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Simple Summary: This study investigated the biological efficacy of cochlioquinone-9 (cq-9), a plant 
secondary metabolite, for controlling white-backed planthopper (WBPH) and compared the gene 
expression levels following cq-9 treatment. The results show that cq-9 enhances plant growth 
against WBPH and is associated with aromatic amino acid-related plant defense genes. This demon-
strates the potential of cq-9 to replace chemical pesticides and suggests a new method for controlling 
WBPH. 

Abstract: Rice is exposed to various biotic stresses in the natural environment. The white-backed 
planthopper (Sogatella furcifera, WBPH) is a pest that causes loss of rice yield and threatens the global 
food supply. In most cases, pesticides are used to control WBPH. However, excessive use of pesti-
cides increases pesticide resistance to pests and causes environmental pollution. Therefore, it is nec-
essary to develop natural product-based pesticides to control WBPH. Plants produce a variety of 
secondary metabolites for protection. Secondary metabolites act as a defense against pathogens and 
pests and are valuable as pesticides and breeding materials. Cochlioquinone is a secondary metab-
olite that exhibits various biological activities, has a negative effect on the growth and development 
of insects, and contributes to plant defense. Here, we compared plant growth after treatment with 
cochlioquinone-9 (cq-9), a quinone family member. cq-9 improved the ability of plants to resist 
WBPH and had an effect on plant growth. Gene expression analysis revealed that cq-9 interacts with 
various defense-related genes to confer resistance to WBPH, suggesting that it is related to flavonoid 
compounds. Overall, this study provides insight into the mechanisms of WBPH resistance and sug-
gests that cq-9 represents an environmentally friendly agent for WBPH control. 
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1. Introduction 
Rice is an important staple food that is grown worldwide in a variety of climates [1]. 

However, the yield of rice is affected by several biotic and abiotic factors. A significant 
yield of rice is lost each year because of biological stress, of which approximately 25% is 
caused by pests [2]. White-backed planthopper (Sogatella furcifera, WBPH) penetrates 
plant cells and ingests a large amount of nutrients and moisture. When a large number of 
WBPHs suck in their juice, the leaves dry out and the plant wilts, causing a hopper burn 
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effect [3]. In addition, it reduces the vitality of the rice, delays tillering, and causes stunt-
ing, which ultimately leads to the death of rice [4]. 

In general, pesticides are used to control WBPH, but this is not ideal for several rea-
sons, including the environmental impact and the emergence of pesticide-resistant insects 
[5]. Alternatively, the use of eco-friendly biological pesticides or the development and 
cultivation of resistant cultivars are economical and environmentally sound approaches 
to reduce the damage to the white-backed beetle [6]. This may be achieved using second-
ary metabolites, which are produced by plants and serve as a defense against pests and 
pathogens [7]. The secondary metabolites are under genetic control, and in most cases, 
their production is the result of several enzymatic steps along various biosynthetic path-
ways [8]. 

Another defense mechanism of plants is to develop resistance to environmental stress 
by harboring endophytes [9]. Endophytes are fungi that do not cause disease in plants and 
are symbiotic [10]. In particular, endophytes that inhabit plant leaves limit the penetration 
of pathogenic microorganisms into leaf tissues also secrete secondary metabolites that are 
toxic to plant predators [11]. Fungal endophytes secrete secondary metabolites from host 
plants, which exhibit antifungal and antibacterial properties even at low concentrations 
[12]. Therefore, substances secreted by endophytes are associated with host plant ecology 
and defense mechanisms against pathogens and pests [9]. Cochlioquinone is a major fun-
gal phytotoxin associated with serious crop disease [9]. It is a yellow pigment originally 
isolated from cochliobolus miyabeanus, a parasitic fungus of rice. Cochlioquinone and its 
derivatives exhibit various biological activities resulting from their side-chain structures 
[13]. 

Pest resistance is generally achieved through one or a combination of the following 
three defenses: antixenosis, which prevents migration or oviposition by driving away or 
repelling insects; antibiosis, which reduces insect survival, growth, or reproduction after 
ingestion of tissues; and increased tolerance [14]. Identification of genetic resistance mech-
anisms will improve our ability to manage WBPH [15]. As sophisticated analytical and 
molecular genetic tools for functional studies of resistance become more widely available, 
an approach based on understanding the mechanisms of plant resistance will be an effi-
cient strategy for the development of resistant cultivars for crop protection [16]. The pur-
pose of this study is to evaluate the potential of cq-9 as an eco-friendly agricultural mate-
rial by measuring the biological efficacy. We measured the WBPH resistance of cq-9 and 
identified the defense mechanism of cq-9 against WBPH by examining the expression pat-
terns of major genes related to plant defense associated with cq-9 treatment. In addition, 
we evaluated cq-9 as a useful physiologically active substance. It may be used as a plant-
derived eco-friendly substance, and it contributes to the increased yield of crops by sup-
pressing WBPH. It will also be useful for the discovery of new genetic resources. 

2. Materials and Methods 
2.1. Plant Material and Field Design 

The Cheongcheong/Nagdong Doubled Haploid (CNDH) population was developed 
by anther culture of F1 derived from a cross between Cheongcheong and Nagdong. 
Cheongcheong is an indica type that is resistant to WBPH, and Nagdong is a japonica type 
that is susceptible to WBPH. The CNDH population was cultivated for more than 10 years 
and the agricultural traits are completely fixed. Cheongcheong, Nagdong, CNDH3, and 
CNDH42-2, which are resistant WBPH, and CNDH45 and Taichung Native 1 (TN1), 
which are susceptible to WBPH, were used as plant materials. Seeds were obtained by the 
following method. Rice seeds were soaked in April 2016 and sterilized in water treated 
with 500 μL per 1 L of spotack pesticide (HANKOOKSAMGONG, Seoul, South Korea) at 
25 °C for 4 days in the dark and then sown. The seedlings were transplanted to an exper-
imental field of Kyungpook National University in Gunwi in May 2016 and the planting 
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distance was 30 × 15 cm. Fertilizer was applied at a rate of N–P2O5–K2O = 9–4.5–5.7 kg/10a, 
and the seeds were harvested in October 2016. 

2.2. White-Backed Planthopper Rearing 
The WBPH were reared in a cage maintained at a temperature of 27 ± 1 °C, a humidity 

of 60–70 %, and a light intensity of 2000 lux for 16 h/day. The breeding cage was con-
structed with an acrylic plate (50 × 50 × 40 cm), a 100 μm mesh net was used on the back 
for ventilation, and a sliding door was installed on the front to facilitate feeding. 
Chucheong, the most preferred food for the white-backed planthopper, was supplied as 
food and replenished once a week. The WBPH were separated and reared in breeding 
cages according to growth stage. Usually, they become 1st instars after 9–10 days from 
eggs, and 2nd and 3rd instars after 14 days. WBPH from this period was used for the 
experiments. 

2.3. Extraction of cq-9 
The leaves of rice infected with WBPH were collected and ground using liquid nitro-

gen. Methanol (70%) was added at 10 times the sample amount and incubated at 20 °C 
and 130 rpm overnight in a shaking incubator. Impurities were filtered out using filter 
paper (Whatman Grade 2 Qualitative Filter Paper Diameter: 15.0 cm; pore size: 8 μL). To 
remove the lipid component and non-polar impurities of the methanol extract, n-hexane 
was used. An equal volume of n-hexane was combined with the filtered extract and added 
to a separatory funnel and shaken, and the lower layer was collected after separation. The 
extract was concentrated using a rotary evaporator. Concentration was done in a water 
bath at 30 °C with cooling water at −3 °C and a speed of 6–8. The presence of the cq-9 band 
was confirmed using TLC silica gel 60F254 plate (Merck, KGaA, Darmstadt, Germany) and 
a mobile phase of chloroform:methanol:1-butanol:water at a 4:5:6:4 ratio. The Rf value of 
the separated compound was measured by dividing the distance traveled by the com-
pound relative to the distance of the mobile phase. The band was scraped off from the 
TLC plate, and cq-9 was isolated and dissolved in 20 mL of 4% methanol in 100% acetone. 

2.4. Evaluation of the Effect of cq-9 on Rice 
Seeds of Cheongcheong, Nagdong, and TN1 were soaked at 25 °C for 4 days. Germi-

nated seeds were sown in plastic boxes (20 × 14 × 4.5 cm) at a planting distance of 2.0 × 0.5 
cm. The control group was not treated with any substances, and the experimental group 
was sprayed with cq-9. Then, 2–3 instars of WBPH were inoculated, and the degree of 
resistance was scored for each cultivar on days 7, 14, and 21 after sowing. The scoring 
method measured the degree of damage to the plant using the Standard Evolution System 
(SES) [17]. The chlorophyll concentration of the rice leaves was measured using a portable 
chlorophyll meter (SPAD-502, Minolta Camera Co. Ltd., Osaka, Japan). Seedlings of 
Cheongcheong, Nagdong, TN1, CNDH3, CNDH42-2, and CNDH45 were used for growth 
comparison following cq-9 treatment. The control group, WBPH inoculation group, cq-9 
treatment group, and WBPH inoculation group were treated with cq-9 and grown in each 
cage. Plant heights were measured 1, 2, and 3 days after treatment. The height of the plant 
was measured as the shortest length from the point of the stem where the root grows to 
the highest point of the leaf. 

2.5. DNA Extraction 
The young leaves at the seedling stage were placed into 2 mL tubes, rapidly frozen 

in liquid nitrogen, and ground using a TissueLyser (QIAGEN, Cat. No. 85220, Hilden, 
Germany). Then, 700 μL of DNA extraction buffer (2% CTAB, 0.1 M Tris, pH 8.0, 1.4 M 
NaCl, 1% polyvinylpyrrolidone) was added to the ground sample. After vortexing, the 
sample was incubated for 20 min in a water bath at 65 °C. After the reaction, 750 μL of 
PCI (phenol:chloroform:isoamyl alcohol; 25:24:1) was added. The mixture was inverted at 
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room temperature for 20 min and centrifuged at 14,000 rpm at 4 °C for 10 min. After cen-
trifugation, 500 μL of the supernatant was transferred to a 1.5 mL tube, and 350 μL of 
isopropanol was added. The tube was inverted for 5 min and incubated at −72 °C for 2 
min. After dissolving at room temperature, the samples were centrifuged at 14,000 rpm 
for 10 min. The supernatant was carefully removed and the pellet was washed with 70% 
ethanol. The washed pellet was centrifuged at 13,000 rpm for 1 min, the solution was re-
moved, and the washing process was repeated. After drying at room temperature, the 
DNA was dissolved in 50 μL of ddH2O. The DNA concentration was measured using a 
NanoDrop 2000 Spectrophotometer (ND-2000; Nanodrop, Waltham, MA, USA). 

2.6. RNA Extraction 
Total RNA was extracted from leaf tissue at the seedling stage of rice using the RNase 

Mini Kit (Qiagen, Cat. No. 74904, Hilden, Germany) according to the manufacturer’s in-
structions. The young leaves were ground in liquid nitrogen using a mortar and pestle. 
The ground sample was suspended in 450 μL of RLT buffer containing β-mercaptoethanol 
and vortexed. The lysate was transferred to a QIAshred spin column, placed in a 2 mL 
collection tube, and centrifuged at 13,000 rpm for 1 min. The supernatant of the flow-
through was transferred to a new 1.5 mL tube and 0.5 volume of ethanol (99%) was added 
and mixed immediately by pipetting. Then, 650 μL of mixture was transferred to a QI-
Ashredder spin column and centrifuged for 1 min. The column was washed with 700 μL 
of RW1 buffer and centrifuged for 1 min. The flow-through was discarded and the column 
was washed with 500 μL of RPE buffer and centrifuged at 13,000 rpm for 1 min. The flow-
through was discarded, and 500 μL of RPE buffer was added to an RNase spin column 
and centrifuged for 1 min to remove the residual liquid from the column. The RNA was 
eluted in RNase free water (30 μL) and centrifuged for 1 min. The RNA concentration was 
measured using a NanoDrop 2000 Spectrophotometer. 

2.7. Quantitative Real-Time PCR (qPCR) Analysis 
The qRCRBIO cDNA Synthesis kit (Cat No. PB30.11-10, PCRBIOSYSTEM, Wayne, 

PA, USA) was used for cDNA synthesis. Quantitative real-time PCR was performed using 
the Eco Real-Time PCR System. The following were mixed in a reaction tube: 4.0 μL of 5x 
cDNA synthesis Mix buffer, 1.0 μL of RTase, 100 ng of RNA, and PCR-grade dH2O up to 
a total volume of 20 μL. The mixture was thoroughly mixed by pipetting and incubated 
at 42 °C for 30 min in a water bath. The cDNA synthesis reaction was used as a template 
for qPCR analysis. OsActin was used as a reference gene and the primers for OsActin were 
forward 5′-ATCCTTGTATGCTAGCGGTCGA-3′ and reverse 5′-ATCCAACCGGAGGA-
TAGCATG-3′. The qPCR conditions were as follows: pre-denaturation at 95 °C for 2 min, 
followed by 40 cycles of denaturation at 95 °C for 10 s, annealing at 60 °C for 30 s, extension 
at 72 °C for 15 s, and a final melting curve at 95 °C for 15 s, 55 °C for 15 s, and 95 °C for 15 
s. 

2.8. Statistical SPSS analysis 
All experiments of each section were repeated three times, and the data collected 

from each replicate were pooled together. The statistical analysis was performed using 
the SPSS program (IMMSPSS Statistics, version 22, IBMSPSS Statistics, version 22, Red-
mond, WC, USA). The data were analyzed using two-way ANOVA followed by Duncan 
multiple range test (significant difference: p ˂ 0.05). The data were graphically presented, 
and the table is presented as mean and standard deviation values. 

3. Results 
3.1. Identification of cq-9 and Comparison of Extraction Amount 

Thin-layer chromatography (TLC) was performed to identify and separate cq-9 from 
the methanol extract obtained from TN1, Cheongcheong, and Nagdong (Figure 1A). A 
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band was identified at the same position compared with cq-9 as a control. The retention 
factor (Rf) value of cq-9 was 0.43 ± 0.01, and the Rf value of Cheongcheong, Nagdong, and 
TN1 was 0.42 ± 0.01, indicating no difference (Table 1). The concentration of cq-9 separated 
from silica gel was 7.81 ± 0.29 ng/g in Cheongcheong, 5.43 ± 0.21 ng/g in Nagdong, and 
9.67 ± 1.17 ng/g in TN1, which was the highest value in the order TN1, Cheongcheong, 
and Nagdong from the fresh weight of rice (Figure 1B). 

Table 1. Identification and separation of cq-9 using TLC. 

 Control 
Cultivars 

p Value 
Cheongcheong Nagdong TN1 

Rf value 0.43 ± 0.01a z 0.42 ± 0.01a 0.42 ± 0.01a 0.42 ± 0.01a NS 
Concentration of 
cq-9 (ng/g) - 7.81 ± 0.29b 5.43 ± 0.21c 9.67 ± 1.17a <0.001 ** 

z The data are presented as the mean ± standard deviation. Means with the same letters are not 
significantly different by Duncan’s multiple range test at p < 0.05. ** significant at the 0.01 level. 

 
Figure 1. Identification of cochlioquinone-9 (cq-9) from methanol extracts of rice. (A) TLC results. A 
yellow-green band was identified at the bottom of the TLC plate. The Rf value for each band was 
measured, and the same Rf value indicates the same substance. (B) Concentration of cq-9. cq-9 was 
separated from the TLC silica gel. The concentration was calculated as the weight of cq-9 dried after 
separation [ng/fresh weight of rice (g)]. C; Cheongcheong, N; Nagdong, T; TN1, Means with the 
same letters were not significantly different by Duncan’s multiple range test at p < 0.05. 

3.2. WBPH Resistance of cq-9 
To investigate WBPH resistance to cq-9, bio-scoring values were evaluated at 1, 2, 

and 3 weeks after WBPH inoculation of Cheongcheong, Nagdong, and TN1 (Figure 2A). 
During the 1 week after inoculation, the bio-scoring value of Cheongcheong was 1.2 ± 0.6, 
Nagdong 1.3 ± 0.7, and TN1 1.4 ± 1.0. When cq-9 was treated, the bio-scoring value of 
Cheongcheong was 1.2 ± 0.6, Nagdong 2.6 ± 1.7, and TN1 1.5 ± 1.3. None of the three cul-
tivars were damaged by WBPH. Two weeks after inoculation, the bio-scoring value of 
Cheongcheong was 3.2 ± 0.6, Nagdong 5.2 ± 0.6, and TN1 3.7 ± 1.0. When cq-9 was treated, 
the bio-scoring value of Cheongcheong was 1.4 ± 0.0, Nagdong was 3.0 ± 1.2, and TN1 was 
2.2 ± 1.0. After 2 weeks of inoculation, when Cheongcheong was treated with cq-9, the bio-
scoring value was lower compared with that of the control group. This indicates that when 
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cq-9 was treated, Cheongcheong received less damage from WBPH. Three weeks after 
inoculation, the bio-scoring value of Cheongcheong was 5.0 ± 0.0, Nagdong 6.1 ± 1.2, and 
TN1 7.9 ± 1.4. When cq-9 was treated, the bio-scoring value of Cheongcheong was 1.6 ± 
0.8, Nagdong 4.7 ± 1.6, and TN1 4.4 ± 1.5. After 3 weeks of inoculation, when Cheong-
cheong and TN1 were treated with cq-9, the bio-scoring value was lower compared with 
that of the control group, but there was no difference for Nagdong. In addition, the chlo-
rophyll content, determined by SPAD measurement, was measured at 3 weeks after inoc-
ulation with WBPH (Figure 2B). Chlorophyll content of Cheongcheong was 25.3 ± 2.5 
SPAD and 26.5 ± 4.8 SPAD following cq-9 treatment, which showed no difference. Chlo-
rophyll content of Nagdong was 14.4 ± 6.2 SPAD and 17.7 ± 11.1 SPAD following cq-9 
treatment, which also showed no difference. The chlorophyll content of TN1 was 8.0 ± 0.8 
SPAD and 26.4 ± 7.4 SPAD with cq-9 treatment; thus there was a difference in chlorophyll 
content following cq-9 treatment (Table 2). 

Table 2. Measurement of WBPH resistance according to cq-9 treatment. 

 Week z Cultivars Control cq-9 Treatment p Value 

Bio-scoring value 

1 
Cheongcheong 1.2 ± 0.6 y 1.2 ± 0.6 0.172 

Nagdong 1.3 ± 0.7 2.6 ± 1.7 0.124 
TN1 1.4 ± 1.0 1.5 ± 1.3 0.304 

2 
Cheongcheong 3.2 ± 0.6 1.4 ± 0.8 0.004 ** 

Nagdong 5.2 ± 0.6 3.0 ± 2.4 0.072 
TN1 3.7 ± 1.0 2.2 ± 2.0 0.051 

3 
Cheongcheong 5.0 ± 0.0 1.6 ± 0.8 0.008 ** 

Nagdong 6.1 ± 1.2 4.7 ± 1.6 0.099 
TN1 7.9 ± 1.4 4.4 ± 1.5 0.008 ** 

Chlorophyll con-
tent (SPAD) 

3 
Cheongcheong 5.0 ± 0.0 1.6 ± 0.8 0.057 

Nagdong 6.1 ± 1.2 4.7 ± 1.6 0.379 
TN1 7.9 ± 1.4 4.4 ± 1.5 0.002 ** 

z Number of weeks after WBPH inoculation. y The data are presented as the mean ± standard devi-
ation. ** significant difference at p < 0.01. 

 

 
Figure 2. Evaluation of WBPH resistance by cultivar following cq-9 treatment. (A) Bio-scoring values after 1, 2, and 3 
weeks after WBPH inoculation. The damage by WBPH was less when cq-9 was treated in Cheongcheong at 2 weeks, and 
Cheongcheong and TN1 at 3 weeks.(B) Chlorophyll content at 3 weeks after WBPH inoculation. C; Cheongcheong, N; 
Nagdong, T; TN1, ** significant difference at p < 0.01. 
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3.3. Comparison of the Effect of cq-9 on Plant Growth 
Seedlings of Cheongcheong, CNDH3, CNDH43, Nagdong, TN1, and CNDH45 were 

treated with cq-9, and plant lengths were measured after 1, 2, and 3 days. Additionally, 
plant lengths were measured 1, 2, and 3 days after seedlings were inoculated with WBPH 
and without cq-9 treatment and after seedlings were inoculated with WBPH after cq-9 
treatment (Figure 3). The length of Cheongcheong was 13.4 ± 0.4 cm on the 1st day, 14.5 ± 
0.2 cm on the 2nd day, and 16.3 ± 0.5 cm on the 3rd day. The length of Cheongcheong 
treated with cq-9 was 13.8 ± 0.3 cm on the 1st day, 15.3 ± 0.5 cm on the 2nd day, and 16.9 
± 0.4 cm on the 3rd day. Cheongcheong treated with cq-9 was taller compared with the 
control group. The length of the Cheongcheong inoculated with WBPH was 13.4 ± 0.3 cm 
on the 1st day, 14.9 ± 0.0 cm on the 2nd day, and 16.0 ± 0.3 cm on the 3rd day. The length 
of Cheongcheong inoculated with WBPH after cq-9 treatment was 13.5 ± 0.3 cm on the 1st 
day, 16.4 ± 0.2 cm on the 2nd day, and 16.7 ± 0.4 cm on the 3rd day. There was no difference 
on the 1st day after the inoculation with WBPH and the cq-9-treated Cheongcheong was 
taller on the 2nd and 3rd days. The length of CNDH3 was 14.5 ± 0.2 cm on the 1st day, 
15.8 ± 0.7 cm on the 2nd day, and 15.9 ± 0.3 cm on the 3rd day. The length of CNDH3 
treated with cq-9 was 11.7 ± 0.5 cm on the 1st day, 16.1 ± 0.5 cm on the 2nd day, and 15.8 
± 0.7 cm on the 3rd day. CNDH3 treated with cq-9 on the 1st day was shorter and there 
was no difference on the 2nd or 3rd days. The length of CNDH3 inoculated with WBPH 
was 13.7 ± 0.4 cm on the 1st day, 15.8 ± 0.5 cm on the 2nd day, and 15.7 ± 0.4 cm on the 3rd 
day. The length of CNDH3 inoculated with WBPH after cq-9 treatment was 11.8 ± 0.1 cm 
on the 1st day, 16.4 ± 0.5 cm on the 2nd day, and 15.9 ± 0.6 cm on the 3rd day. CNDH3 
treated with cq-9 was shorter on the 1st day after inoculation with WBPH and taller on 
the 2nd day after inoculation. There was no difference on the 3rd day. The length of 
CNDH42-2 was 16.1 ± 0.2 cm on the 1st day, 14.5 ± 0.6 cm on the 2nd day, and 16.6 ± 0.1 
cm on the 3rd day. The length of CNDH42-2 treated with cq-9 was 14.0 ± 0.7 cm on the 1st 
day, 15.1 ± 0.5 cm on the 2nd day, and 16.6 ± 0.1 cm on the 3rd day. CNDH42-2 treated 
with cq-9 was shorter on the 1st day but larger on the 2nd day. There was no difference 
on the 3rd day. The length of CNDH42-2 inoculated with WBPH was 10.9 ± 0.5 cm on the 
1st day, 15.4 ± 0.5 cm on the 2nd day, and 16.3 ± 0.2 cm on the 3rd day. The length of 
CNDH42-2 inoculated with WBPH after cq-9 treatment was 15.6 ± 0.5 cm on the 1st day, 
15.6 ± 0.5 cm on the 2nd day, and 15.7 ± 0.5 cm on the 3rd day. CNDH42-2 treated with 
cq-9 was longer on the 1st day after inoculation with WBPH, and there was no difference 
on the 2nd and 3rd days. The length of Nagdong was 15.7 ± 1.5 cm on the 1st day, 15.8 ± 
1.5 cm on the 2nd day, and 15.9 ± 0.6 cm on the 3rd day. The length of Nagdong treated 
with cq-9 was 15.4 ± 0.5 cm on the 1st day, 16.7 ± 0.5 cm on the 2nd day, and 15.5 ± 0.5 cm 
on the 3rd day. There was no difference with respect to cq-9 treatment. The length of the 
Nagdong inoculated with WBPH was 15.3 ± 1.1 cm on the 1st day, 15.8 ± 0.5 cm on the 
2nd day, and 15.4 ± 1.0 cm on the 3rd day. The length of Nagdong inoculated with WBPH 
after cq-9 treatment was 15.8 ± 0.7 cm on the 1st day, 16.1 ± 0.6 cm on the 2nd day, and 
16.0 ± 0.6 cm on the 3rd day. Nagdong treated with cq-9 was longer on the 2nd day after 
inoculation with WBPH, and there was no difference between the 1st and 3rd days. The 
length of TN1 was 17.1 ± 0.8 cm on the 1st day, 17.4 ± 0.4 cm on the 2nd day, and 17.5 ± 0.4 
cm on the 3rd day. The length of TN1 treated with cq-9 was 16.6 ± 0.5 cm on the 1st day, 
17.2 ± 0.4 cm on the 2nd day, and 17.0 ± 0.4 cm on the 3rd day. There was no difference 
with respect to cq-9 treatment. The length of TN1 inoculated with WBPH was 15.8 ± 0.6 
cm on the 1st day, 15.9 ± 0.6 cm on the 2nd day, and 15.9 ± 0.6 cm on the 3rd day. The 
length of TN1 inoculated with WBPH after cq-9 treatment was 15.6 ± 0.6 cm on the 1st 
day, 15.8 ± 0.6 cm on the 2nd day, and 17.8 ± 0.1 cm on the 3rd day. There was no difference 
on the 1st and 2nd day after inoculation with WBPH and cq-9-treated TN1 was taller on 
the 3rd day (Table 3). 
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Table 3. Plant length according to WBPH inoculation and cq-9 treatment. 

Cultivars DAI z Control cq-9 p Value WBPH cq-9 + WBPH p Value 

Cheongcheong 
1 13.4 ± 0.4 y 13.8 ± 0.1 0.060 13.4 ± 0.3 13.5 ± 0.3 0.585 
2 14.5 ± 0.2 15.3 ± 0.5 0.025 * 14.9 ± 0.07 16.4 ± 0.2 0.007 ** 
3 16.3 ± 0.5 16.9 ± 0.4 0.007 ** 16.0 ± 0.3 16.7 ± 0.4 0.0004 ** 

CNDH 3 
1 14.5 ± 0.2 11.7 ± 0.5 0.003 ** 13.7 ± 0.4 11.8 ± 0.1 0.0006 ** 
2 15.8 ± 0.7 16.1 ± 0.5 0.237 15.8 ± 0.6 16.4 ± 0.5 0.006 
3 15.9 ± 0.3 15.8 ± 0.7 0.618 15.7 ± 0.4 15.9 ± 0.6 0.836 

CNDH 42-2 
1 16.1 ± 0.2 14.0 ± 0.7 0.008 ** 10.9 ± 0.5 15.6 ± 0.5 0.005 ** 
2 14.5 ± 0.6 15.1 ± 0.5 0.003 ** 15.4 ± 0.5 15.6 ± 0.5 0.096 
3 16.6 ± 0.1 16.6 ± 0.1 0.688 16.3 ± 0.2 15.7 ± 0.5 0.062 

Nagdong 
1 15.7 ± 1.5 15.4 ± 0.5 0.549 15.3 ± 1.1 15.8 ± 0.7 0.833 
2 15.7 ± 1.5 16.7 ± 0.5 0.144 15.8 ± 0.5 16.1 ± 0.6 0.031 * 
3 15.7 ± 1.6 15.5 ± 0.5 0.760 15.4 ± 1.0 16.0 ± 0.6 0.596 

TN1 
1 17.1 ± 0.8 16.6 ± 0.5 0.160 15.8 ± 0.6 15.6 ± 0.6 0.228 
2 17.4 ± 0.4 17.2 ± 0.4 0.372 15.9 ± 0.6 15.8 ± 0.6 0.146 
3 17.5 ± 0.4 1.7 ± 0.4 0.077 15.9 ± 0.6 17.8 ± 0.1 0.002 ** 

CNDH 45 
1 13.7 ± 1.2 14.5 ± 0.9 0.037 * 12.3 ± 1.6 15.7 ± 0.5 0.027 * 
2 13.3 ± 0.5 14.3 ± 0.7 0.041 * 11.9 ± 0.9 15.7 ± 0.5 0.008 ** 
3 15.2 ± 0.7 15.7 ± 0.1 0.180 15.0 ± 0.4 15.4 ± 0.1 0.584 

z DAI means days after inoculation. y The data are presented as the mean ± standard deviation. * 
significant difference at p < 0.05, ** significant difference at p < 0.01. 

 

 
Figure 3. Comparison of plant length following cq-9 treatment. The control was untreated, cq-9 was treated with cq-9, 
WBPH was inoculated with WBPH, and cq-9 + WBPH was inoculated with WBPH following cq-9 treatment. When re-
sistant and susceptible cultivars was treated with cq-9 and then inoculated with WBPH, the timing of the difference in 
growth was different, but the growth of the plants treated with cq-9 on the 2nd and 3rd days after inoculation was superior 
to that of the untreated plants. Therefore, cq-9 may be related to the defense mechanism of rice against WBPH and related 
to plant growth. (A) Cheongcheong. (B) CNDH3. (C) CNDH42-2. (D) Nagdong. (E) TN1. (F) CNDH45. DAI; day after 
inoculation, * significant difference at p < 0.05, ** significant difference at p < 0.01. 
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3.4. Comparison of Relative Gene Expression Levels of Plant Defense Genes 
The relative expression level of plant defense-related genes oryza sativa flavanone 3-

hydroxylase (OsF3H1), oryza sativa chorismate mutas (OsCM), OsWRKY45, and oryza 
sativa non-expressor of pathogenesis-related genes1 (OsNPR1) were compared following 
treatment with cq-9 and WBPH in Cheongcheong, CNDH3, and CNDH42-2, which are 
resistant to WBPH, and Nagdong, TN1 and CNDH45, which are susceptible to WBPH 
(Figure 4). OsF3H1 exhibited similar expression on 1 day after inoculation, whereas the 
expression in CNDH3 was higher with cq-9 treatment compared with the control group. 
After 2 days of inoculation, the expression level was significantly higher in plants treated 
with cq-9 and cq-9 + WBPH in TN1. The expression level was decreased on the 3rd day, 
but it was significantly higher. OsCM exhibited similar expression levels and 2 days after 
inoculation, the relative expression levels of OsCM were higher in the plants treated with 
cq-9 + WBPH in CNDH3 and CNDH45. After 3 days of inoculation, the expression levels 
were higher following inoculation with WBPH in Cheongcheong. For CNDH3, expression 
levels were higher in both cq-9-treated and inoculated with WBPH. OsCM exhibited 
higher expression in CNDH45 when treated with cq-9. OsWRKY showed a similar expres-
sion 1 day after inoculation and the relative expression of cq-9-treated plants in Nagdong 
and TN1 was significantly higher 2 days after inoculation. Three days after inoculation, 
the relative expression of OsWRKY was higher following both cq-9 treatment and WBPH 
inoculation in CNDH42 and CNDH45. The expression of OsNPR1 was increased in 
CNDH42-2 and CNDH45 3 days after inoculation, and the relative expression level was 
significantly higher following treatment with cq-9. 

 
Figure 4. Relative expression level of plant defense-related genes, OsF3H1, OsCM, OsWRKY45, and OsNPR1 following cq-
9 treatment. The relative expression levels of these genes were rapidly increased in CNDH3, CNDH42, TN1, and CNDH45 
at the 2nd and 3rd day after inoculation following cq-9 treatment. C; Cheongcheong, C3; CNDH3, C42-2; CNDH42-2, N; 
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Nagdong, T; TN1, C45; CNDH45, DAI; day after inoculation, * significant difference at p < 0.05, ** significant difference at 
p < 0.01. 

4. Discussion 
Rice is a nutritious food for many phytophagous insects, and although hundreds of 

insects damage rice in a variety of ways, only approximately 20 major species regularly 
cause significant damage [18]. WBPHs are widely distributed in South Asia, Southeast 
Asia, and Australia, and they winter in tropical and subtropical regions. Adult WBPHs 
transport the virus from south to north through long-distance migration in spring, trans-
mit the virus to rice seedlings in newly settled areas, and lay eggs [4,19]. WBPH causes 
significant damage by transmitting SRBSDV to crops, such as rice, wheat, and maize [20]. 
Both the nymphs and adults of WBPH eat the stem and leaves of the plant and suck the 
sap from the plant [21]. As a counterattack, plants have various defense mechanisms to 
protect themselves [22]. Plants use phytochemicals to reduce the preference for herbivores 
and reduce pathogen infection. On the other hand, in the induced resistance system, in-
vasion by herbivores and infection by pathogens cause physiological changes in plants, 
thereby improving plant defense capabilities [23]. 

Over the past few decades, fewer than 30 cochlioquinones have been isolated from 
phytopathogenic fungi, primarily from the genera Bipolaris and Stachybotrys [24]. Cochlio-
quinone A isolated from Drechslera sacchari acts as a specific inhibitor of diacylglycerol 
kinase, which regulates the activity of protein kinase C [25]. Cochlioquinone A isolated 
from the leaves of Vernonia polyanthes has been shown to inhibit parasites [26]. Cochlio-
quinone A isolated from the Helminthosporium sativum exhibited nematode activity [27]. 
cq-9 isolated from rice is distinguished from cochlioquinone A in that the methyl group is 
bound to c15, not c14 (Figure 5) [28]. In addition, it exhibits antifungal activity against 
major pathogenic fungi in rice [29]. Four phytotoxic compounds were obtained from Bi-
polaris bicolor El-1, a fungal pathogen derived from grasses, of which the compound, iso-
cochlioquinone A, inhibits the root growth of plant seedlings, such as rice [30]. The cho-
lesterol acyltransferase (ACAT) inhibitor, epi-cochlioquinone A, is a stereoisomer of 
cochlioquinone A and has been shown to absorb cholesterol in the human body [31]. 
Cochlioquinone was isolated from cochliobolus miyabeanus, a parasitic fungus of rice. C. 
miyabeanus causes apoptosis by triggering a hypersensitive response around the infection 
site, which limits the ability of the pathogen to spread to surrounding cells. It also triggers 
a defense response through the production of secondary signaling molecules including 
salicylic acid (SA), jasmonic acid (JA), ethylene (ETH), and nitric oxide (NO) [32]. In addi-
tion, it was predicted that the quinone component of cochlioquinone causes inhibition of 
redox reactions in the electron transport system [33]. Quinone-related inhibitors generally 
have a quinone ring or quinone-related structure at the edge of the molecule; however, 
the quinone moiety of cochlioquinone is located at the center of the molecule [34]. Qui-
nones bind to leaf proteins, inhibiting protein digestion in herbivores, and negatively af-
fect insect growth and development [35]. In the present study, when resistant and suscep-
tible cultivars was treated with cq-9 and then inoculated with WBPH, the timing of the 
growth difference was different, but the growth of the plants treated with cq-9 on the 2nd 
and 3rd days after inoculation was superior to that of the untreated plants. Therefore, cq-
9 may be related to the defense mechanism of rice against WBPH. 

Many secondary metabolites, such as flavonoids, play important roles in the defense 
against pests. An important gene in the biosynthetic pathway of these secondary metab-
olites may be an alternative to enhancing rice resistance [36]. Flavonoids exhibit various 
pharmacological effects and play important roles in plant resistance as stress protectants, 
inducers, and feeding inhibitors [37]. In the present study, the relative expression of 
OsF3H1, OsCM, OsWRKY45, and OsNPR1, which are known defense-related genes in rice, 
were compared. The gene expression profiles were analyzed after treatment with cq-9 and 
inoculation with WBPH, and inoculation with WBPH followed by cq-9 treatment. OsF3H 
is involved in the regulation of the downstream genes, oryza sativa dihydroflavonol 4-
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reductase (OsDFR) and oryza sativa flavonol synthase (OsFLS), and the related genes, SLEN-
DER RICE1 (OsSLR1) and OsWRKY13 of the flavonoid pathway. This results in the upreg-
ulation of defense-related genes and enhances rice resistance to WBPH invasion [38]. SA 
and JAs rapidly accumulate in plants attacked by pests and activate defense signals, which 
are involved in the expression of defense genes that induce defense proteins [39]. OsCM 
alleviates pathogen stress by altering the aromatic amino acid (AAA) metabolism, stress 
response genes, and hormone accumulation [38]. Phenylalanine (Phe), tyrosine (Tyr), and 
tryptophan (Trp) are major AAA metabolic molecules in plants that are responsible for 
the synthesis of hormones such as SA and auxin, as well as the synthesis of secondary 
metabolites [40]. In general, when plants are exposed to pathogens, the induction of genes 
associated with AAA is enhanced. Phe is used as a precursor of various phenolic com-
pounds and is typically a precursor of flavonoids, condensed tannins, and lignin com-
pounds [41]. The NPR1 gene is a major regulator of SA-mediated resistance and is func-
tionally conserved in various plant species, including rice. NPR1 enhances resistance to 
various pathogens including bacteria and fungi. The function of NPR1 has been charac-
terized in Arabidopsis, and rice NPR1 was recently identified. [42]. OsNPR1 is associated 
with disease resistance insofar as it increases the susceptibility of herbivores and modu-
lates resistance to WBPH [43]. WRKY belongs to a large family of transcription factors 
involved in plant biological stress. These proteins include a WRKY domain, a 60 amino 
acid region with a strongly conserved amino acid sequence, WRKYGQK, in the N-termi-
nus [44]. Currently, 155 OsWRKY genes are predicted to be present in rice. WRKY tran-
scription factors (TFs) are involved in regulating a variety of biological processes includ-
ing growth, development, and biotic and abiotic stress [45]. In general, WRKY is consid-
ered to be a TF involved in various biological processes under normal or stressful condi-
tions. After SA and pathogen infection in rice, genome-wide expression analyses were 
performed, which revealed that many WRKY proteins are involved in the rice defense 
response under such stress [46]. The relative expression levels of OsF3H1, OsCM, 
OsWRKY45, and OsNPR1 were rapidly increased in CNDH3, CNDH42, TN1, and 
CNDH45 following cq-9 treatment, which demonstrates that cq-9 interacts with various 
defense-related genes. 

 
Figure 5. Structural comparison of cochlioquinone-9 (cq-9) isolated from rice with various cochlioquinones. Rice in the 
natural environment is exposed to abiotic stress caused by WBPH. WBPH-resistant rice cultivars synthesize larger 
amounts of cq-9 than susceptible cultivars when damaged by WBPH, and thus cq-9 is expected to contribute to plant 
defense. The molecular formula of cq-9 is (3R)-9-[(1S,2R,3S)-2-acetyloxy-1,3-dimethylpentyl]-1,2,3,4aβ,5,6,6a,12,12aβ,12b-
decahydro-12β-hydroxy-3α-(1-hydroxy-1-methylethyl)-6aα,12bα-dimethylpyrano [3,2-a]xanthene-8,11-dione (C30H44O8), 
and the molecular weight is 532.7 g/mol. cq-9 is distinguished from cochlioquinone A in that c26 is bound not to c14 but 
to c15. 
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5. Conclusions 
WBPH is a major biotic stress that causes the loss of rice around the world [47]. In 

this study, WBPH resistance to cq-9, a bioactive substance, was evaluated and the expres-
sion profile of related genes were analyzed. After inoculating with WBPH, the effect of 
cq-9 on the growth of rice was determined by measuring the length of the plant. Rice in-
oculated with WBPH after treatment with cq-9 showed better growth compared with un-
treated rice. However, on the first day of inoculation, the opposite was observed. There-
fore, cq-9 confers resistance to WBPH and may also affect plant growth. In addition, when 
the relative expression of genes involved in plant defense were compared during cq-9 
treatment and WBPH inoculation, gene expression was increased on the 2nd and 3rd days 
following cq-9 treatment. Therefore, we confirmed that cq-9, a quinone family, interacts 
with plant defense genes regulating AAA and precursors of various plant secondary me-
tabolites, and it plays a role in increasing the resistance of rice to WBPH. We suggest a 
novel treatment for WBPH control by utilizing cq-9 as an eco-friendly insecticide, and is 
also expected to contribute to the discovery of genetic resources associated with plant de-
fense. 
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