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Simple Summary: One of the most commonly diagnosed cancers in men is prostate cancer (PCa).
Understanding tumor progression can help diagnose and treat the disease at an early stage. Compo-
nents of the extracellular matrix (ECM) play a key role in the development and progression of PCa.
Elastin is an essential component of the ECM and constantly changes during tumor development.
This article visualizes and quantifies elastin in magnetic resonance imaging (MRI) using a small
molecule probe. Results were correlated with histological examinations. Using an elastin-specific
molecular probe, we were able to make predictions about the cellular structure in relation to elastin
and thus draw conclusions about the size of the tumor, with smaller tumors having a higher elastin
content than larger tumors.

Abstract: Human prostate cancer (PCa) is a type of malignancy and one of the most frequently
diagnosed cancers in men. Elastin is an important component of the extracellular matrix and is
involved in the structure and organization of prostate tissue. The present study examined prostate
cancer in a xenograft mouse model using an elastin-specific molecular probe for magnetic resonance
molecular imaging. Two different tumor sizes (500 mm3 and 1000 mm3) were compared and
analyzed by MRI in vivo and histologically and analytically ex vivo. The T1-weighted sequence
was used in a clinical 3-T scanner to calculate the relative contrast enhancement before and after
probe administration. Our results show that the use of an elastin-specific probe enables better
discrimination between tumors and surrounding healthy tissue. Furthermore, specific binding of
the probe to elastin fibers was confirmed by histological examination and laser ablation–inductively
coupled plasma–mass spectrometry (LA-ICP-MS). Smaller tumors showed significantly higher signal
intensity (p > 0.001), which correlates with the higher proportion of elastin fibers in the histological
evaluation than in larger tumors. A strong correlation was seen between relative enhancement (RE)
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and Elastica–van Gieson staining (R2 = 0.88). RE was related to inductively coupled plasma–mass
spectrometry data for Gd and showed a correlation (R2 = 0.78). Thus, molecular MRI could become a
novel quantitative tool for the early evaluation and detection of PCa.

Keywords: magnetic resonance imaging; molecular imaging; prostate cancer

1. Introduction

Prostate cancer (PCa) accounts for one in five cancer diagnoses in men, making it one
of the most commonly diagnosed carcinomas in men in the Western world [1]. It can be a
highly malignant tumor disease, and represents one of the most common fatal cancers in
men [1]. The causes of the disease are yet not fully understood. Risk factors include age,
ethnic origin, geographical location, and genetic predisposition [2–5]. In the last few years,
both the diagnosis and treatment of PCa have improved due to medical advances.

Early-stage prostate-specific antigen (PSA) screening is considered practical for decision-
making and treatment in PCa [2]. The laboratory-chemical survey determination of the
PSA level is well established in Western countries, but this method also shows significant
limitations. Due to its relatively low specificity and a low sensitivity, it leads to many
false positive diagnoses [6,7]. As a result, many patients undergo unnecessary prostate
biopsy [7]. In patients with a normal PSA level, PCa could be diagnosed in 30% of cases,
with 10% being assigned to aggressive PCa [6]. The PSA value therefore does not necessar-
ily provide any information about the aggressiveness of the tumor. Other factors can also
affect PSA level, such as bacterial prostatitis and acute urinary retention [8]. PSA screening
also leads to over-diagnosis of PCa and thus initiates unnecessary surgical procedures to
collect tissue samples [9].

Another diagnostic option is transrectal ultrasound (TRUS) [10], which is now well
established in clinical practice. TRUS can help determine the volume of the prostate and is
used as a supplementary diagnostic test.

An indispensable method for the diagnosis of PCa is magnetic resonance imaging
(MRI). Diffusion-weighted apparent diffusion coefficient (ADC) imaging, T2-weighted
imaging, and dynamic intravenous contrast-enhanced (DCE) imaging with unspecific
contrast agents are among the standard MRI examinations in PCa, referred to as multipara-
metric MRI (mpMRI) [11,12]. Some of the advantages of MRI are the high-resolution spatial
imaging of tissue with strong soft tissue contrast, the quantitative imaging technique, and
the lack of invasiveness and radiation. mpMRI has a high sensitivity and specificity, but it
has a low positive predictive value (PPV) [13]. The Prostate Imaging Reporting and Data
System (PI-RADS) helps to detect PCa in a standardized form. The main challenge is the
different interpretation of the PI-RADS results by clinicians and medical staff [13]. PCa
mpMRI diagnosis must finally be verified by biopsy. Therefore, it is necessary to develop a
non-invasive screening method with high specificity.

To improve MRI contrast, the paramagnetic lanthanide metalion gadolinium (III)
(Gd3+) can be used in a complex with organic chelates, like the macrocyclic DOTA (2,2′,2”,2′ ′ ′-
(1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid) or the linear DTPA (2,2′,2′ ′,
2′ ′ ′-{[(Carboxymethyl)azanediyl]bis(ethane-2,1-diylnitrilo)}tetraacetic acid) as contrast me-
dia. Thereby, the unpaired electrons in the Gd-ion will shorten the T1 relaxivity of the
neighboring water protons and thus, the signal intensity of the Ta-weighed image will be
increased [14].

To further improve tissue differentiation, molecular probes could be used as opposed
to the currently available unspecific extracellular Gd-based contrast agents [15]. In addition,
molecular imaging could be used as an added tool to current diagnostic techniques.

A possibility to use appropriate small molecule biomarkers for the detection of ma-
lignant diseases would be to target extracellular matrix (ECM) components. These can be
coupled with MRI-compatible elements. The ECM architecture plays a main role during
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the development and progression of PCa [16]. Palumbo et al. showed strong stimulation of
the proliferation and migration of tumor cells (LNCaP) by the ECM, but also inhibition of
apoptosis and deregulation of the expression of several genes [16].

The main matrix macromolecule components are elastin, collagen, fibronectin, laminin,
and proteoglycan [17–19]. The interaction between tumor cells and elastic fibers is con-
trolled by a 67 kDa receptor [20,21]. Although the signal mediation of the receptor in tumor
cells is not yet fully elucidated, a different extensive binding of tumor cell lines to elastin
has been observed in Lewis lung carcinoma cells [22]. Tumor cells are able to express,
adhere, degrade, and migrate elastin proteins [23]. Lysyl oxidase, a copper-dependent
aminodase, promotes the cross-linking of collagen and elastin in tissue and is responsible
for the activation of the elastin promoters [24,25]. This is a determining factor in the stiff-
ness and structural stability of ECM [24]. An interaction between the tumor cells and the
ECM protein elastin is mediated by two elastin-binding proteins (S-gal and galectin-3) and
two laminin receptors [23].

The expression of elastin-binding proteins is strongly related to the metastatic potential
of the tumor [23]. One possible explanation is that cancer cells are able to synthesize
elastin and express lysyl oxidase [23]. Calderón et al. showed that PCa contains more
elastic fibers than normal tissue [26]. Elastin fibers are implicated in tumor invasion
and metastasis, cell proliferation, adhesion, apoptosis, and angiogenesis [26–28]. Finally,
elastin represents a novel promising molecular biomarker also in the field of cardiovascular
diseases [29,30]. Additionally, hepatic cancer [31] could be evaluated using an elastin-
specific MRI molecular probe.

Despite the advances in the diagnosis of PCa over the course of time, further studies
are needed to clarify the onset and mechanism of PCa progression.

We therefore analyzed the role of elastin in conjunction with molecular MR imaging in
a xenograft mouse model, comparing two different tumor sizes. This study aimed to use a
low-molecular elastin-specific probe in MRI examinations and, thus, to obtain information
on changes in the ECM during prostate cancer development for a better differentiation
between tumor tissue and healthy tissue.

2. Materials and Methods
2.1. Cell Culture

Human PC3 cells were obtained from ATCC® CRL-1435™ (Manassas, VA, USA) and
cultured in Roswell Park Memorial Institute (RPMI) 1640 Medium (Gibco™, Thermo
Fischer Scientific, Waltham, MA, USA) supplemented with 10% fetal calf serum (FCS)
(Gibco™, Thermo Fischer Scientific, Waltham, MA, USA). Cells were cultured in 150 cm2

tissue culture flasks until they reached about 80% confluence. Cells were washed with
phosphate buffered saline (PBS) (Gibco™, Thermo Fischer Scientific, Waltham, MA, USA),
trypsinized, and subsequently re-suspended in 1 mL RPMI-medium and counted with
0.4% Tryptan blue solution (Gibco™, Thermo Fischer Scientific, Waltham, MA, USA).

2.2. Xenograft Mouse Model

This study was performed corresponding to the local guidelines and provisions for
the implementation of the Animal Welfare Act and the regulations of the Federation of
Laboratory Animal Science Associations (FELASA). This animal study was approved
by the regulatory authority of the Regional Office for Health and Social Affairs Berlin
(LAGeSo) (G0094/19). Male, eight-week-old SCID-mice (CB17/Icr-Prkdcscid/IcrIcoCrl)
were obtained from Charles River Laboratories (Sulzfeld, Germany) (N = 28). The animals
were randomly assigned to two different groups (n = 14).

For anesthesia, the mice were intraperitoneally injected with medetomidin (500 µg/kg),
midazolam (5 mg/kg), and fentanyl (50 µg/kg). Cell suspension with 2 × 106 PC3-cells
was injected subcutaneously (s.c.) in the area of the right scapula. Anesthesia was subse-
quently antagonized with atipamezol (750 µg/kg), flumazenil (0.5 mg/kg), and naloxon
(1200 µg/kg).
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MR imaging was performed on a tumor size of 500 mm3 (n = 14) or 1000 mm3 (n = 14).
The size of the tumor was determined using calipers. Following MRI, mice were euthanized
and tumor tissue was removed for ex vivo examination.

2.3. In Vivo MRI

MR imaging was performed using a 3.0 Tesla MR scanner (MAGNETOM Lumina,
Siemens, Erlangen, Germany) and a 4-channel receive-coil array for mouse body applica-
tions (mouse scapula array, P-H04LE-030, Version1, Rapid Biomedical GmbH, Germany).
Following s.c. anesthesia as described above, mice were positioned on the MRI patient
table in a prone position. A venous access through the tail vein was established for admin-
istration of the contrast agent during the MR imaging. The body temperature (37 ◦C) was
monitored with the use of an MR-compatible heating system (Model 1025, SA Instruments
Inc, Stony Brook, NY, USA) to avoid rapid cooling.

2.4. Elastin-Specific Contrast Agent for the MRI

A contrast agent that specifically binds to elastin was used for the experiments
(ESMA; Lantheus Medical Imaging, North Billerica, MA, USA). It is a low-molecular-
weight gadolinium-based contrast agent with a molecular mass of 856 g/mol [30]. The
highest binding is achieved after 30 to 45 min [30,32]. The longitudinal relaxivity of
4.68 ± 0.13 mM−1s−1 and 8.65 ± 0.42 mM−1s−1 [30,32] is known. The contrast agent was
administered intravenously via the tail vein in a clinical dose of 0.2 mmol/kg.

2.5. Elastin Imaging Using T1 Weighted Sequences

MR imaging was realized with a 3.0 Tesla MR scanner. The mice were imaged in
prone position with a 4-channel receive-coil array for mouse body applications. For the
localization of the tumor, a low-resolution three-dimensional localizer scan was used,
which was performed in sagittal, coronal, and transverse orientation with the following
parameters: field-of-view (FOV) = 280 × 280 mm, matrix = 320, slice thickness = 1.5 mm,
repetition time (TR) = 11.0 ms, echo time (TE) = 5.39 ms, flip angle = 20◦, and slices = 10.
Anatomic images were captured using a T2-weighted sequence with the following parame-
ters: FOV = 150 mm, matrix = 201, slice thickness = 1.2 mm, TR = 3200.0 ms, TE = 77.0 ms,
flip angle = 140◦, and slices = 25. To visualize the gadolinium-based contrast agent, a
T1-weighted sequence was performed with the following parameters: FOV = 70 mm,
matrix = 131, slice thickness = 0.4 mm, TR = 833.8 ms, TE = 6.34 ms, flip angle = 30◦, and
slices = 30.

2.6. MRI Measurements

MR images were analyzed using Visage 7.1 (Version 7.1, Visage Imaging, Germany).
The T1-weighted images were compared before and after the administration of the contrast
agent (signal intensity = SI). For relative enhancement (RE) assessment, 2D regions of
interest (ROIs) were drawn around the respective areas in pre-contrast and post-contrast
MR images. The following formula was used to calculate the relative enhancement (RE):

RE =
(SIpostcontrast − SIprecontrast)

SIprecontrast

2.7. Competition Experiment

Three mice were used for the competition experiment (n = 3). After a tumor size of
1000 mm3 was reached, the animals were anesthetized and examined in an MRI (MAG-
NETOM Lumina, Siemens, Erlangen, Germany). On day one, imaging without a con-
trast agent was followed by an intravenous injection of the elastin-specific contrast agent
(0.2 mmol/kg). Additional MRI images were acquired as described above (Elastin imaging
using T1 weighted sequences) and the animals were then antagonized. On day two, following
a native MRI scan, a 5-fold higher dose of an elastin-specific europium-coupled contrast
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agent was administered through the tail vein. After this imaging, the Gd-containing elastin-
specific contrast agent was administered and imaged in an MRI. The data obtained were
compared for signal changes.

2.8. Histological Analysis

Frozen samples were cut into 9 µm-thick serial sections at −20 ◦C. The sections were
then fixed with cold acetone (≥99%, Fisher Scientific, Hampton, VA, USA) for 6 min
at −20 ◦C. Miller’s Elastica–van Gieson-stain (EvG) was performed. EvG was used to
visualize elastic fibers. In addition, immunofluorescence staining was conducted using
an anti-elastin antibody (Rabbit anti-Mouse pAb Elastin, abcam®, Cambridge, United
Kingdom) that was diluted 1:100 with Dako REALTM Antibody Diluent (DAKO, Glostrup
Denmark), and incubated overnight at 4 ◦C. The sections were washed three times with PBS
(pH = 7.4), followed by a 1 h incubation with the secondary antibody (1:200, donkey anti-
rabbit IgG, Invitrogen, Carlsbad, CA, USA). The samples were washed again three times
with PBS and covered with DAPI staining solution (ROTI® Mount FluorCare DAPI, Carl
Roth, Karlsruhe, Germany). Last, the sections were analyzed using a Keyence microscope
(BZ-x800 Series, Osaka Prefecture, Japan).

2.9. Quantification of the EvG Stain and Immunofluorescence

The quantification of the staining area of the EvG and immunofluorescence sections
was measured with the image analysis software BZ-X800 Analyzer (Keyence, Osaka pre-
fecture, Japan). Three representative areas (two different peripheral areas and one central
region) were analyzed for each probe. The mean value was calculated in each case. First,
the entire region of interest was marked. Consecutively, all elastic fibers were identified
and the relation of the elastic fibers to the entire marked tumor region was calculated using
marked pixels.

2.10. Laser Ablation–Inductively Coupled Plasma–Mass Spectroscopy (LA-ICP-MS)

LA-ICP-MS was performed for localization of gadolinium (Gd) in the tumor tissue
(n = 3 per group). Tumor samples were cut into 9 µm cryosections at −20 ◦C and mounted
on SuperFrost Plus adhesion slides (Thermo Scientific, Waltham, MA, USA).

The analysis was performed by continuously scanning the thin sections and transport
of the aerosol via He-gas flow to the ICP-MS. Two different LA-ICP-MS systems were used,
which are described in the Supplementary Materials. Matrix matched gel standards were
used for drift control and calibration of 158Gd.

2.11. Inductively Coupled Plasma–Mass Spectrometry (ICP-MS)

ICP-MS was used to determine total gadolinium concentrations in tumor samples.
A piece of the tumor sample was prepared (n = 5 per group) and dried under a vacuum
atmosphere (vacuum pumping unit, vacuubrand®, Wertheim, Germany). One mL of 66%
nitric acid was added to each sample and incubated at room temperature until the tissue
was completely dissolved. Deionized water was then added to each sample. Digested
samples were diluted in 1% HNO3 sub-boiling (s.b.) and analyzed with an iCAP Qc ICP
quadrupole mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) in combina-
tion with the autosampler 4DXF-73A (ESI Elemental Service & Instruments GmbH, Mainz,
Germany) using a 200 µL PFA nebulizer and a cyclonic spray chamber (see Table 1 for more
details). Calibration was carried out using diluted Gadolinium ICP Standard CertiPUR
(Merck KGaA, Darmstadt, Germany) and using rhodium as the internal standard. More
details can be found in the Supplementary Materials.
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Table 1. Experimental parameters of iCAP Qc.

Parameter Value

Power (W) 1550
Nebulizer gas flow rate (L min−1) 1.08

Aux gas flow rate (L min−1) 0.65
Cool gas flow rate (L min−1) 14
Sample flow rate (mL min−1) 0.40

Dwell time [ms] 0.01
Isotopes monitored 103Rh, 155Gd, 156Gd, 157Gd, 158Gd, 160Gd,

2.12. Western Blot

For protein isolation from the tissue, a tumor piece was first homogenized in RIPA
buffer (n = 3 per group). For this purpose, 50 mM Tris·HCl (Carl Roth GmbH, Karlsruhe,
Germany), 150 mM NaCl (Carl Roth GmbH, Karlsruhe, Germany), 0.1% SDS (Carl Roth
GmbH, Karlsruhe, Germany), 1% sodium deoxycholate (Carl Roth GmbH, Karlsruhe,
Germany), and 1% Triton X-100 (Merck, Darmstadt, Germany) were mixed with protease
inhibitor I and protease inhibitor II (Thermo Fisher Scientific, Waltham, MA, USA). The
samples were shaken shortly and shaken for 2 h at 4 ◦C. This was followed by centrifugation
at 12,000 rpm for 20 min at 4 ◦C. Samples were filtered using tip filters (1 µm, 0.45 µm,
0.1 µm). The sample concentration was determined using the BC assay method (Pierce™
BCA Protein Assay Kit, Thermo Fisher Scientific, Waltham, MA, USA). The manufacturer’s
protocol was used. The same protein amount (50 µg) was loaded into the wells of the gel
under unreduced conditions (SERVAGel™ TG 8% PRiME™, Heidelberg, Germany) and
separated in the running gel system (SERVA™ Heidelberg, Germany) at a voltage of 70 V
for 60 min and then at 160 V for 60 min in running buffer (250 mM TrisBase (Carl Roth
GmbH, Karlsruhe, Germany), 1.92 M glycine (Carl Roth GmbH, Karlsruhe, Germany),
and 1% SDS (Carl Roth GmbH, Karlsruhe, Germany)). Subsequently, the proteins were
transferred from sodium dodecyl sulphate (SDS) gel to a nitrocellulose membrane (Trans-
Blot® Turbo™ RTA Mini PVDF Transfer Kit, Bio-Rad Laboratories, Hercules, CA, USA).
The blot system Trans-Blot® Turbo™ (Bio-Rad, Laboratories, Hercules, CA, USA) was
used. A 5% skim milk powder (Carl Roth GmbH, Karlsruhe, Germany) in 0.05% PBS-
Tween20 (PBS-T) (Carl Roth GmbH, Karlsruhe, Germany) solution was used to block
non-specific antibody binding. Incubation was performed at room temperature for 1 h.
Blots were incubated with a mouse monoclonal anti-elastin antibody (sc-166543, Santa
Cruz Biotechnology, Dallas, TX, USA) diluted 1:1000 in 5% milk solution overnight at
4 ◦C. After washing the membrane three times with PBS-T, the blots were incubated with
HRP-coupled mouse IgGκlight chain binding protein diluted 1:5000 in PBS-T for 60 min.
The band was detected using the membrane substrate (SeramunBlau® prec, Seramun
Diagnostica GmbH, Heidesee, Germany). GAPDH (Invitrogen, Carlsbad, CA, USA) was
used for charge control.

The intensity of the bands was measured with the software Image J (ImageJ software,
Version 1.53).

2.13. Statistical Analysis

A mean bet was calculated and presented from all the data. The significance was
compared by unpaired and bilateral t-test analysis and significance was shown at p < 0.05.
Statistics were performed with Microsoft Excel.

3. Results

In this study, a gadolinium-based elastin-specific probe was used to examine ECM
changes during PCa development. Two different tumor sizes were examined. For a detailed
study setup please see Figure 1.
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subcutaneously injected into male SCID mice. Two different tumor sizes were achieved: 500 mm3 and 1000 mm3. After
obtaining the desired tumor size, MR imaging was performed using an elastin-specific contrast agent. Tumor tissue was
excised for ex vivo analysis.

All animals developed a tumor. Tumor growth at the same injection time was het-
erogenic. The final size of the tumor was determined by daily tumor measurement. The
final tumor size of 1000 mm3 was reached after 36 to 50 days. In the other group, which
developed a tumor volume of 500 mm3, the target volume was reached after 30 and 64 days.
One animal had to be withdrawn from the trial early because of poor general condition
(n = 1) (was replaced by another mouse).

3.1. Molecular Characterization in T1-Weighted MR Imaging Using Gd-Based Elastin-Specific
Contrast Agent

The intravenous administration of the elastin-specific contrast agent resulted in a
significant MR signal increase (p ≤ 0.001) in the area of the subcutaneous tumor in all
examined mice. Figure 3B shows a pre-contrast image and Figure 3C shows an image with
a contrast medium. A good difference between the two groups can already be seen here.
Mice with a tumor size of 1000 mm3 showed a twofold increased SI, whereas mice with
500 mm3 tumors showed an even higher (threefold) increased SI (Figure 2A). In the group
with a tumor volume of 1000 mm3, the SI was 3037 after contrast agent administration
(pre-contrast SI of 897) (p ≤ 0.001). In mice with a tumor size of 500 mm3, after application
of the elastin-specific contrast agent an SI of 3819 was determined (pre-contrast SI of 907)
(p ≤ 0.001).
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agent. (A) MRI measurements show the evaluation of MRI images (T1-weighted sequence) before and after contrast agent
administration in two tumor volumes (1000 mm3 and 500 mm3). A total of 14 animals were examined per group (n = 14).
After the elastin-specific contrast agent was administered, the value increased to an RE of 3037 (1000 mm3) and 3819
(500 mm3). The data are significant (p ≤ 0.001). (B) A competition experiment was performed to show the specific binding
of the elastin-specific contrast agent. Three mice were used for this experiment (n = 3). On day 1, images were taken before
and after the elastin-specific contrast agent administration. After 24 h (day 2) the animals were examined again. First a
pre-contrast image was taken, then an elastin-specific probe with europium was administered (instead of Gd3+, it was
conjugated with europium), and finally the elastin-specific contrast agent was applied. There was very little to no signal
change. The data therefore show specific binding of the elastin-specific contrast agent. (C) Elastin levels of n = 14 animals
per group were analyzed by histology. (D) The dot plot shows the correlation between MRI data (relative enhancement) and
histological data. The Elastica–van Gieson stain was used to stain elastin fibers in the tumor tissue. The R-squared value is
0.88. (E) Elastin levels of n = 4 animals per group were analyzed by immunofluorescence. The data are significant (p ≤ 0.05).
(F) shows the correlation between MRI data and Gd content in tumor tissue measured with ICP-MS. The R-squared value
is 0.78.

The specific binding of the contrast agent was demonstrated by a competition experi-
ment. The administration of a europium-coupled elastin-specific probe did not provide
sufficient signal enhancement, as shown in Figure 2B. These data from the previous day
(pre-scan and after elastin-specific contrast agent administration) were compared with the
second-day data (pre-scan, europium-coupled probe and elastin-specific contrast agent).
On the first day, an SI of around 3000 was obtained after elastin-specific contrast agent
administration. On the second day, the data from native imaging, the europium-coupled
probe, and the elastin-specific contrast agent showed no change in RE.

To show signal enhancement within a mouse, a fusion map was created (Figure 3D)
that shows the SI between the T2 and T1 sequences after contrast administration in the
same mouse.
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Figure 3. MRI and histological images of prostate cancer: histological characterization of elastin distribution in 1000 mm3

and 500 mm3 PC3 tumors. (A) shows a representative native MRI image of a T2-weighted sequence from the scapula area
of a mouse that developed a tumor with a volume of 1000 mm 3 (top) and 500 mm3 (bottom). The red arrows indicate the
tumor. (B) shows a representative native MRI image of a T1-weighted sequence from the scapula area of a SCID mouse
that developed a tumor volume of 1000 mm3 (top) and 500 mm3 (bottom). (C) shows an MRI image of a T1-weighted
sequence with administration of the elastin-specific contrast agent. A signal change in the tumor area after contrast agent
administration is visible. The red arrows mark the total area of the tumor. In this region there are clear white/bright areas
showing the signal change from the previous image (1000 mm3 (top) and 500 mm3 (bottom)). (D) shows a fusion of a native
T2-weighted sequence and a T1-weighted sequence after administration of the elastin-specific contrast agent in the same
mouse (1000 mm3 (top) and 500 mm3 (bottom)).
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3.2. Detection of Elastin Fibers in Tumor Tissue with Histological Analysis

In both tumor sizes, elastin fibers were observed in the entire tumor tissue, as shown
in Figure 4A. The elastin fibers were dyed blue to purple. To determine the elastin content
of a sample, three areas were selected for each slide and the percentage of elastin content
was determined with the analyzer. The evaluation showed a difference between the two
groups: Fewer elastic fibers were detected in 1000 mm3 tumors compared to 500 mm3. The
mean value of n = 14 was 3.3% (σ = 0.9) in the 500 mm3 and 3.0 % (σ = 0.9) in the 1000 mm3

tumors (n = 14) (Figure 2C). In addition, the detected values (percentage of elastin) of
each tumor strongly correlated with the RE data of in vivo MRI imaging (T1-weighted MR
sequences) (Figure 2D, y = 1.1304x − 0.7943, R = 0.877).
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Figure 4. Histological characterization of elastin distribution in 1000 mm3 and 500 mm3 PC3 tumors.
(A) shows Elastica–van Gieson staining in frozen sections with a slice thickness of 10 um from
1000 mm3 (top) and 500 mm3 (bottom) PC3 tumors. Elastic fibers are blue-violet. Elastin fibers
were detected especially in the marginal area. In the lower right corner is an enlarged section of
the image of the peripheral area of the tumor. Scale bar = 500 µm. (B) A parallel section of the
same tumor (thickness 10 µm) as in A was prepared with an anti-elastin antibody (specific for
immunofluorescence). The elastic fibers are visible in red. Staining of the cell nuclei was achieved
using Dapi (blue). Scale bar = 500 µm; 1000 mm3 (top) and 500 mm3 (bottom) PC3 tumors. (C) The
element gadolinium was detected by LA-ICP-MS. The scale shows the intensity of the detected
gadolinium (cps) (red—high to blue—low). Scale bar = 2 mm; 1000 mm3 (top) and 500 mm3

(bottom) PC3 tumors. (D) For each group, 3 tumors (n = 3 per group) were used for Western
blot analysis to detect the expression of elastin E-11. Here, a different antibody was used than for
immunofluorescence, as the antibody is specific for Western blot analyses. GAPDH was included to
control protein levels.
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The in vivo MRI images showed an irregular distribution of the elastin fibers. This
observation was also confirmed in the ex vivo histological analysis (Figure 4A).

To further evaluate the distribution of elastic fibers in the PC3 tumor, an immunofluo-
rescence staining with an anti-elastin antibody was performed (Figure 4B). This showed an
irregular distribution of the elastin fibers in the tissue. The mean value of n = 4 was 7.5%
(σ = 1.8) in 500 mm3 and 3.7% (σ = 0.9) in 1000 mm3 tumors (p < 0.05).

The Western blot showed a lower elastin expression in the 1000 mm3 group compared
to the 500 mm3 group (Figure 4D) (full WB can be found in Supplementary Materials). For
each group, n = 3 animals were evaluated. The antibody used for the Western blot was
different than that used for immunofluorescence, as the respective antibodies had to be
applied specifically to one method.

3.3. Elemental Analysis of Tumor Tissue with Specific Regard to Gadolinium

LA-ICP-MS measurements were used to localize gadolinium in PC3 tumor tissue.
Three tumor sections were analyzed for each group (n = 3). Strong colocalization of
gadolinium with elastic fibers was shown (Figure 4C). Here it can be seen that the peripheral
area of the tumor, as well as the intra-tumoral space, contained gadolinium.

The gadolinium concentration in the tumor was quantified by ICP-MS after dissolution
of the samples. The concentration of gadolinium with elastic fibers was correlated with
in vivo RE data and showed a strong correlation (y = 1.7606x + 0.6126; R2 = 0.78; p ≤ 0.001)
(Figure 2E). Measurements by ICP-MS were performed in n = 5 for each group.

4. Discussion

This study shows the feasibility of an elastin-specific MRI molecular probe for the
characterization of a PC3 tumor in a SCID mouse model. The results indicate that elastic
fibers have an irregular distribution across the entire PC3 tumor tissue. In all examined
tumors, a high number of elastic fibers was measured, especially in the marginal area,
regardless of the tumor size. Thus, a better distinction between healthy tissue and tumorous
tissue was feasible. In addition, smaller tumors were found to express more elastin than
larger tumors.

ECM proteins play an essential role in tumor development, cell behavior, and microen-
vironment. The ECM is responsible for the architecture of the tumor [33] and can change
continuously [34]. The structure of the ECM in tumor diseases is essential for understand-
ing tumor development and therefore for developing diagnostic and therapeutic options.
Not only does the elasticity of a tumor depend on the ECM but also the stiffness, and it is
responsible for the homeostasis of the tissue [33].

In many types of cancer, such as liver cell carcinoma, the elastin content is a major
factor. The elasticity of a tumor depends on the ECM and the stiffness and is responsible
for tissue homeostasis [35]. In colorectal cancer (CRC), elastin gene expression was recently
examined and it was found that elastin decisively regulates tumor development and the
microenvironment [36]. In this study, elastin gene expression was compared in CRC tumors
from patients with adjacent non-tumorous colon tissue and healthy tissue (control). Elastin
gene expression was found to be increased in patients with CRC tumors compared to the
control group and adjacent non-tumor colon tissue. Metallopeptidase (MMP) 9 and 12 and
TIMP3 were increased in the colon cancer cells. Another example is breast cancer, where
elastin promotes the invasiveness of breast cancer cells [37].

The interaction between the tumor cells and the matrix protein elastin is mediated by
elastin-binding proteins (EBPs), S-Gal, and Galectin-3 through the expression and release
of elastases [23]. Comparing our two groups, 500 mm3 and 1000 mm3, showed that the
group with smaller tumor volumes had a higher SI using the elastin-specific contrast agents.
It can be concluded that smaller tumors can be detected particularly well due to a clear
distinction from surrounding tissue. In contrast, tumors with a larger volume have fewer
elastic fibers, which could be a clear signal of metastasis [23].
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The expression level of elastin was not reflected in the Western blot (Figure 4D), as
expected from the MRI images. In the Western blot we detected weak bands expressing
elastin. The weak bands can be explained by the fact that elastin fibers are insoluble. Elastin
is a cross-linked polymer whose cross-linking is difficult to break. Before cross-linking, the
soluble precursor tropoelastin forms self-associated aggregates (coacervation) after expres-
sion [15]. Only these non-cross-linked aggregates can be broken down back into the small
soluble tropoelastin proteins that can be detected in the Western blot. Thus, the Western
blot showed the expression of tropoelastin and the coacervated elastin. The band intensity
showed a higher expression of new elastin in the 500 mm3 compared to the 1000 mm3

tumors. This correlates to the higher amount of elastin in the immunofluorescence staining
(Figure 2E) and the higher MRI signal (Figure 2A) in the 500 mm3 tumors. Since both MRIs
showed a high increase in contrast in the T1 measurement after applying the elastin-specific
probe, a high elastin density, especially in the periphery of the probe, could be estimated.
The immunofluorescence staining against elastin as well as the EvG staining (Figure 4A,B)
supports this thesis.

Through cell–matrix interaction, the extracellular matrix is constantly remodeled. The
remodeling of the ECM creates a new microenvironment that promotes tumorigenesis
and metastasis [38]. Elastin-derived matrikines promote tumor progression (for example,
Val-Gly-Val-Ala-Pro-Gly or Ala-Gly-Val-Pro-Gly-Leu-Gly-Val-Gly) [38]. The degradation
of elastin produces various proteolytic enzymes, elastases, and MMPs. Matrikins are able
to activate the expression of MMPs, which positively promotes the tumor [38]. Elastin can
help to detect a tumor or metastases at an early stage by morphologically changing the
tumor and initiate appropriate therapy [23]. In addition, a therapy that specifically targets
elastin peptides would be a possibility to reduce tumor growth and invasion.

Molecular imaging provides precise information about the tumor but also about the
structural characteristics of the tumor. An important step is the use of molecular imaging
techniques to make predictions about the molecular characteristics of the tumor to prevent
invasive surgery. Currently, molecular imaging methods are based on cell metabolism,
hormone receptors, and membrane proteins [39]. The cell metabolism of tumor cells differs
from surrounding healthy cells, which can be exploited in molecular imaging. Current
research is being conducted on radiolabeled analogs of the metabolic substrates choline,
acetate, glucose, amino acids, and nucleosides [39]. These are not specific to the detection
of malignant diseases. Specific imaging for PCa can also be achieved using androgen
receptors and membrane proteins. For the development of such biomarkers, it is important
that they be of low molecular weight and can therefore be released faster in the blood.
Pu et al. (2016) showed the targeting of prostate-specific membrane antigen (PSMA)
with a protein MRI contrast agent (ProCA) [40]. The 100 kDa glutamate carboxypeptide
PSMA is involved in signal transduction, receptor function, nutrient uptake, and cell
migration. It is overexpressed in epithelial cells of prostate cancer. PSMA can be detected
in primary, secondary, and metastatic prostate cancer, which makes it a good marker [41].
Pu et al. demonstrated that the targeted MRI contrast agent has good Gd3+ binding affinity,
metal selectivity, and relaxivity, and strong PSMA targeting ability [40]. The contrast
agent (ProCA32.PSMA) showed a signal change in T1-weighted images in tumor-bearing
mice (xenograft model), but also in the T2-weighted images [40]. The experiments were
performed on a 7 Tesla MRI. The results are promising and can be implemented for early
detection, but still need to be tested in an orthotopic model first.

Our results show the detection of tumors with components of the ECM in a clinical
MRI, which can generate statements about tumor volume and enable predictions about
the further course of a tumor. With the help of molecular imaging methods, it is possible
to make individual disease predictions without taking tissue samples from the organism.
Molecular imaging would be a good addition to existing commercial diagnostic possibilities.
The main advantage of molecular MRI is to generate a non-invasive assessment at cellular
level. An elastin-specific contrast agent has not only shown good results in cardiovascular
diseases [42–44] but could also be used for the detection of malignant liver tumors. In a
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recent study, an elastin-specific contrast agent was used to visualize VX2-hepatic tumors
in a rabbit model, and the use of the molecular agent to differentiate specific tumor and
peritumoral regions based on its ECM composition was confirmed [31]. In addition, Sun
et al. were able to demonstrate the usefulness of the probe even in kidney fibrosis [45].

A combination of available diagnostic techniques and molecular imaging would allow
specific statements about the stage of disease in a non-invasive manner. If therapy is
initiated at an early stage, the chances of survival for the affected patient will increase.

Limitations

This study was conducted in a xenograft mouse model. This allows the tumor to grow
in the organism outside the organ. An orthotopic mouse model would allow the tumor to
grow in its natural microenvironment.

5. Conclusions

Our study demonstrates that molecular imaging using an elastin-specific gadolinium-
containing contrast agent is feasible in prostate cancer. The study also confirms an apparent
loss of elastin-specific ECM components in larger tumors. Such an imaging approach could
be useful, for example, in predicting the metastatic potential of the tumor.
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