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Simple Summary: Liver cancer is one of the most common cancers; however, the molecular mecha-
nisms of liver tumorigenesis and progression are not completely understood. In the current study,
we combined several bioinformatic approaches (differential gene expression analyses, weighted
gene co-expression network analysis, pathway and gene-disease network enrichment) to identify
potential hub genes and molecular pathways that contribute to liver cancer onset and development.
The results revealed DNA topoisomerase II alpha (TOP2A), ribonucleotide reductase regulatory
subunit M2 (RRM2), never in mitosis-related kinase 2 (NEK2), cyclin-dependent kinase 1 (CDK1),
and cyclin B1 (CCNB1) as the hub genes for liver cancer. Subsequent validation suggested TOP2A,
RRM2, NEK2, CDK1, and CCNB1 as the prognostic biomarkers of liver cancer.

Abstract: Liver cancer is one of the most common cancers and the top leading cause of cancer death
globally. However, the molecular mechanisms of liver tumorigenesis and progression remain
unclear. In the current study, we investigated the hub genes and the potential molecular pathways
through which these genes contribute to liver cancer onset and development. The weighted gene
co-expression network analysis (WCGNA) was performed on the main data attained from the GEO
(Gene Expression Omnibus) database. The Cancer Genome Atlas (TCGA) dataset was used to
evaluate the association between prognosis and these hub genes. The expression of genes from the
black module was found to be significantly related to liver cancer. Based on the results of protein–
protein interaction, gene co-expression network, and survival analyses, DNA topoisomerase II
alpha (TOP2A), ribonucleotide reductase regulatory subunit M2 (RRM2), never in mitosis-related
kinase 2 (NEK2), cyclin-dependent kinase 1 (CDK1), and cyclin B1 (CCNB1) were identified as the
hub genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment
analyses showed that the differentially expressed genes (DEGs) were enriched in the immune-
associated pathways. These hub genes were further screened and validated using statistical and
functional analyses. Additionally, the TOP2A, RRM2, NEK2, CDK1, and CCNB1 proteins were
overexpressed in tumor liver tissues as compared to normal liver tissues according to the Human
Protein Atlas database and previous studies. Our results suggest the potential use of TOP2A,
RRM2, NEK2, CDK1, and CCNB1 as prognostic biomarkers in liver cancer.
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1. Introduction

Liver cancer is the sixth most common cancer and the fourth leading cause of cancer
mortality, with 2.09 million new cases and 1.76 million deaths recorded globally in 2018 [1].
Hepatocellular carcinoma (HCC), a major form of primary liver cancer, accounts for ~80%
of all primary liver cancer cases [1,2]. Due to lack of specific clinical appearances in the
early stages, most of the patients with primary liver cancer are diagnosed at advanced
stages with fewer treatment options, resulting in poor prognosis and outcomes [3]. Despite
the recent advances in cancer biology and genetic profiling, the molecular pathogenesis of
HCC is still not fully understood. Therefore, a deep understanding of cancer pathogenesis
may aid in early diagnosis and treatment, thereby improving the overall survival (OS) of
patients with liver cancer. The identification of the key genes and/or biological pathways
regulating tumor proliferation and progression using different bioinformatics tools is cru-
cial to discover the molecular mechanisms underlying cancer development. Consequently,
this knowledge can be used to develop new biomarkers or treatment methods to improve
the outcomes of patients with liver cancer. Gene expression profiling of cancer can serve as
an independent survival predictor and contributes to the treatment options [4–8].

Weighted gene co-expression network analysis (WGCNA) is a common bioinformatics
approach for the identification of modules of highly inter-correlated genes. This method
is largely used in numerous biological processes, typically for the detection of candidate
diagnostic and/or therapeutic targets for different malignant tumors [9]. In the current
study, a co-expression network was built via WGCNA to identify the morphology-specific
modulators of liver cancer based on the transcriptional profile of a liver cancer dataset
GSE14520 extracted from the Gene Expression Omnibus (GEO) database [10]. Gene set
enrichment (GSE) analysis was conducted to find the potential functions of these hub genes.
Moreover, these hub genes were screened out by univariate Cox regression analysis and
assessed for correlation with methylation status, thus providing highly accurate analytic
results. The Cancer Genome Atlas (TCGA) database was then used to identify the potential
prognostic biomarkers of liver cancer [11]. Subsequently, the protein levels of the identified
genes were checked using the Human Protein Atlas (HPA) database and previous studies
to see if they are upregulated in tumor tissues. This knowledge provides new insights into
the potential molecular mechanisms of liver cancer.

2. Materials and Methods
2.1. Dataset Collection

The workflow of the current work is shown in Figure 1. Gene expression profiles of
dataset GSE14520 were obtained from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE14520 (accessed on 15 January 2021)). This dataset comprises
the mRNA expression data of 220 normal tissue samples and 225 HCC samples (Figure 1).
Additionally, a total of 347 HCC and 50 normal liver tissue samples with detailed clinical
information were obtained from the TCGA database as previously described [11].

2.2. Datasets Preprocessing and Differential Gene Expression Analysis

Prior to the differential expression analyses, a matrix of gene expression values was
transformed using log2 function in R program, and then the values were presented as log2
transformed values (Table S1) [12]. Then, a principal component analysis was performed
using prcomp function to check for potential outliers from the gene expression matrix.
To ensure the quality of the data, only genes (probes) that were expressed in at least
three samples were included for further analyses [12]. Differential expression analyses
were performed using the Limma package [13]. The empirical Bayes procedure in the
package was used to compare the expression level of genes between HCC and normal
tissues [14]. For statistical analyses, p-values were adjusted using the false discovery rate
(FDR) correction method, and only genes with adjusted p-values < 0.05 were denoted
as DEGs.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE14520
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Figure 1. The flow chart of data collection, processing, analysis, and validation. HCC: hepatocellular
carcinoma; DEmRNAs: differentially expressed mRNAs; PPI: protein–protein interaction; GSE: gene
expression data; GO: gene ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; WGCNA:
weight gene co-expression network analysis; MM: module membership; GS: gene significant; K.in:
intramodular connectivity.

2.3. Weighted Gene Co-Expression Network Construction

To reduce computational requirements and to keep the meaningful genes in the
network construction, only the DEGs were used as the input for WGCNA analyses. The
WGCNA methodology was adapted from a previous study [15]. Briefly, an adjacency
matrix was created (using the Pearson’s correlations between all genes) and raised to
a power β of 9. The module membership (MM) was calculated by using the WGCNA
function signedKME; where deep split = 2, minModuleSize = 30. A hierarchical clustering
tree was constructed based on the correlation matrix, dissimilarity metrics, and the gene
co-expression of different nodes in order to organize samples into desired clusters. The
dynamic tree cutting method was applied to pinpoint more precisely the significant co-
expression modules [16]. After that, a target module that was highly correlated with a
particular phenotype or condition/disease can be extracted from the tree. The hub genes,
which showed a higher value of internal connectivity and a significant association between
genes and feature vector in the target module, were then identified [15,16].

2.4. Module–Trait Relationship Analysis of Liver Cancer

The correlation between HCC and modules were assessed by Pearson’s correlation
tests by attributing normal people and cancer patients to a value of 0 and 1, respectively.
The module eigengene (ME) represents the common expression value of all of the genes
of each module. The MM value is the association of ME and the gene expression profile
(MMi = |cor(x(i)), ME|; where i is the value of each gene). The closer the MM value of a
gene to 1, the more important that gene is in a given gene module. Gene significance (GS)
value represents the correlation between HCC and the genes (GS = |−log(p)|; where p
is the value of the Student’s t-test). The intramodular connectivity (K.in) value was the
average connection value of all of the genes within a module [16]. Detection of hub genes
was usually based on the values of three main factors: the GS, MM, and K.in. The DEGs
with GS and MM values larger than 0.2 and 0.8, respectively, were first selected as the
potential hub genes [17,18]. These genes were then sorted based on their K.in value, and the
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ten genes with the highest K.in value were selected for gene regulatory network analysis.
As a result, this method helped to reduce the dimensional issues, thereby improving cancer
prediction and novel biological significance.

2.5. Function Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) path-
way enrichment analyses were performed for all DEGs using the clusterProfiler pack-
age [19]. GO terms include three factors: biological process, cellular component, and
molecular function. While GO was used to explore the function of genes in biological
systems, KEGG was used to identify the signaling pathways of DEGs [20]. A p-value of
0.05 was utilized as a cut-off.

2.6. Gene Regulatory Network

A gene regulatory network could be used to evaluate the interaction between genes
within the network in order to identify the potential genes of unknown signaling pathways.
Network analysis of the top genes in the significant module was done using the R package
igraph and qgraph [21,22]. Nodal strength is calculated as the sum of the edge weights
within a network. Higher values of nodal strength demonstrate a faster and more direct
effect on other nodes. The node strength centrality in the networks is essential to identify
functionally important genes [23–25]. Network analysis was performed using extended
Bayesian information criteria selection [26] and the glasso algorithm [27]. Genes with the
highest node strength centralities were identified as the key genes [28].

2.7. Protein–Protein Interaction Network Construction

The DEGs with GS > 0.2 and MM > 0.8 in the best module were used to build a protein–
protein interaction (PPI) network using Search Tool for the Retrieval of Interacting Genes
(STRING) and were visualized through CYTOSCAPE software (http://www.cytoscape.org;
latest version 3.8.2; accessed on 20 August 2021). MCODE score > 2, number of nodes > 3,
and medium confident interaction score > 0.4 were set as cut-off criteria for module
identification and network visualization. Degree > 67 was selected as the cut-off criterion
for the key genes.

2.8. Methylation Analysis

The gene expression and methylation of five hub genes in HCC were evaluated
using the UALCAN tool. It is a user-friendly web resource for analyzing cancer data and
providing information on DNA methylation and gene expression levels [29].

2.9. Survival Analysis

The data of 347 patients with HCC obtained from TCGA was accessed. Based on the
median value of the prognostic risk score, these HCC patients were allocated into low-risk
and high-risk groups to perform survival analysis. Kaplan–Meier curves were drawn, and
the correlations between the DEGs and OS were evaluated by univariate Cox regression
analysis. The hazard ratio (HR) of death and adjusted p-values were computed by using
Bonferroni correction of Cox proportional hazards analysis [30]. An adjusted p-value < 0.05
was considered statistically significant. Additionally, survival analysis of the hub genes
was also performed by using OSlihc, an online tool, as previously described [31].

2.10. The Protein Expressions of the Prognostic Hub Genes

To assess the translational levels of the five hub genes, we attained immunohistochem-
istry (IHC) sections of normal liver tissue and HCC tissue samples from the Human Protein
Atlas database (HPA) [32] and two previous studies [2,33].

http://www.cytoscape.org
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2.11. Gene–Drug Interaction Analysis

The possible interaction of the currently available drugs with five hub genes was
explored through the drug–gene interaction database (DGIdb) and visualized through
CYTOSCAPE software (http://www.cytoscape.org (accessed on 20 March 2021); latest
version 3.8.2).

3. Results
3.1. Key Modules Identification by Weighted Gene Co-Expression Network

After preprocessing the data, the expression matrices of 22,268 genes were obtained
from 445 samples. By using a cutoff of FDR < 0.05, a set of 16,074 DEGs was identified
(Figure 1). The DEGs between liver cancer and normal control samples from TCGA data
are presented in Figure S1. The power of β = 9 was designated as the soft-threshold factor
to perform a scale-free network (Figure S2). Twenty-six co-expression modules comprising
from 33 to 7105 DEGs were identified (Table 1) and represented as 26 different unique
colors (Figure S2). A larger correlation and smaller p-value indicated a stronger association
between the module and HCC. Accordingly, the most interesting modules were the black
module (r = 0.872, p < 0.001) and the light-green module (r = −0.711, p < 0.001). The black
module presented the largest correlation that met a cutoff of 0.8 and p < 0.001; it was
speculated to play important roles in the pathophysiology of HCC and was subjected to
successive analyses (Table 1).

Table 1. Correlation and p-value between each module and liver cancers after weight gene co-
expression network analysis.

Module Correlation p-Value Number of Genes

Black 0.872 <0.001 656
Blue −0.104 0.028 1677
Brown −0.663 <0.001 2396
Cyan 0.57 <0.001 220
Dark green −0.042 0.382 65
Dark grey 0.677 <0.001 7105
Dark orange 0.503 <0.001 58
Dark red 0.506 <0.001 74
Dark turquoise 0.303 <0.001 59
Green yellow 0.4 <0.001 684
Grey 0.114 0.016 290
Grey60 −0.305 <0.001 487
Light cyan −0.031 0.515 176
Light green −0.711 <0.001 153
Light yellow −0.374 <0.001 143
Magenta −0.332 <0.001 455
Midnight blue −0.112 0.018 189
Orange −0.406 <0.001 58
Pale turquoise −0.463 <0.001 33
Pink −0.169 <0.001 563
Royal blue 0.393 <0.001 119
Saddle brown −0.485 <0.001 40
Salmon −0.017 0.713 232
Sky blue 0.407 <0.001 53
Steel blue −0.447 <0.001 35
White −0.109 0.021 54

3.2. Identification of Hub Genes through Gene Regulatory Networks

The black module comprises 656 genes (Table 1). Notably, a hub gene usually has a
high GS, high MM, and high K.in. By overlapping the genes of the black module with
identified DEGs and applying the cutoff of GS > 0.2 and MM > 0.8, the top 137 genes were
identified. Afterward, the top ten genes with the highest K.in value were selected, namely

http://www.cytoscape.org
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ribonucleotide reductase regulatory subunit M2 (RRM2), DNA topoisomerase II alpha
(TOP2A), replication factor C subunit 4 (RFC4), never in mitosis-related kinase 2 (NEK2),
H2A histone family member X (H2AFX), DNA primase polypeptide 1 (PRIM1), dumbbell
former 4 protein (DBF4), centromere protein (CENPA), kinesin family member 14 (KIF14),
and FA complementation group I (KIAA1794) (Table 2).

Table 2. The top ten genes with the highest intramodular connectivity.

Genes FC Ave.
Expr. t p-Value Adj. p-Value MM. Black GS Kin

CENPA 1.313 2.053 −20.644 4.89 × 10−67 2.46 × 10−65 0.881 0.699 182.908
DBF4 1.293 2.248 −23.814 1.30 × 10−81 1.61 × 10−79 0.883 0.748 188.790

H2AFX 1.291 2.683 −26.595 3.18 × 10−94 8.84 × 10−92 0.868 0.783 183.809
KIAA1794 1.294 2.135 −21.209 1.22 × 10−69 7.04 × 10−68 0.891 0.709 181.842

KIF14 1.249 2.063 −20.100 1.57 × 10−67 6.81 × 10−63 0.852 0.689 185.458
NEK2 1.468 2.136 −26.636 2.09 × 10−94 5.96 × 10−92 0.926 0.783 184.615
PRIM1 1.341 2.307 −24.049 1.10 × 10−82 1.47 × 10−80 0.853 0.751 186.033
RFC4 1.443 2.535 −29.438 8.27 × 10−107 5.17 × 10−104 0.910 0.812 181.994
RRM2 1.785 2.360 −31.691 1.62 × 10−116 1.81 × 10−103 0.929 0.832 184.521
TOP2A 1.686 2.292 −31.427 2.15 × 10−115 2.04 × 10−112 0.932 0.824 185.060

RRM2: ribonucleotide reductase subunit M2; TOP2A: topoisomerase II alpha; RFC4: replication factor C subunit 4; NEK2: never in
mitosis-related kinase 2; H2AFX: H2A histone family member X; PRIM1: DNA primase polypeptide 1; DBF4: dumbbell former 4 protein;
CENPA: centromere protein A; KIF14: kinesin family member 14; KIAA1794: FA complementation group I; FC: fold change; Ave. Expr.:
average of gene expression; adj. p−value: adjusted p−values; t: t value of t−test; MM: module membership; GS: gene significant.

The relationship between target genes and other hub genes of the module was pre-
sented in a gene co-expression network. Among those, three hub genes denoted in red,
namely TOP2A, RRM2, and NEK2, have the highest degree scores in the network (Figure 2).

Figure 2. Co−expression network of the top ten genes of the black module: (A) each node in the
co−expression network denotes a gene; nodes with red signify the hub genes, and the middle line
represents the link between genes. (B) The connection strength of the top ten genes.

3.3. PPI Network Construction and Hub Gene Validation

We explored the PPI interactions network by STRING database of the proteins encoded
by the top 137 DEGs in the black module (Figure S3). The PPI network topological analysis
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revealed three top proteins, namely CDK1 (cyclin-dependent kinase 1), CCNB1 (cyclin B1),
and TOP2A, that were noted to meet the cut-off criterion of degree > 67 (Table S2). Of these,
only TOP2A was in the list of top 10 genes with the highest K.in values. Four modules for
potential hub genes in the PPI network satisfied the MCODE score > 2 and the number of
nodes > 3 cut-offs (Figure S4).

3.4. Functional and Pathway Enrichment Analysis

The top enriched biological process from GO included neutrophil activation, neutrophil-
mediated immunity, neutrophil activation involved immune response, and neutrophil
degranulation (Figure 3A). For cellular components, DEGs were chiefly associated with
the neuronal cell body, cell-substrate junction, focal adhesion, and collagen-containing
extracellular matrix. Lastly, for molecular function, DEGs were mostly involved in cell
adhesion, DNA-binding, transcription factor binding, protein serine/threonine kinase
activity, etc. A heatmap showed significant ontological processes between DEGs and
GO terms (Figure 3A). KEGG analysis showed that DEGs were primarily enriched in
the signaling pathways of PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B),
mitogen-activated protein kinase (MAPK), human T-cell leukemia virus 1 and human
papillomavirus infection (Figure 3B).

Figure 3. GO (A) and KEGG (B) function enrichment analysis. The abscissa signifies the number of genes enriched in
the Figure.

3.5. Real Hub Genes Identification and Validation

The survival analysis using univariate Cox analysis was performed for five potential
hub genes (TOP2A, RRM2, NEK2, CDK1, and CCNB1) obtained from gene co-expression
and PPI networks, and three other genes of the top ten genes with the highest intramodular
connectivity (RFC4, PRIM1, and KIF14) in HCC. The results exposed the significance of
the five potential hub genes as prognostic factors for patients with liver cancer (Figure 4).
Specifically, the high expression levels of TOP2A (p = 0.002), RRM2 (p = 0.001), NEK2
(p < 0.001), CDK1 (p = 0.002), and CNNB1 (p < 0.001) were identified as being strongly
associated with poorer prognosis. Moreover, liver cancer patients with an increased
expression level of KIF14 (p = 0.006), PRIM1 (p = 0.013), and RFC4 (p < 0.001) also had
poorer outcomes (Figure 4). The HR of death of the two groups ranged from 1.549 to
2.057 for all eight of the tested genes and from 1.715 to 2.057 for five potential hub genes,
indicating a strong association between the expression of hub genes and the HR of death
(Figure 4). In other words, patients with higher expression levels of TOP2A, RRM2, NEK2,
CDK1, and CCNB1 have significantly shorter survival periods than the patients with lower
expression levels of these genes (Figure 4; Table S3). Moreover, the additional survival
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analysis using Oslihc further confirmed the significance of these hub genes in the OS of
HCC patients (Figure S5).

Figure 4. Survival analysis of five potential hub genes obtained from gene co-expression and PPI networks and three other
genes of the top ten genes with the highest intramodular connectivity (RFC4, KIF14, and PRIM1) in HCC. Overall survival
of the hub genes in HCC is based on Kaplan–Meier plotter. The horizontal axis represents the time to event (in days). The
patients were allocated into the high-risk and low-risk groups and assigned a color. The red line designates the samples
with low risk, and the green line represents the samples with high risk. p < 0.05 indicates a statistically significant difference
in mortality between groups. HR: hazard ratio of the two groups.

3.6. The Protein Expression of Hub Genes

The five candidate hub genes (TOP2A, RRM2, NEK2, CDK1, and CCNB1) were further
investigated for their protein expression levels in HCC and normal liver tissues via the
HPA database and previous studies. Accordingly, TOP2A, CCNB1, CDK1, RRM2 [2], and
NEK2 [33] protein expression levels were substantially increased in HCC tissues samples
as compared to that of normal liver tissues (Figure 5). Taken together, our results strongly
indicated that liver cancer patients with an upregulated level of TOP2A, RRM2, NEK2,
CDK1, and CCNB1 were associated with poor prognosis.

3.7. Hub Genes Expression Is Correlated with Methylation

The gene expression and methylation expression patterns of five hub genes were
assessed. Significant differences were observed in both the gene expression (Figure 6I)
and methylation (Figure 6II) patterns of TOP2A, RRM2, CCNB1, CDK1, and NEK2 when
comparing liver tumor and normal liver tissues samples. Moreover, a negative association
between gene expression and methylation patterns was also noted for all of these genes.
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This finding suggested that increased expression of the hub genes TOP2A, RRM2, NEK2,
CDK1, and CCNB1 in HCC might be a result of decreased DNA methylation levels in their
encoded genes.

Figure 5. Immunohistochemistry of the five potential hub genes in liver cancer (HCC) and normal
tissues from the Human Protein Atlas (HPA) database and previous studies [2,33]. Protein levels of
(A) TOP2A in HCC tissue; (B) TOP2A in normal liver tissue; (C) CDK1 in HCC tissue; (D) CDK1 in
normal liver tissue; (E) CCNB1 in HCC tissue; (F) CCNB1 in normal liver tissue.Biology 2021, 10, x  11 of 15 
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promoter methylation pattern of (A) TOP2A, (B) RRM2, (C) CCNB1, (D) CDK1, and (E) NEK2 in the primary liver tumors
(n = 377) as compared to the normal samples (n = 50) using TCGA samples.
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3.8. Gene–Drug Interaction Networks

Through the DGIdb, a total of 191 drugs related to five genes were selected. These drugs
were found to be mostly related to the three genes TOP2A, CDK1, and RRM2 (Figure S6).

4. Discussion

In the current study, we utilized WGCNA to identify novel biomarkers from 16,047 genes
obtained from 445 samples of two datasets. We found 26 gene modules, with the number of
eigengenes largely varying from 33 to 7105 DEGs. The striking correlations between genes
in the module and clinical features may help to improve the current understanding of the
pathogenesis of HCC. The black module appeared to comprise significant genes. The GO
and KEGG pathway analyses revealed that the biological functions of the black module
were strongly enriched for immune response. Enrichment function analysis demonstrated
a contributory role of the inflammatory response in the development of HCC. The DEGs
involved in neutrophil activation and neutrophil-mediated immunity were observed in
both GO and KEGG analyses. Noticeably, the PI3K/AKT signaling pathway is commonly
found to be hyper-activated in HCC, and inhibiting this pathway is one of the critical
therapeutic approaches to treating HCC [34].

The combination of WGCNA, integrated bioinformatics, and PPI network identified
TOP2A, RRM2, NEK2, CDK1, and CCNB1 as the hub genes. Notably, TOP2A was found to
be a top significant gene by WGCNA, network analysis, PPI network analysis, survival
analysis, and IHC staining. TOP2A encoded for DNA topoisomerase II protein, which
controls DNA topology during DNA replication [35]. Recently, the TOP2A gene was
reported as a hub gene in HCC [36] with an inference value of 143.13 from the gene–disease
association dataset in the Comparative Toxicogenomics Database, and it is currently being
considered as a potential drug target for the treatment of HCC [37–39]. TOP2A has been
shown to directly interact with P53, a well-known tumor suppressor protein [40]. Similarly,
RRM2 and NEK2 were also noted as the highest-ranking genes by WGCNA and network
analysis in this study. RRM2 was well-known as a functional catalytic site in regulating
cell cycle by controlling DNA repair and replication [41,42]. Alteration in RRM2 protein
expression leads to the development of HCC [42]. NEK2, on the other hand, plays an
important role in regulating mitotic processes [43]. NEK2 has been highlighted as an
oncogenic gene in various types of human cancers and is considered to be a potential
therapeutic approach for human cancer treatment [44]. Moreover, NEK2 protein was
shown to be important in FOXM1-related pathways that involve the dysregulation of HCC
cell growth and apoptosis [45]. CDK1 is a central molecular regulator that control cells
mitosis. Loss of CDK1 expression leads to the activation of Ras and the silencing of P53,
thereby conferring resistance against tumorigenesis in liver cancer [46]. CCNB1, on the
other hand, is a regulatory protein involved in cell proliferation. CCNB1 also interacts
with the P53 signaling pathway and the cell cycle, which have been noted to be related to
HCC [47]. Nevertheless, the biological interpretation of liver cancer using these potential
prognostic biomarkers needs to be done with caution, as the results of enrichment analyses
might suffer from potential bias caused by the proliferation genes in the background
gene set [48].

According to the IHC staining from the HPA database and previous studies, TOP2A,
RRM2, NEK2, CDK1, and CCNB1 protein expression levels were shown to be significantly
increased in HCC tissues as compared to the normal liver tissues. DNA methylation is an
important early event in tumor growth and progression [49]. In this study, we found the
significantly increased expression of five hub genes and a negative correlation between the
expression of these hub genes and their methylation status. This finding was in accordance
with a previous study that showed an upregulation of TOP2A and RRM2 and lower
promoter methylation of these genes in cholangiocarcinoma [50].

Taken together, our results suggest TOP2A, RRM2, NEK2, CDK1, and CCNB1 as HCC-
associated hub genes that can serve as potential prognostic biomarkers in liver cancer.
However, the hub genes identification of this study was mostly based on microarray gene
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expression data, which may require additional in vitro and in vivo functional tests before
further confirmation and to shed light on their underlying molecular mechanisms.

5. Conclusions

In summary, we built a WCGNA, PPI network, gene regulatory network in order
to detect and validate target genes as prognostic biomarkers for HCC. GO and pathway
enrichment analyses indicated that the biological functions of the black modules were
oriented toward immunity response. Moreover, our results demonstrated a significantly in-
creased expression of TOP2A, RRM2, NEK2, CDK1, and CCNB1 and the negative correlation
between the expression of these genes and their methylation status in HCC. Finally, five
hub genes, TOP2A, RRM2, NEK2, CDK1, and CCNB1, were noted as being significant genes.
Further experimental studies are required to confirm their role as prognostic markers in
HCC and to identify their molecular mechanisms of action in this type of cancer.
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other genes of the top ten genes with the highest intramodular connectivity in HCC in OSlihc;
Figure S6: Drug–genes interaction network; Table S1: Comparison of the log2(count) values of the
top ten differentially expressed genes in HCC patients versus control; Table S2: Degree of proteins in
the protein–protein network by Cytoscape; Table S3: The association of the hub genes and overall
survival in the TCGA_LIHC dataset.
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