inference using approximations, analysis of HRV for those signals could not be
performed reliably as speech strongly affects the time when the prominent peaks appear in
the signal. For that purpose, the intelligent system might be used to distinguish between
intervals when only HR and where both HR and HRV characteristics could be evaluated
with precision within a defined range of values.

The precise detection of heartbeats on the SCG is also essential, as those serve as
anchor points for building averaged heartbeat images, which can be used for fiducial points
analysis. Figure 6 shows an example of an averaged heartbeat in various axes derived from
our data. These plots can evaluate various mechanical characteristics of heart activity, such
as waves corresponding to valves closing and opening.
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Figure 5. Five-second samples from the middle of the recording for different subjects while resting
and during reading interference. All measurements were acquired from Patch 1, axis Z. Gray
curve—raw signal, orange curve—signal after being processed with hamilton2002 pipeline, red
vertical lines—timestamps of the R-peaks detected on the ECG, blue vertical lines—the J-peaks
detected on the SCG, the numbers next to blue vertical lines show the distance from the previous and
to the next peak in ms.
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Figure 6. Averaged plots were created based on detected anchor points (in this case, J-peaks detected
on the signal from Patch 1, axis Z were taken as anchor points for all signals); subject 2, relaxed,
t = 60 s. The prominent peaks are labeled with letters. The number next to the letter shows the
distance between each peak and the anchor point. Gray lines show the individual trajectories of
each heartbeat.
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4. Discussion

The selected combination of peak detection and preprocessing methods showed
good results while being computationally very unburdened. The current study proves
that a relatively simple algorithm can be used to evaluate HR on SCG, and it would be
the same algorithm that works for ECG, which makes the procedure methodologically
straightforward. Table 6 compares the current work with the previous results from the
literature. In general, we can see commensurate results for all methods. For comparability
reasons, we only present here the results from papers that tested algorithms on the CEBS [7]
dataset that serves as a common benchmark. Detecting HR using SCGs in conditions
such as in the CEBS dataset with agreeable accuracy was proven to be a feasible task for
many algorithms. The most prominent algorithm can be chosen as the one with the lowest
resource consumption, fastest runtime, and most uncomplicated calculation procedure.
Here, the algorithm by Nabian et al. [44] is favorable due to its simplicity and proof of its
reliable work for another type of biosignal—ECG.

Table 6. Comparison with the previous work.

N Paper Method Metric and Value

1 Current paper moving window and
simple peak detection

sensitivity, 99.7 ± 0.9%; precision,
98.7 ± 3.1%; F1-score, 0.992 ± 0.018;

HR diff, bpm = 0.9 ± 2.4

2 Prithvi et al. [12] convolutional neural
network (CNN) sensitivity, 98%; precision, 98%

3 Mora et al. [15] unsupervised
segmentation

sensitivity, 98.5 ± 1.2%; precision,
98.6 ± 1.2%; specificity, 98.6 ± 1.2%

4 Duraj et al. [14] U-Net-based semantic
segmentation sensitivity, 99.9%; precision, 97%

5 Chen et al. [17] BiLSTM network sensitivity, 97%; precision, 98%

6 Choudhary et al. [18]

data-adaptive
variational mode

decomposition
(VMD)

sensitivity, 97.4%; precision, 97.4%;
accuracy, 95.1%

More research should target SCGs during activities and interferences. For the clean
recording with no activity, algorithms as simple as the one we have selected in this research
proved to show good precision. At the same time, the experiment showed only moderate
precision while speaking interference took place. The algorithms should be further adapted
to work in various conditions, such as during disturbances and physical activities.

Another critical question is the choice of the best patch and axis to evaluate heart
rhythm. Several approaches can be proposed: ad hoc (choosing the patch and axis before
evaluating the HR) and post hoc (detecting HR in all patches and axes and selecting the
most reliable evaluation). In our paper, we have selected the patch and axis corresponding
to the smallest difference between HR in ECG and SCG. In a real-world scenario where ECG
is not available, the possible solution could be using the JJ sequence with the lowest heart
rate variability characteristic (such as SDNN—standard deviation of normal JJ-intervals),
the power density of the signal spectrum in the interval, or another similar characteristic.

It might sound reasonable that the Z-axis might give the best result, but this is only
sometimes true. In some cases in our data, the X or Y axes gave the best result. Also,
systolic and diastolic peaks are variously prominent in different axes and locations of the
chest surface; this can be clearly seen in Figure 4. The study [10] uses a power spectral
density (PSD) plot to identify the frequency domain’s most informative axis per sensor. We
used just the HR_diff metric. It might also be reasonable to use SDNN.

HR is more accessible to detect than HRV, which requires precise evaluation of beat-
to-beat intervals and not only the right amount of them. HRV is especially difficult to
calculate because the peaks on SCG are highly prone to movement artifacts, vary more,
and are not as stable in form as the R peaks on the ECG signal. Other problems include
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breathing, especially at the J-peaks, affecting the exact time when the R-peak and J-peak
occur, and the inter-subject variability in SCG morphology (which could be possibly dealt
with employing methods not relying much on apriori assumption about the signal shape
or specific fiducial points to recognize the heartbeat).

The results obtained from evaluating the precise lengths of heartbeat methods show
that the selected method is not reliable enough to detect HRV under interference and also
has a large margin for improvement for signals recorded during relaxation. This also raises
a question of the applicability of test methods that have shown good results using CEBS
data only to new data acquired in less strict conditions than in the respective experiment.

5. Conclusions

Our study demonstrates that relatively simple processing and peak detection methods
initially developed for ECG can serve as a foundation for HR detection in SCG data, albeit
with room for further refinement, especially for recording made during physical activity.
Combining Nabian et al.’s detection method with a proper preprocessing pipeline can
effectively measure HR in various subjects. In ideal conditions, J peaks are stable enough
to perform HRV analysis. Detected J-peaks allow us to obtain average heartbeat images on
SCG and analyze fiducial points on SCG to characterize heart-vessel system conditions.

The described methods could be applied in real-life scenarios with a methodology that
classifies the level of physical activity, external disturbances, and signal quality. Implement-
ing such systems will empower a computationally simple yet reliable method and devices
for remote monitoring, especially in countries where healthcare accessibility is limited.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/bioengineering11060596/s1, Table S1: Comparison of peak detection
algorithms in combination with the best passing preprocessing pipeline (all methods); Figures S1–S6:
The detection results for the hamilton2002 preprocessing and nabian2018 peak detection combination
on the experimental data (subjects 1–3, relaxed and with speaking interference).
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