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Simple Summary: Competing endogenous RNAs (ceRNAs) have gained attention in cancer research
owing to their involvement in microRNA-mediated gene regulation. Here, we identified a shared
ceRNA network across five hormone-dependent (HD) cancers (prostate, breast, colon, rectal, and
endometrial), that contain two long non-coding RNAs, nine mRNAs, and seventy-four microRNAs.
Among them, two mRNAs and forty-one microRNAs were associated with at least one HD cancer
survival. A similar analytical approach can be applied to identify shared ceRNAs across a group of
related cancers, which will significantly contribute to understanding their shared disease biology.

Abstract: The discovery of microRNAs (miRNAs) has fundamentally transformed our understanding
of gene regulation. The competing endogenous RNA (ceRNA) hypothesis postulates that messenger
RNAs and other RNA transcripts, such as long non-coding RNAs and pseudogenes, can act as
natural miRNA sponges. These RNAs influence each other’s expression levels by competing for
the same pool of miRNAs through miRNA response elements on their target transcripts, thereby
modulating gene expression and protein activity. In recent years, these ceRNA regulatory networks
have gained considerable attention in cancer research. Several studies have identified cancer-specific
ceRNA networks. Nevertheless, prior bioinformatic analyses have focused on long-non-coding
RNA-associated ceRNA networks. Here, we identify an extended ceRNA network (including both
long non-coding RNAs and pseudogenes) shared across a group of five hormone-dependent (HD)
cancers, i.e., prostate, breast, colon, rectal, and endometrial cancers, using data from The Cancer
Genome Atlas (TCGA). We performed a functional enrichment analysis for differentially expressed
genes in the shared ceRNA network of HD cancers, followed by a survival analysis to determine their
prognostic ability. We identified two long non-coding RNAs, nine genes, and seventy-four miRNAs
in the shared ceRNA network across five HD cancers. Among them, two genes and forty-one
miRNAs were associated with at least one HD cancer survival. This study is the first to investigate
pseudogene-associated ceRNAs across a group of related cancers and highlights the value of this
approach to understanding the shared molecular pathogenesis in a group of related diseases.

Keywords: hormone-dependent cancers; ceRNAs; lncRNAs; microRNAs; pseudogenes; multiple
sensitivity correlation

1. Introduction

MicroRNAs (miRNAs) are endogenous non-coding RNAs consisting of 19–25 nu-
cleotides in length. They regulate gene expression through the degradation or inhibi-
tion of translation by binding to messenger RNA (mRNA) [1]. A single miRNA can
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target hundreds of genes. Therefore, miRNAs play a crucial post-transcriptional role in
DNA–RNA–protein networks. In each cell, transcripts such as mRNAs, long non-coding
RNAs (lncRNAs), and pseudogenes contain similar miRNA response elements (MREs) that
can crosstalk via competition of binding to common miRNAs serving as miRNA sponges.
In 2011, this phenomenon was described as “the competing endogenous RNA (ceRNA)
hypothesis” [2]. As a major ceRNA component, lncRNA has a dual role in the nucleus
and cytoplasm. Several studies suggest that lncRNAs directly interact with transcription
factors as transcriptional co-activators in the nucleus, while others suggest that lncRNAs
may impair transcriptional complexes’ assembly as an inhibitor of gene expression [3]. The
pseudogenes are very similar to the coding genes, as they are produced by modifying and
cutting off the coding transcripts in the transcription process. Both pseudogenes and cyto-
plasmic lncRNAs (not in the nucleus) act as regulators to affect their target genes [4]. These
ceRNAs, lncRNAs, and pseudogenes may influence cancer pathogenesis by regulating
mRNA expression of crucial tumorigenic or tumour-suppressive genes and pathways [5].

Previous bioinformatics studies have identified ceRNA candidates as prognostic or
predictive biomarkers for common cancer types such as colorectal, endometrial, prostate,
and breast cancers [6–10]. Several web-based tools such as miRTissuece, LncACTdb 2.0,
and lnCeDB have been developed, supporting the search for ceRNA interaction networks
in multiple tissues [11–13]. A recent colorectal cancer ceRNA study identified a network of
nine hub genes, thirteen lncRNAs, and twenty-nine candidate miRNAs, integrating multi-
ple genomic datasets [6]. The authors further revealed the MFAP5-miR-200b-3p-AC005154.6
axis as a potential biomarker of colorectal cancer. In 2019, bioinformatic analyses con-
ducted by Wang et al. [7] and Ouyang et al. [8] revealed two endometrial-cancer-associated
ceRNAs, lncRNA LINC00958 (DOLPP1-miR-761-LINC00958) and lncRNA LINC00261
(C2orf48-LINC00261), respectively. Recent experimental studies have validated that these
two lncRNAs act as critical regulators of endometrial cancer, binding through multiple
mRNA–miRNA axes [14,15]. A ceRNA network analysis of prostate cancer established a
network consisting of four hub genes, homeobox B5 (HOXB5), glypican 2 (GPC2), pepsino-
gen A-5 (PGA5), and ameloblastin (AMBN), which are strongly associated with patient
survival [9]. A comprehensive lncRNA-associated ceRNA analysis of breast cancer identi-
fied ninety-three lncRNAs, twenty-seven mRNAs, and nineteen miRNAs. In this dataset,
fifteen lncRNAs were identified as prognostic biomarkers of breast cancer [10]. The studies
described above suggest that existing ceRNA network analyses can be successfully ap-
plied to distinct cancer types in order to understand their biological mechanisms further.
Identifying common ceRNA networks across genetically related diseases such as hormone-
dependent (HD) cancers will also significantly contribute to understanding the shared
molecular pathogenesis.

This study identifies a shared ceRNA network across HD cancers, including prostate,
breast, colon, rectal, and endometrial, which are among the world’s highest cancer mortality
and incident rates.

2. Materials and Methods
2.1. Ethics Statement

The Human Research Ethics committees of the Queensland University of Technology
(protocol code: 1900001147, date of approval: 19 December 2019) and the QIMR Berghofer
Medical Research Institute (protocol code: P1051, date of approval: 23 August 2019)
approved this study.

2.2. Patients and Samples

RNA expression data (RNA-seq and miRNA-seq) and clinical data for five HD cancers,
prostate (PRAD), breast (BRCA), colon (COAD), rectal (READ), and endometrial (UCEC),
were obtained from The Cancer Genome Atlas (TCGA). The PRAD, BRCA, COAD, READ,
and UCEC consist of 499/52 (cases/controls), 1109/113, 480/41, 167/10, and 552/35, re-
spectively. The HTSeq-count RNA-seq data and isoform quantification data of miRNA-seq
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for the given five cancer types were downloaded to a local computing server from the GDC
(Genomics Data Commons) data portal [16].

2.3. Differential Expression Analysis of Hormone-Dependent Cancer Data

At the data pre-processing stage, we removed TCGA samples with duplicated sample
IDs. Then, metastatic samples were eliminated as we compared primary tumours and
adjacent normal samples using differential expression analysis. The raw count expression
data were normalised by the TMM (trimmed mean of M values) method implemented in
the edgeR R package [17]. The normalised data were transformed into a standard scale
using the voom method implemented in the limma (linear modelling for microarrays) R
package [18]. Low-expressed genes (log counts per million < 1 in more than 50% of the
samples) were removed by default. Ignoring low-expressed genes increases the total count
of differentially expressed genes after multiple testing correction and improves sensitivity
and precision. Genes or miRNAs that were differentially expressed between tumours
and adjacent normal tissues were identified by applying “lmFit” followed by “eBayes
(empirical Bayes)”, in-built functions in the limma R package [18]. We fitted a linear model
for each gene using the “lmFit” function. Then, eBayes moderation was applied, borrowing
information across all the genes to obtain more precise estimates of gene-wise variability.
Expression differences were assessed by linear modelling results: log fold-change (logFC)
and false discovery rate (FDR)-adjusted p-values. |logFC| > 1 and FDR < 0.01 were
considered thresholds with which to identify statistically significant mRNAs, lncRNAs,
pseudogenes, and miRNAs. Differentially expressed lncRNAs, pseudogenes, and mRNAs
were separately recorded for ceRNA network analysis. Figure 1 depicts the workflow of
this study.
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Figure 1. Methodological workflow of the study. RNA-seq and miRNA-seq data extracted from The Cancer Genome
Atlas (TCGA) were pre-processed, normalised, and transformed into a standard scale. Differential expression analysis was
conducted to identify differentially expressed (DE) long non-coding RNAs (lncRNAs), pseudogenes, messenger RNAs
(mRNAs), and microRNAs (miRNAs). The competing endogenous RNA (ceRNA) network analysis followed three steps:
(i) identifying lncRNA/pseudogene–mRNA pairs sharing the significant number of miRNAs, (ii) calculating the Pearson
correlation between lncRNA/pseudogene and mRNAs, and (iii) calculating multiple sensitivity correlation considering
a set of miRNAs targeted by a given lncRNA/pseudogene–mRNA pair. The first two steps were conducted using the
GDCRNATools R/Bioconductor package [19]. For step iii, sparse partial correlation analysis was executed using the
SPONGE (sparse partial correlation on gene expression) R/Bioconductor package [20]. The three-step analysis filtered out
statistically significant ceRNAs for individual HD cancers. Then, only shared ceRNA components across all five HD cancers
were involved in the downstream analysis.
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2.4. Competing Endogenous RNA Network Analysis

Initially, we constructed both lncRNA-based and pseudogene-based ceRNA networks
for individual HD cancers. Then, we identified shared ceRNA associations across five
HD cancers. Two downstream analyses, functional enrichment and survival analyses,
were conducted for shared genes, lncRNAs, pseudogenes, and miRNAs across HD cancers
ceRNA networks.

2.5. Long Non-Coding RNA/Pseudogene–mRNA–microRNA Networks

We followed three steps to identify ceRNA interactions, (i) detecting lncRNA/pseudogene
–mRNA pairs that share a significant number of miRNAs, (ii) selecting positively correlated
lncRNA/pseudogene–mRNA pairs, and (iii) jointly estimating the significance of multi-
ple miRNAs in lncRNA/pseudogene–mRNA pairs. The miRNA–mRNA, miRNA–lncRNA,
and miRNA–pseudogene interactions required for steps i and iii were obtained from two
databases, miRcode and starBase [21,22]. The miRcode database facilitates mRNA–miRNA,
lncRNA–miRNA and pseudogene–miRNA target predictions using a broad searchable map
that contains 10,419 lncRNAs and 12,549 pseudogenes. The starBase includes miRNA–mRNA
interactions predicted by probing 108 CLIP-seq datasets. As described above, a similar three-step
approach has been previously followed by the miRTissuece, a ceRNA–ceRNA web applica-
tion tool [11]. In the first step, we used a hypergeometric test to identify lncRNA/pseudogene
–mRNA pairs with a significant number of shared miRNAs. The hypergeometric-test-associated
p-value can be computed using the following equation, Equation (1):

p = 1−
m

∑
k=0

(
K
k

)(
N − K
n− k

)
(

N
n

) (1)

where m is the number of shared miRNAs, N is the total number of available miRNAs, n is
the number of miRNAs targeting the lncRNA/pseudogene, and K is the number of miRNAs
targeting the mRNA. MiRNAs are known as negative regulators of gene expression. If
an lncRNA/pseudogene occupies the majority of miRNAs, only a small proportion is
available to bind to the target mRNA, increasing the mRNA’s expression level. Based on
this phenomenon, the lncRNA/pseudogene–mRNA pair should be positively correlated.
As the second step, we applied the Pearson correlation analysis to extract positively
correlated lncRNA/pseudogene–mRNA pairs from all possible lncRNA/pseudogene
–mRNA interactions. Both the hypergeometric test and Pearson correlation analysis were
carried out using the GDCRNATools R/Bioconductor package [19]. In GDCRNATools,
the regulation contribution towards a ceRNA interaction has been quantified using the
sensitivity correlation (scor) [23]. The scor value does not account for a combinatorial effect
of multiple miRNAs. Subsequently, strong ceRNAs mediated by multiple moderate miRNA
regulators cannot be detected. Therefore, we utilised an extension of scor, the multiple
sensitivity correlation (mscor) method, which has been implemented in the SPONGE
(sparse partial correlation on gene expression) R/Bioconductor package [20]. The derived
formula with which to calculate mscor is given in Equation (2):

mscor(g1, g2, M) = cor(g1, g2)− pcor(g1, g2|M) (2)

where M = m1,m2 . . . ,mi and i is the number of shared miRNAs between g1 and g2 genes.
The cor() term defines the Pearson correlation between g1 and g2 genes expression profiles,
and pcor() is the partial correlation that estimates how two variables are correlated when
they are controlled by additional variables. Furthermore, the SPONGE method defines a
null distribution, which allows for the estimation of an empirical p-value for mscor.

We filtered ceRNA interactions returned by three user-defined significant thresholds,
(i) in the hypergeometric test, FDR-adjusted p-value < 0.05, (ii) the Pearson correlation coef-
ficient between ceRNA pairs > 0.4, and (iii) the adjusted p-value of mscor in the SPONGE
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method < 0.05. The resulting lncRNA–mRNA–miRNA and pseudogene–mRNA–miRNA
combinations in each HD cancer-specific ceRNA network were integrated into a single
variable. The format of the derived categorical variable is “<lncRNA/pseudogene gene en-
semble ID>_<gene ensemble ID>_<miRNA name>”. After that, we constructed a one-way
table to identify shared lncRNA/pseudogene–mRNA–miRNA associations across all five
HD cancer types. Suppose a one-way frequency equals 5 for a given lncRNA/pseudogene
–mRNA–miRNA pair. In that case, a ceRNA association is classified as “the shared ceRNA
network of HD cancers”. We used the Cytoscape software to visualise the shared ceRNA
network of HD cancers [24]. Moreover, Venn diagram representations were utilised to
visualise the counts of shared/individual RNAs across HD cancer types. Two downstream
analyses were conducted for genes and miRNAs included in the shared ceRNA network of
HD cancers.

2.6. Functional Enrichment Analysis

The functional enrichment analysis was performed for genes in the shared ceRNA
network of HD cancers. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) functional enrichment analyses were conducted using the R/Bioconductor
clusterProfiler R package [25].

2.7. Survival Analysis

We performed survival analysis using the Kaplan–Meier (K–M) survival curves,
implemented in the survival R package [26] to explore the role of genes in the shared
ceRNA network. For each gene/miRNA, the tumour samples were divided into two groups
(low-expressed and high-expressed) according to the median gene/miRNA expression
value. The logrank test (Mantel–Haenszel test) was used as the statistical method for the
Kaplan–Meier curves. The logrank test statistic has a chi-square (χ2) distribution with one
degree of freedom. Therefore, significant genes and miRNAs were chosen under the χ2 test
statistic p-value < 0.05. We used miRCancer [27], a literature-curated database for miRNA
experimental studies in cancers, to check descriptions of prognostic miRNAs.

3. Results

After the quality-control process, we retrieved 495/52 (cases/controls), 1091/113,
456/41, 166/10, and 543/35 samples from PRAD, BRCA, COAD, READ, and UCEC. In the
differential expression analysis, we used 15509, 15244, 14771, 14866, and 15197 genes from
PRAD, BRCA, COAD, READ, and UCEC after removing those that were low-expressed.

3.1. Differential Expression Analysis Results

The differential expression analysis between tumours and adjacent normal samples
was conducted using the limma R package. The count of differentially expressed (up/down)
lncRNAs, pseudogenes, mRNAs, and miRNAs are given in Table 1.

Table 1. Count of differentially expressed (up/down) lncRNAs, pseudogenes, mRNAs, and miRNAs
in each hormone-dependent (HD) cancer (corrected for multiple testing).

Cancer
lncRNA Pseudogene mRNA miRNA

Up Down Up Down Up Down Up Down

BRCA 61 106 17 28 1125 1642 71 87

COAD 137 72 44 31 1200 1778 186 153

PRAD 139 49 28 18 434 1079 34 27

READ 181 53 52 18 1169 1790 165 114

UCEC 116 137 43 43 1584 2000 142 103
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3.2. Shared Competing Endogenous RNA Networks across Hormone-Dependent Cancers

First, we identified significant lncRNA–mRNA–miRNA and pseudogene–mRNA
–miRNA networks for each HD cancer. The number of lncRNAs/pseudogenes, mRNAs,
and miRNAs in ceRNA networks of individual HD cancers are reported in Supplementary
Materials Table S1. We used both the GDCRNATools and SPONGE R packages for ceRNA
network analysis. Table 2 contains all shared ceRNA associations found from the GDCR-
NATools approach (steps i and ii). In Table 2, common ceRNAs from both GDCRNATools
and SPONGE partial correlation analyses (step iii) are labelled by an asterisk (*).

Table 2. Shared lncRNA and pseudogene-associated ceRNA associations among hormone-dependent (HD) cancers.

lncRNA/Pseudogene mRNA List of MicroRNAs Associated with Each
lncRNA/Pseudogene–mRNA Pair

MBNL1-AS1 (lncRNA) DnaJ heat shock protein family (Hsp40)
member B4 (DNAJB4) hsa-miR-15a-5p, 16-5p, 15b-5p, 195-5p, 424-5p, 497-5p

MAGI2-AS3* (lncRNA)

DNAJB4 * hsa-miR-148a-3p, 152-3p, 148b-3p, 15a-5p, 16-5p, 15b-5p,
195-5p, 424-5p, 497-5p, 194-5p, 204-5p, 211-5p

Fibroblast growth factor-2 * (FGF-2 *) hsa-miR-15a-5p, 16-5p, 15b-5p, 195-5p, 424-5p, 497-5p,
129-5p, 499a-5p

Myosin light-chain kinase * (MYLK *)
hsa-miR-302a-3p, 302b-3p, 302c-3p, 302d-3p, 372-3p, 373-3p,

520e, 520a-3p, 520b, 520c-3p, 520d-3p, 302e, 200b-3p,
200c-3p, 429

Junctophilin-2 (JPH2) hsa-miR-25-3p, 32-5p, 92a-3p, 363-3p, 367-3p, 92b-3p

Cofilin-2 * (CFL2 *)

hsa-miR-212-3p, 132-3p, 302a-3p, 302b-3p, 302c-3p, 302d-3p,
372-3p, 373-3p, 520e, 520a-3p, 520b, 520c-3p, 520d-3p, 302e,

137, 141-3p, 200a-3p, 142-3p, 144-3p, 148a-3p, 152-3p,
148b-3p, 153-3p, 194-5p, 200b-3p, 200c-3p, 429, 23a-3p,

23b-3p, 25-3p, 32-5p, 92a-3p, 363-3p, 367-3p, 92b-3p, 425-5p

Phospholipid scramblase 4 * (PLSCR4 *)
hsa-miR-302a-3p, 302b-3p, 302c-3p, 302d-3p, 372-3p, 373-3p,
520e, 520a-3p, 520b, 520c-3p, 520d-3p, 302e, 145-5p, 15a-5p,

16-5p, 15b-5p, 195-5p, 424-5p, 497-5p

Endothelin receptor type B (EDNRB) hsa-miR-302a-3p, 302b-3p, 302c-3p, 302d-3p, 372-3p, 373-3p,
520e, 520a-3p, 520b, 520c-3p, 520d-3p, 302e

Tensin 1 * (TNS1 *)
hsa-miR-302a-3p, 302b-3p, 302c-3p, 302d-3p, 372-3p, 373-3p,

520e, 520a-3p, 520b, 520c-3p, 520d-3p, 302e, 181a-5p,
181b-5p, 181c-5p, 181d-5p, 4262, 31-5p

MIR100HG* (lncRNA)

FERM-domain-containing kindlin-2 *
(FERMT2 *)

hsa-miR-130a-3p, 301a-3p, 130b-3p, 454-3p, 301b-3p, 4295,
3666, 135a-5p, 135b-5p, 138-5p, 15a-5p, 16-5p, 15b-5p,

195-5p, 424-5p, 497-5p, 29a-3p, 29b-3p, 29c-3p, 103a-3p, 107

DIX-domain-containing 1 * (DIXDC1 *)
hsa-miR-96-5p, 1271-5p, 143-3p, 145-5p, 155-5p, 15a-5p,

16-5p, 15b-5p, 195-5p, 424-5p, 497-5p, 200b-3p, 200c-3p, 429,
29a-3p, 29b-3p, 29c-3p

R-spondin 3 (RSPO3) hsa-miR-15a-5p, 16-5p, 15b-5p, 195-5p, 424-5p, 497-5p,
103a-3p, 107

DNAJB4 hsa-miR-148a-3p, 152-3p, 148b-3p, 15a-5p, 16-5p, 15b-5p,
195-5p, 424-5p, 497-5p, 204-5p, 211-5p, 103a-3p, 107

FGF2 hsa-miR-15a-5p, 16-5p, 15b-5p, 195-5p, 424-5p, 497-5p,
103a-3p, 107, 129-5p

Sushi repeat-containing protein X-linked
* (SRPX *)

hsa-miR-130a-3p, 301a-3p, 130b-3p, 454-3p, 301b-3p, 19a-3p,
19b-3p

JPH2 hsa-miR-25-3p, 32-5p, 92a-3p, 363-3p, 367-3p, 92b-3p
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Table 2. Cont.

lncRNA/Pseudogene mRNA List of MicroRNAs Associated with Each
lncRNA/Pseudogene–mRNA Pair

MEIS3P1 (pseudogene)

TNS1
hsa-miR-138-5p, 138-1-5p, 145-5p, 204-5p, 204-3p, 211-5p,
219a-5p, 508-5p, 508-3p, 4782-3p, 23a-5p, 23b-5p, 34a-5p,

34b-5p, 449a, 449c-5p

KN motif and ankyrin repeat domains 2
(KANK2)

hsa-miR-138-5p, 138-1-5p, 145-5p, 204-5p, 204-3p, 211-5p,
219a-5p, 508-5p, 508-3p, 4782-3p, 34a-5p, 34b-5p, 449a,

449c-5p

TUBAP5 (pseudogene) MYB proto-oncogene-like 2 (MYBL2)

hsa-miR-130a-3p, 301a-5p, 301b-5p, 301b-3p, 454-5p, 721,
4295, 3666, 7-5p, 7-1-3p, 148a-3p, 152-5p, 15a-5p, 16-5p,
16-1-3p, 195-5p, 322, 424-5p, 497-3p, 1907, 214-5p, 761,

3619-5p, 22-5p, 22-3p, 122-5p, 122-3p, 1352, 24-3p, 24-1-5p,
24-2-5p, 29a-3p, 103a-3p, 107, 107ab, 124-5p, 124-3p, 506-5p,

338-5p, 338-3p

In Table 2, common ceRNAs from both methods, GDCRNATools and SPONGE partial correlation analyses (step iii), are labelled by an
asterisk (*).

According to Table 2, integrative analysis of GDCRNATools and SPONGE packages
(GDCRNATools + SPONGE) resulted in two lncRNAs, nine mRNAs, and seventy-four
miRNAs. Figure 2 represents Venn diagrams for the number of shared/individual lncRNAs,
mRNAs, and miRNAs across/within HD cancers that contributed to the construction of
the shared ceRNA network of HD cancers.
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According to Table 2 and Figure 2, only a limited number of lncRNAs and mRNAs are
shared across five HD cancer ceRNA networks. Figure 3 illustrates a graphical representa-
tion of the shared ceRNA networks of HD cancers found in our study, which was prepared
using the Cytoscape software [24].

According to Figure 3, the majority of miRNAs bind with the MAGI2-AS3-associated
ceRNA network. We conducted two downstream analyses for genes and miRNAs in the
shared ceRNA network of HD cancers which are represented in Figure 3.

3.3. Functional Enrichment Analysis

Functional enrichment analysis was performed on the nine mRNAs obtained from the
shared ceRNA network of HD cancers. The GO cellular components (CC) of enrichment
were mainly I band, stress fibre, contractile actin filament bundle, actin filament bundle,
actomyosin, focal adhesion, and cell–substrate junction. Five out of nine genes (CFL2,
MYLK, TNS1, FERMT2, and DIXDC1) were enriched in the actin-binding component in the
GO molecular functions (MF) pathway. KEGG pathway analysis showed that 3 out of 9
mRNAs (FGF2, CFL2, and MYLK) are involved in the regulation of the actin cytoskeleton
pathway. Results of the enrichment analysis are illustrated in Figure 4.

3.4. Survival Analysis

We performed Kaplan–Meier (K–M) survival analysis for genes and miRNAs in
the shared ceRNA network of HD cancers. The gene and miRNA lists were applied to
individual HD cancer survival analysis. We filtered out genes and miRNAs that were
significant from at least one survival analysis. We found that two genes and forty-one
miRNAs in the shared ceRNA network are significant in at least one HD cancer. Two
mRNAs out of nine, SRPX and DNAJB4, were significant in COAD and UCEC survival
analyses. Figure 5 illustrates K–M curves for the two prognostic genes in COAD and UCEC.
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Figure 4. Functional enrichment analysis of nine genes in the shared competing endogenous RNA
network of hormone-dependent (HD) cancers. There were seven, one, and one statistically significant
component(s) in the GO CC, GO MF, and KEGG pathways, respectively. Six out of nine genes, CFL2,
MYLK, TNS1, FERMT2, DIXDC1, and FGF2 are associated with actin-related pathways.
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Figure 5. Kaplan–Meier (K–M) survival analysis plots for prognostic mRNAs in the shared ceRNA network of
hormone-dependent (HD) cancers. The low-expressed SRPX gene exhibits prognostic ability in both colon (left) and
endometrial (centre) cancer. The low-expressed DNAJB4 shows better survival in endometrial cancer (right).

We performed a K–M survival analysis for the list of miRNAs (seventy-four) in the
shared ceRNA network of HD cancers. We selected miRNAs that are significant in at least
one HD cancer survival analysis. We found that forty-one out of seventy-four miRNAs
exhibit predictive ability in at least one HD cancer. Table 3 shows the significant miRNAs
with hazard ratios and logrank test p-values. We used the miRCancer web-based tool [27]
to explore miRNA–HD cancer associations of listed significant miRNAs from the survival
analysis. In Table 3, the superscripted 1, 2, 3, 4, and 5 implies that the given miRNA has
been experimentally validated in prostate, breast, colon, rectal, and endometrial cancer,
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respectively. Each miRNA has been labelled as “low” or “high” to indicate its expression
level in cancer survival.

As stated in Table 3, hsa-miR-301b-3p acts as a prognostic candidate in BRCA and
UCEC, whereas hsa-miR-497-5p is significant in both COAD and UCEC survival analyses.
According to the results, eleven, seven, one, two, and twenty miRNAs were obtained from
the BRCA, COAD, READ, PRAD, and UCEC survival analyses, respectively.

Table 3. Logrank test results (survival analysis) for miRNAs in the shared ceRNA network of hormone-dependent (HD)
cancers.

Cancer
miRNA (High/Low
Expression Levels

Associated with Survival)

Hazard
Ratio p-Value Cancer

miRNA (High/Low
Expression Levels Associated

with Survival)

Hazard
Ratio p-Value

BRCA hsa-miR-16-5p (high) 1,2,3,4 0.672 0.0136 UCEC hsa-miR-142-3p (high) 1,2,3,4,5 0.5634 0.0078

BRCA hsa-miR-181c-5p (high) 1,2,3,4,5 0.6578 0.0114 UCEC hsa-miR-148a-3p (high) 1,2,3,4,5 0.55 0.0055

BRCA hsa-miR-195-5p (high) 1,2,3,4,5 0.6859 0.0212 UCEC hsa-miR-152-3p (low) 1,2,3,4,5 1.6863 0.0156

BRCA hsa-miR-200c-3p (high) 1,2,3,4,5 0.7097 0.04 UCEC hsa-miR-212-3p (low) 1,2,3,4 1.7536 0.0096

BRCA hsa-miR-204-5p (high) 1,2,3,4,5 0.6294 0.0052 UCEC hsa-miR-25-3p (low) 2,3,4,5 1.5573 0.0365

BRCA hsa-miR-29a-3p (high) 1,2,3,4,5 0.7168 0.0429 UCEC hsa-miR-301a-3p (low) 2,3,4,5 1.8982 0.0032

BRCA hsa-miR-29c-3p (high) 1,3,4,5 0.6313 0.0061 UCEC hsa-miR-301b-3p (low) 1,2,5 1.6064 0.0277

BRCA hsa-miR-301b-3p (low) 1,2,5 1.3884 0.0478 UCEC hsa-miR-302a-3p (high) 1,2,3,4,5 0.5663 0.0071

BRCA hsa-miR-31-5p (high) 1,2,3,4 0.5542 0.0003 UCEC hsa-miR-302b-3p (high) 1,2,3,4,5 0.5608 0.0061

BRCA hsa-miR-363-3p (high) 2,3,4,5 0.6961 0.0279 UCEC hsa-miR-302c-3p (high) 1,2,3,4,5 0.5498 0.0049

BRCA hsa-miR-372-3p (low) 1,2,3,4 1.409 0.0392 UCEC hsa-miR-302d-3p (high) 1,2,3,4,5 0.5531 0.0053

COAD hsa-miR-1271-5p (low) 1,2,3,4,5 1.6083 0.0166 UCEC hsa-miR-302e (high) 1,2,3,4,5 0.4897 0.0008

COAD hsa-miR-130a-3p (low) 1,2,3,4,5 1.8346 0.0021 UCEC hsa-miR-367-3p (high) 1,2,3,4,5 0.5204 0.0021

COAD hsa-miR-145-5p (low) 1,2,3,4 1.5823 0.0214 UCEC hsa-miR-425-5p (low) 1,2,3,4 1.6045 0.0301

COAD hsa-miR-181b-5p (low) 1,2,5 1.5294 0.0326 UCEC hsa-miR-4262 (high) 1,2,3,4,5 0.4897 0.0008

COAD hsa-miR-32-5p (low) 1,2,3,4,5 1.5932 0.0213 UCEC hsa-miR-497-5p (high) 1,2,3,4 0.5285 0.0037

COAD hsa-miR-497-5p (low) 1,2,3,4 1.5895 0.0206 UCEC hsa-miR-520b (high) 1,2,3,4 0.5896 0.0129

COAD hsa-miR-96-5p (low) 1,2,3,4 1.4888 0.0474 UCEC hsa-miR-520c-3p (high) 1,2,3,4 0.5791 0.0099

PRAD hsa-miR-19a-3p (low) 1,2,3,4 6.9585 0.026 UCEC hsa-miR-520d-3p (high) 2,3,4 0.5043 0.0012

PRAD hsa-miR-29b-3p (high) 1,2,3,4 0.2343 0.0434 UCEC hsa-miR-520e (high) 2,3,4 0.626 0.0273

READ hsa-miR-155-5p (high) 1,2,3,4,5 0.4544 0.0426

The superscripted 1,2,3,4 and 5 implies that the given miRNA has been experimentally validated in prostate, breast, colon, rectal, and
endometrial cancer, respectively. Each miRNA has been labelled as “low” or “high” to indicate its expression level in cancer survival.

4. Discussion

Previous genome-wide and transcriptome-wide analyses have reported the existence
of a shared genetic aetiology of HD cancers [28]. As ceRNAs have a critical role in gene
and molecular pathways, identifying a shared ceRNA network of HD cancers will con-
tribute to understanding the shared genetic aetiology of HD cancers. Here, we investi-
gated the availability of a shared ceRNA network of five common HD cancers. Previous
HD-cancer-related ceRNA analyses have focused on lncRNA-associated networks [6–10].
We extended the scope of ceRNA research to include pseudogene-associated cross-HD
cancer ceRNA networks.

We utilised two ceRNA analysis R packages, GDCRNATools and SPONGE, to im-
prove the predictive power of ceRNA analyses [19,20]. Prior HD-cancer-associated ceRNA
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analyses have used the sensitivity correlation method defined in the GDCRNATools. The
sensitivity correlation cannot account for the presence of multiple miRNAs for a given
ceRNA pair. To address this limitation, we used the sparse partial correlation method
implemented in the SPONGE R/Bioconductor package. We aggregated HD-cancer-specific
lncRNA/pseudogene–miRNA–mRNA associations (significant from both GDCRNATools
and SPONGE) to evaluate the shared lncRNA/pseudogene–miRNA–mRNA triplets across
five HD cancer types. We identified two lncRNAs, nine mRNAs, and seventy-four miR-
NAs common across lncRNA–mRNA–miRNA networks in HD cancers. None of the
pseudogene-related shared ceRNA associations selected from GDCRNATools were signifi-
cant from the SPONGE method. Previous cancer studies have extensively described two
lncRNAs in the shared ceRNA network, MAGI2-AS3, and MIR100HG [29–35]. Du et al. [30]
have shown that MAGI2-AS3 upregulation inhibits BRCA metastatic progression by decreas-
ing miR-374a and enhancing PTEN expression. Ren et al. [31] have revealed that MAGI2-AS3
promotes colorectal cancer progression by regulating the miR-3163-TMEM106B axis. More-
over, the MAGI2-AS3 promoter was hypermethylated in several cancers such as COAD,
READ, and UCEC [32].

The lncRNA MIR100HG, the host gene for miR-100, let-7a-2, and miR-125b clus-
ter, has been previously reported to have a role in gastric cancer, colorectal cancer, and
BRCA [33–35]. Li et al. [34] demonstrated that MIR100HG overexpression causes colorec-
tal cancer progression and is a poor prognosis in colorectal cancer patients. It also pro-
motes triple-negative BRCA cells’ migration, invasion, and proliferation by sponging the
miR-5590-3p-OTX1 axis [35]. Our study reveals the ceRNA role of MIR100HG in PRAD
and UCEC as well as that of MAGI2-AS3 in PRAD for the first time. Wet-lab experiments
are required to understand the molecular mechanism of MAGI2-AS3 and MIR100HG in
these cancers.

We found nine mRNAs in the shared ceRNA network of HD cancers in which six
and three mRNAs were paired with MAGI2-AS3 and MIR100HG, respectively. Eight out
of nine mRNA–lncRNA axes were identified for the first time in cancer-related ceRNAs.
These ceRNA pairs are likely to be involved in cancer pathways as they were significant
across five cancer types. The MAGI2-AS3/miR-31-5p/TNS1 axis identified in our study
has been shown to regulate migration and invasion ability in bladder cancer cell lines [36].

We conducted two downstream analyses, a survival analysis and a functional enrich-
ment analysis, to identify important mRNAs and miRNAs in the shared ceRNA network.
Two out of nine mRNAs, SRPX (UCEC and COAD) and DNAJB4 (UCEC), were found as
prognostic markers in at least one HD cancer from the survival analysis. The SRPX gene
acts as a tumour-suppressor gene, which is down-regulated in several malignancies, includ-
ing PRAD, COAD, READ, and neuroendocrine (cells that release hormones into the blood
in response to stimulation of the nervous system) cancers [37]. All these malignancies are
biologically related to hormones. Therefore, the role of the SRPX gene in hormone-related
cancers should be further investigated. Currently, SRPX is being examined as a potential
cancer drug under patent number US 9,290,744 B2 [38].

The DNAJB4 gene (also known as HLJ1) belongs to the DNJ family heat shock pro-
teins (HSPs) and is regarded as a tumour-suppressor in COAD, BRCA, lung, and gastric
cancer [39]. HSPs have been reported as biomarkers and potential drug targets of cancers
for decades. A recent integrative analysis of multi-omics data uncovered the distinct im-
pact of several HSP (including DNAJB4) members on BRCA progression [40]. Our study
discovered that DNAJB4 could act as a prognostic marker in UCEC. Moreover, GDCRNA-
Tools analysis (only the hypergeometric test and Pearson correlation analysis) identified
that DNAJB4 can be paired with all three lncRNAs in the shared network, MBNL1-AS1,
MAGI2-AS3, and MIR100HG. Therefore, in vivo/vitro experiments are required to evalu-
ate its tumour-suppressive/oncogenic role in HD cancers.

We conducted a separate survival analysis for miRNAs in the shared ceRNA network.
Interestingly, our miRNA survival analysis revealed that ~55% (41/74) of miRNAs in
the shared ceRNA network of HD cancers are associated with disease survival in at least
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one HD cancer type. These forty-one miRNAs have been experimentally validated for
their functional role in at least three HD cancers (out of five types of interest), providing
confidence to our computational results [27]. Among these forty-one miRNAs, twenty-eight
have been differentially expressed in HD cancers. We found multiple prognostic miRNAs
from the same miRNA family, two from miR-181 (in COAD and BRCA), three from miR-29
(in BRCA and PRAD), three from miR-301 (in BRCA and UCEC), five from miR-302 (in
UCEC), and four from miR-520 (in UCEC). The four members of the miR-520 family that
were prognostic in UCEC are required to be determined through experiments. We found
both miR-302 and miR-367 as prognostic markers from the shared ceRNA network. The
miR-302/367 cluster has been previously identified in PRAD-, BRCA-, COAD-, READ-,
and UCEC-associated pathways, supporting our findings [41].

According to functional enrichment analysis, six out of nine mRNAs were associated
with actin-related GO and KEGG pathways. The actin dynamics and actin-specific molecu-
lar signalling have shown potential clinical significance on non-genomic steroid hormone
actions on tumour cells [42]. All these facts supported by the literature have improved the
significance of our study’s shared ceRNA network of HD cancers.

A limitation of this study is that we selected both experimentally validated and
predicted miRNA–target interactions only from two databases, miRcode and starBase, to
include a substantial set of miRNA–mRNA/lncRNA/pseudogene interactions. We did
not include circular RNAs (circRNAs) for the ceRNA network analysis as their expression
levels are not available in TCGA. Nevertheless, our findings have important biological
implications for HD cancers.

Herein, we identified a shared ceRNA network that can be facilitated to understand
the shared genetic aetiology of HD cancers. The shared ceRNA network consists of two
lncRNAs, nine mRNAs, and seventy-four miRNAs that have shown links with individual
HD malignancies from the literature. Our study lays the groundwork for future research
on understanding the role of these mRNAs, miRNAs, and lncRNAs in the shared genetic
susceptibility of HD cancers. Future directions could lead to a supervised machine learning
approach to understand molecular effects on ceRNA networks of HD cancers.

5. Conclusions

We conducted the first extensive computational study that compares ceRNA networks
(both lncRNA and pseudogene) in a group of related cancers, HD cancers. The shared
ceRNA network comprises two lncRNAs, nine mRNAs, and seventy-four miRNAs, and
some of them were described for the first time in certain HD cancers. A global view of
the functional ceRNA networks of large sample sets encompassing multiple tumour types
may help identify potential unexpected targets that apply to a cancer subset, such as HD
cancers. Moreover, identifying novel risk-associated lncRNAs, pseudogenes, miRNAs, and
mRNAs across a group of related cancers will significantly contribute to understanding
their shared disease biology. Further experimental investigations should be conducted to
understand the tumour-suppressive/oncogenic/cancer-driven role of identified ceRNAs
in HD cancers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.339
0/biology10101014/s1, Table S1: Number of statistically significant long non-coding RNA/pseudogene
–mRNA–microRNA triplets in each cancer type (the ceRNA associations from GDCRNATools and
both GDCRNATools and SPONGE—sparse partial correlation on gene expression—have been tabu-
lated separately).
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