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Simple Summary: Unlike temperature, pH or chemical reagent, the effect of hydrostatic pressure
on proteins is unique in that it controls selectively the equilibrium populations among different
conformational states, without practically affecting each of their structures. Because of this unique
effect of hydrostatic pressure on proteins, the application of pressure can easily manipulate the
population distribution among different conformational states of a protein to a considerable extent
at our will, creating what may be called “the magical world of pressure” or “the wonderland for
proteins”. In this paper, we have succssfully utilized the magical world of pressure in bringing the
amyloid fibrils F of wild-type hen lysozyme into the unfolded monomers U and then, upon returning
to the Anfinsen regime, back into its original, natively folded state N.

Abstract: Admitting the “Native”, “Unfolded” and “Fibril” states as the three basic generic states
of proteins in nature, each of which is characterized with its partial molar volume, here we predict
that the interconversion among these generic states N, U, F may be performed simply by making a
temporal excursion into the so called “the high-pressure regime”, created artificially by putting the
system under sufficiently high hydrostatic pressure, where we convert N to U and F to U, and then
back to “the low-pressure regime” (the “Anfinsen regime”), where we convert U back to N (U→N).
Provided that the solution conditions (temperature, pH, etc.) remain largely the same, the idea
provides a general method for choosing N, U, or F of a protein, to a great extent at will, assisted
by the proper use of the external perturbation pressure. A successful experiment is demonstrated
for the case of hen lysozyme, for which the amyloid fibril state F prepared at 1 bar is turned almost
fully back into its original native state N at 1 bar by going through the “the high-pressure regime”.
The outstanding simplicity and effectiveness of pressure in controlling the conformational state of
a protein are expected to have a wide variety of applications both in basic and applied bioscience
in the future.

Keywords: Anfinsen’s dogma; native state N; unfolded state U; fibril state F; protofibrils; hydrostatic
pressure; hen lysozyme; circular dichroism; 1H NMR spectroscopy; atomic force microscopy

1. Introduction

Thermodynamics is a fundamental branch of physics that all creatures on earth must
obey to live. The well-known Anfinsen’s dogma [1], governing the fate of a newborn
polypeptide chain “U” to fold into a unique conformation “N” in an aqueous environment
under physiological conditions, is a type of this example. Although certain proteins may
need some help from other proteins called chaperones for folding, this process is not
considered to alter the essence of Anfinsen’s dogma. As such, the “Anfinsen’s dogma”
may possibly have prevailed on the earthy atmosphere for billions of years of evolution
to bring up all (~10 million) archaea, prokaryote and eukaryote species considered to
be living presently on earth [2]. On the other hand, by taking Anfinsen’s dogma more
generally from the thermodynamic and statistical mechanical viewpoint, we can view the
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unfolding and refolding process of protein as a shift of the conformational distribution
induced by thermodynamic perturbation in an aqueous environment [3]. Here, pressure
is a particularly important thermodynamic variable besides temperature and solution
conditions in controlling the conformational state of a protein in an aqueous environment.

Experimental studies on the conformational state of proteins under pressure perturba-
tion started early in the 1980s when Hui Bon Hoa contributed greatly to advancing various
spectroscopic techniques under pressure and promoted their applications [4–6]. Protein
high-pressure NMR spectroscopy, re-initiated by Jonas in the 1990s [7], was expanded
into a crucial methodology to probe the fluctuating nature of protein structure in later
years [8–12]. The method disclosed the notion that, in most globular proteins, the unfolded
conformer U is always present in equilibrium with the folded conformer N, even under
physiological conditions at 1 bar [8,9].

In accordance with this, an additional state of a protein sometimes called the “mis-
folded state” [13] has come to gain attention in a wide range of protein systems. It turns out
that many of them grow into misfolded oligomers [14], which then turn into a fibrillar state
commonly called “protofibrils”, which consist of single or a few lines of a linear array of
“unfolded” protein monomers forming “the cross β-structure”, detailed features of which
may vary from protein to protein [15,16]. Importantly, they are known to be the primary
cause of a variety of human diseases known as “amyloidosis disease” including Alzheimer
disease [17], familial amyloidotic polyneuropathy [18], transthyretin amyloidosis [19], prion
disease [20], dialysis-related amyloidosis [21], alpha-synuclein amyloidosis [22] and senile
systemic amyloidosis [23] and so on. Furthermore, as it is becoming increasingly clear that
the propensity to form amyloid fibrils is a generic property for all proteins including food
proteins, protein fibrillization is progressively recognized in food science as a strategy to
broaden and improve food protein functionality [24].

Many of the amyloid diseases above arise from single mutations in their wild-type
proteins, which often destabilize the N state and increase the equilibrium population
of the U state; for example, we previously found in the V30M mutant of transthyretin,
that the population of the U conformer increased by as much as 1000-fold, causing fatal
amyloidosis [25]. The important point here is that, despite the fact that the protein obeys
Anfinsen’s dogma to fold, an equilibrium fraction of the protein may always remain
unfolded in the cell environment. Then, a crucial question may remain as to how the
unfolded state U may turn into the fibrillar state F when there is no substance to catalyze
the reaction.

To answer this question, a model study was carried out previously [26], by using
an authentic, fully (~100%) unfolded conformer of a protein, prepared from 15N-labeled
wild-type hen lysozyme with its four disulfide bonds removed (0SS mutant), to see if they
would turn into a protofibril at all and if so, how would it proceed? We found that the
protofibrils are formed simply by a prolonged incubation of its aqueous solution over
several days at 25 ◦C at 1 bar [26]. We also found that the protofibrils so formed can then
be dissociated back into the monomeric state U (U→F→U) nearly completely simply by
applying pressure at 2 kbar for ~50 h [27]. Detailed analysis indicates that the reaction
proceeds by a simple reaction, with monomers attached and/or detached at its growing
end of the fibril [28]. We believe that the basic mechanisms disclosed here for the simplest
system will form the basis for understanding the reality of the protofibril formation and
dissociation U→F→U in most amyloidotic proteins.

Under the condition, the concept of the protein conformational regime under physi-
ological conditions at low pressure (“Anfinsen regime”) may be extended to include the
amyloid fibril state “F” as another generic state of a globular protein in the low-pressure
regime (or the Anfinsen regime), basically in dynamic equilibrium with the U and N states
as schematically shown in Figure 1a. Here we define state F to be represented by “protofib-
rils”, rather than the “matured amyloid fibrils” which may contain the insoluble entity.

An important property of F as well as of N is that they both are in a high-volume
state [29], as they generally have extra space or “vacancy” (called void, cavity, or defects)
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within their basic architecture, while the state U exists in a low-volume state with most of the
extra “vacancies” gone, leaving the polypeptide chain in direct contact with the bulk water.
Because of these contrasting properties between U and N–F, their relative thermodynamic
stabilities are anticipated to be reversed rather easily by applying a sufficiently high pressure
(a few to several kbar).

Indeed, under a high hydrostatic pressure far exceeding 1 kbar (>1 kbar), both the
folded conformation N and the fibril state F become less stable than U, fully reversing the
order of thermodynamic stability predicted from Anfinsen’s dogma in the low-pressure
regime, namely U is more stable than N and F at elevated pressures, thereby forming what
we call here “the high-pressure regime” (See Figure 1b). Note that “the high-pressure
regime” is realizable relatively easily nowadays in high-pressure vessels in scientific labora-
tories and possibly in food industries where pressures up to several kbar are regularly used.
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Folded (N), Unfolded (U) and Amyloid fibril (F): (a) in the “Anfinsen regime” or the low-pressure
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while the high-pressure regime is the regime artificially realized in high-pressure vessels. Note that
the thermodynamic stabilities of N, U and F are reversed in the two regimes, because of the large
p∆V contribution. Here the relative Gibbs energy levels for U, N and F are drawn arbitrarily.

2. Thermodynamic Consideration
2.1. In the “Anfinsen Regime” or the Low-Pressure Regime

The well-known Anfinsen’s dogma [1], governing the fate of a newly born polypep-
tide chain U to fold into a unique conformation N, states in essence that, for most pro-
teins in nature under physiological conditions (~at 1 bar), the Gibbs energy GU

0 for the
unfolded state U is higher than the Gibbs energy GN

0 for the folded state N, namely,
∆G1bar = ∆G0 = GU

0 − GN
0 > 0, pushing the unfolded polypeptide chain “U” toward the

folded state “N”. Here for most globular proteins in nature, ∆G1bar = ∆G0 takes a small,
but the positive value at 1 bar, often within a few tens of kJ/mol, leaving the state N
marginally stable against the state U. Here we postulate “amyloid fibril state F” represented
by protofibrils to be another generic state of a protein stable at low pressure, giving another
minimum in free energy besides the native state N in the “Anfinsen regime”.

2.2. In the “High-Pressure Regime”

At high pressure p, the thermodynamic stability of N against U, ∆G(p), is given
approximately to the first order in p by Equation (1),

∆G(p) = GU(p) − GN(p) = ∆G0 + ∆V (p − p0) (1)
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Here the volume difference ∆V between U and N (∆V = VU − VN) is always nega-
tive under or below physiological temperatures [8], making the term ∆V (p − p0) take a
large negative value for large p. The high-volume nature of N against U has been well
documented in many proteins. Then at high pressure, the negative ∆V (p − p0) term (<0)
exceeds in magnitude the positive ∆G0 term (>0), resulting in a negative ∆G = GU − GN
(<0), meaning that N turns into U causing “pressure-denaturation” of a protein.

In the case of a typical globular protein of a few kDa in size, the ∆V could be
~−100 mL/mol, making p∆V to be ~−20 kJ/mol at 2 kbar and ~−30 kJ/mol at 3 kbar.
If ∆G0, the excess stability of N over U at 1 bar, is typically ~15 kJ/mol, ∆G(p) in Equation 1
would become ~−5 kJ/mol at 2 kbar and ~−15 kJ/mol at 3 kbar, replacing conformer N
(~99.9%) at 1 bar by conformer U (>90%) at 2 kbar, (>99%) at 3 kbar, namely the relative
stability of N and U in the Anfinsen regime is likely to be almost fully reversed in the “high-
pressure regime” (Figure 1b). When pressure is removed (back to the Anfinsen regime),
the state N will recover quickly and reversibly to the original population close to ~99%.
Basically, such reversibility has been recognized in most globular proteins including RNase
A, hen lysozyme, Staphylococcal nuclease, Apo myoglobin, β-lactoglobulin, P13MTCP1,
transthyretin, prion proteins, and ubiquitin, at physiological temperatures or lower [9].

In the case of an amyloid fibril, its high-volume nature was revealed by the results of
direct time-dependent densitometry measurement of protofibrils (F) upon its formation
from (U) in the intrinsically denatured disulfide-deficient hen lysozyme, which showed
a large volume increase by as much as ∆V ~ 570 mL/mol monomer U [29]. The result
suggests that the formation of F from U involves a formation of large voids or cavities
and/or ionic bonds, in analogy to, or even more than the case for, the formation of N
from U. Granting that a high volume is a general property of any amyloid fibrils, pressure
is expected to destabilize F significantly against U (∆G = GU − GF < 0), because of the
large negative p∆V term in Equation (1). Now we can depict a schematic free energy
diagram for F, N and U at high pressure in Figure 1b, where the relative stability of F,
N and U is reversed from that in the Anfinsen regime at low pressure, the relative stability
of N and F depends on the protein concentration among other factors. We may call the
regime represented by the scheme in Figure 1b the “high-pressure-regime”, which is a fully
artificial regime of protein thermodynamics that apparently has not been experienced by
most living creatures in their history on earth.

Thus, by switching between the “high-pressure-regime” and the “Anfinsen” regime
simply by turning the pressure on and off, we would get a magical power for selecting
the conformational state of a protein among N, F and U to a great extent at will. A suc-
cessful experiment in freely controlling the conformational state among N, F and U will
be demonstrated below in the experiment with wild-type hen lysozyme as representative.
Here we will demonstrate the nearly full conversion (>90%) of the fibrils (F) back into
the folded state (N), simply by temporarily visiting “the magical world of pressure” (the
high-pressure regime) and back to the Anfinsen regime (the low-pressure regime).

3. Materials and Methods

Preparation of amyloid fibrils: Lyophilized hen egg white lysozyme (crystallized
six-times) was purchased from Seikagaku Kogyo (Tokyo, Japan) and used without further
purification. To prepare the amyloid fibrils consisting largely of intact (i.e., non-degraded)
hen lysozyme, we used the “seeding method” reported previously in the literature [30].
This seeding method is briefly mentioned as follows. As the first step, the powder of wild
type hen lysozyme was dissolved to a final concentration of 8.0 mg/mL in distilled water
containing 80 mM NaCl with pH adjusted to 2.2 by HCl, and the solution was incubated
at 57 ◦C, which is close to the transition temperature of hen lysozyme. In the association
process to amyloid fibrils of hen lysozyme, the exponential increase in thioflavin T (Th T)
fluorescence intensity with increasing incubation time was observed (Figure S1a). After
~11 days, the resultant amyloid fibrils as the first generation was subjected to extensive
sonication to produce oligomers, an aliquot of which (10 w/w %) was mixed into a fresh
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solution of 90 w/w % of intact hen lysozyme (8.0 mg/mL in 80 mM NaCl at pH 2.2)
and incubated for 4.5 h at 57 ◦C. The second-generation fibrils produced in this way
were subjected to extensive sonication to produce seeds. Then, an aliquot of these seeds
(4 w/w %) was mixed with a fresh solution of 96 w/w % of intact hen lysozyme (8.0 mg/mL
in 80 mM NaCl at pH 2.2) and incubated for 4.5 h at 57 ◦C to produce the third-generation
fibrils consisting almost entirely of intact hen lysozyme molecules, supported by the
analysis of SDS-PAGE showing the non-degradation of intact hen lysozyme in the period
of fibrillation process (Figure S1b).

Dissociation of amyloid fibrils with pressure: The fibril solution of the third-generation
was diluted by 20-fold to produce a fibril solution, containing 0.40 mg/mL fibrils in 80 mM
NaCl, pH adjusted to 2.2. This fibril solution was then placed in a homemade Teflon
inner vessel (volume~100 µL) and was pressurized at 4 kbar in a pressuring machine
Dr. CHEF (KOBELCO, Kobe, Japan) for a varied reaction time between 0.5 and 24 h at
25 ◦C. After each reaction time, the fibril solution was subjected to the circular dichroism
(CD) and 1H NMR measurements without further dilution, while AFM measurements
were made after dilution and drying by air on a silica surface. The 1H NMR spectra were
measured at 25 ◦C at 600 MHz on an AVANCE 600 NMR spectrometer (Bruker Biospin,
Switzerland) using a standard 5 mm outer diameter tube (Shigemi, Tokyo, Japan). The CD
spectra in the far UV region were measured at 25 ◦C on a J-820 spectropolarimeter (JASCO
Co., Tokyo, Japan) using a sample cell of 0.1 cm light path after 1 h of pressure-treatment.
The AFM images were obtained at 1 bar at 25 ◦C with the cyclic contact mode at a frequency
of 119 kHz on an SPI-3800 (Seiko Instruments Inc., Tokyo, Japan).

4. Results
4.1. Experimental Demonstration: Turning Amyloid Fibrils “F” Back into the Folded State “N” in
Hen Lysozyme

Then, by taking a well-known globular protein hen lysozyme as an example, we will
present an actual experimental demonstrating the full conversion of hen lysozyme amyloid
fibrils F into the original folded native conformation N by going through the “high-pressure
regime”—the magical world of pressure.

The experimental procedure:
(1) N→U→F conversion in the Anfinsen regime: First, in the Anfinsen regime (at

1 bar), we convert the folded conformer N into the unfolded conformer U by heating
hen lysozyme solution (8.0 mg/mL, pH 2.2) close to its transition temperature 57 ◦C at
pH 2.2, and then convert U into amyloid fibrils F by seeding with lysozyme oligomers
(see Materials and methods). The seeding procedure is repeated to prepare the final fibrils
consisting almost exclusively of intact (non-degraded) hen lysozyme molecules.

(2) F→U conversion in the “high-pressure regime”: Then, after diluting the fibril
solution by 20-fold, we switch to the “high-pressure regime” by applying pressure at 4 kbar
at 25 ◦C and turn the fibrils F into U (actually a mixture of a one-to-one ratio of N and U at
4 kbar) at 25 ◦C. The process of dissociation of the fibrils with a time of exposure to 4 kbar
was step-wise monitored at 1 bar with AFM and 1H NMR.

(3) U→N conversion in the Anfinsen regime: Then by lowering pressure to 1 bar,
we switch back to the Anfinsen regime and complete the folding of U back to the original
native conformer N at 25 ◦C (U→N conversion in the Anfinsen regime). The 20-fold
dilution assures the pathway U to N rather than the pathway U to F, depending on the
protein concentration, in the Anfinsen regime. Thus the entire conformational cycle of hen
lysozyme, N→(U)→F→(U)→N, is to be completed.

4.2. The Experimental Result

Figure 2 summarizes the result of the experiment, which starts from N, goes into F,
and then returns back to N, along the arrows N→(U)→F→(U)→N* (the asterisk * is to
indicate a refolded N, through N and N* should be identical).
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Here Figure 2a demonstrates the result with CD as a monitor for both fibrils and
monomers, Figure 2b demonstrates the result with AFM as a monitor for fibrils, and
Figure 2c demonstrates the result with 1H NMR as a monitor for dissociated monomers
from fibrils, all measured at 1 bar at 25 ◦C.

The far-UV CD spectra (Figure 2a) show that N, showing a characteristic α-rich
structure (~30% of α-helix and ~20% of β-sheet) with a minimum at ~208 nm, is converted
with an iso-dichroic point at ~211 nm to F, showing a characteristic β-rich structure with a
minimum at ~218 nm, and back to the original N nearly completely with an iso-dichroic
point at ~211 nm. The AFM figures (only detectable of fibrils) (Figure 2b) start from N
with no images, then to F showing typical amyloid fibrils, and then back to N with all
fibril images gone, consistent with the observation with CD. The 1H NMR spectra (only
detectable of monomers) start from the well-known N signals of hen lysozyme (~100%)
(Figure 2c), and is converted to “F signals”, actually a trace of the N signals that remain
in equilibrium with F, and back to the N* signals showing nearly a full refolding into N
(>90%). The time-dependent 1H NMR signals (Figure 2d), monitored intermittently at 1 bar,
after exposure of the fibril solution to 4 kbar for a certain period of time, show that the
dissociation of the fibrils starts rapidly and is nearly complete within 1 h.
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(F) and then refolding back to the folded form (N), by following the process N→(U)→F→(U)→N*.
The experiments are monitored by CD (a), AFM (b) and 1H NMR (c,d), all at 1 bar at 25 ◦C. (The
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(Figure 2a) N→(U)→F→(U)→N* with CD as a monitor for both fibrils (F) and folded
monomers (N). The far-UV CD spectra show that N, showing a characteristic β-rich struc-
ture with a minimum at ~208 nm (black), is converted with an iso-dichroic point at ~211 nm
to F by seeding at 57 ◦C, showing a characteristic β-rich structure with a minimum at
~218 nm (red), and back to the original N nearly completely with an iso-dichroic point at
~211 nm (green).

(Figure 2b) N→(U)→F→(U)→N* with AFM as a monitor for fibrils (F). The AFM
figures (only detectable of fibrils) start from N with no images, then to F showing typ-
ical amyloid fibrils, and then back to N with all fibril images gone, consistent with the
observation with CD.
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(Figure 2c) N→(U)→F→(U)→N* with 1H NMR as a monitor for dissociated monomers.
The 1H NMR spectrum (only detectable of monomers) with all NMR peaks characteristic
for N of hen lysozyme (~ 100% of an intact protein), is converted to “F” showing only a
trace of signals of N (in equilibrium with N) and back to N* (after treatment for 24 h at
4 kbar at 25 ◦C) showing nearly full refolding into N (>90%).

(Figure 2d) F→(U)→N*, monitoring the dissociation of fibrils with the time-dependent
1H NMR signals of the dissociated monomers, as the fibril solution is treated at 4 kbar at
25 ◦C for respective time intervals. The result shows that the dissociation is completed
within 2 h.

5. Discussion

The example above demonstrates that we can, in fact, choose the conformational state
of a protein among N, U and F in a simple and logical way, by temporarily visiting the
“high-pressure regime”, or “the magical world of pressure”, which is surely realizable in
high-pressure vessels, and by coming back to the Anfinsen regime to finish the dream.
The high-pressure regime is an artificially created “WONDERLAND for protein” in which
the relative conformational stability among N, F and U is largely reversed from that in the
Anfinsen regime. Choice of the regime between the so-called “Anfinsen” and the “high-
pressure” regime can be made simply by “switching pressure off or on” at an appropriate
level of pressure.

An increasing number of proteins of physiological relevance have now been recognized
as causing amyloidosis, a major hazard to human health in recent years. The formation
of amyloidosis fibrils in vivo occurs as an irreversible process in a long time-range and
is thought to be the cause of many hitherto incurable human diseases. However, as we
have seen here, in a shorter time range, the amyloid fibril formation starts with the forma-
tion of protofibrils, which are in equilibrium with their monomeric counterpart and are
dissociable under pressure. Thus, the combined use of the low pressure “Anfinsen” and
the “high-pressure” regime as shown here, in the early phase of the disease, should have a
potential utility in preventing and/or curing amyloid diseases. For the case of food-based
amyloidosis, one promising example has been carried out for the fibrils of a prion disease,
which are not only dissociated but efficiently degraded by proteinase K under pressure [31].
The result may promise some industrial and biomedical applications in the future. For the
case of amyloidosis in human tissues, we might need to invent some new technologies
for pressurizing a selective portion of the tissue or the fluid directly. Otherwise, the target
tissue or fluid could be temporarily removed from the patient’s body and returned after
treatment with pressure, as partly realized for the eradication of malignant melanoma [32].

6. Conclusions

The “Anfinsen regime” where the “Anfinsen’s dogma” operates has been a reality
dominating the current biological world, assuring the prosperity and versatility for all lives
on earth including humans, though with a constant danger of the proteins going into stable
aggregates with no function. In contrast, the “high-pressure regime” proposed here as a
counter regime is also a reality only realized at present in high-pressure vessels in scientific
laboratories, in which proteins could temporarily escape from the burden of the Anfinsen’s
dogma. Through this regime, however, one can have a magical power of freeing the protein
from forming amyloid fibrils and then back to the “Anfinsen regime” to promote folding
back into the N state. The entire process from N to U to F and back from F to U to N has
been successfully demonstrated here in the experiment with wild-type hen lysozyme as a
model protein. To realize our dreams further into bio-scientific reality, our traveling into
the wonderland of pressure will continue.

Supplementary Materials: The following is available online at: https://www.mdpi.com/article/
10.3390/biology11010006/s1. Figure S1: (a) The NaCl concentration-dependent fibrillation process
of 4.0 mg/mL hen lysozyme with 4%(w/w) seeds at pH 2.2 at 57 ◦C, monitored by thioflavin T
fluorescence at 482 nm for the varied NaCl concentration of 4, 10, 20, 40 and 80 mM. (b) The SDS-

https://www.mdpi.com/article/10.3390/biology11010006/s1
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PAGE analysis of the products produced in the fibrillation reaction of wild-type hen lysozyme
(4.0 mg/mL) in the presence of 4% (w/w) seeds in 80 mM NaCl, at pH 2.2 at 57 ◦C (cf. (a)) for the
incubation times 0–10 h. Lane M is for molecular weight markers and Lane C is for authentic hen
lysozyme (14.4 kDa).

Author Contributions: Conceptualization, K.A.; methodology, K.A. and A.M.; software, A.M.;
validation, K.A. and A.M.; formal analysis, A.M.; investigation, A.M.; resources, K.A.; data curation,
K.A. and A.M.; writing—original draft preparation, K.A. and A.M.; writing—review and editing, K.A.;
visualization, K.A. and A.M.; supervision, K.A.; project administration, K.A.; funding acquisition,
K.A. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by Academic Frontier Program 07F010 of the Ministry of Educa-
tion, Culture, Sports, Science and Technology of Japan, and the Japan Society for the Promotion of
Science (KAKENHI, 22570164).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We thank B. R. Shah for his assistance in the NMR and AFM experiments.

Conflicts of Interest: The authors declare no conflict of interest. The funder had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [CrossRef]
2. Camilo, M.; Derek, P.T.; Sina, A.; Alastair, G.B.S.; Boris, W. How many species are there on earth and in the ocean? PLoS Biol. 2011,

9, e1001127. [CrossRef]
3. Hirata, F.; Sugita, M.; Yoshida, M.; Akasaka, K. Perspective: Structural fluctuation of protein and Anfinsen’s thermodynamic

hypothesis. J. Chem. Phys. 2018, 14, 020901. [CrossRef]
4. Hui Bon Hoa, G.; Douzou, P.; Dahan, N.; Balny, C. High-pressure spectrometry at sub-zero temperatures. Anal. Biochem. 1982,

120, 125–135. [CrossRef]
5. Hui Bon Hoa, G.; McLean, M.A.; Sligar, S.G. High pressure, a tool for exploring heme protein active sites. Biochim. Biophys. Acta

2002, 1595, 297–308. [CrossRef]
6. Davydov, D.R.; Hui Bon Hoa, G.; Peterson, J.A. Dynamics of protein-bound water in the heme domain of P450BM3 studied by

high-pressure spectroscopy: Cobarrison with P450cam and P450 2B4. Biochemistry 1999, 38, 751–761. [CrossRef] [PubMed]
7. Jonas, J.; Jonas, A. High pressure NMR spectroscopy of proteins and membranes. Ann. Rev. Biophys. Biomol. Struct. 1994,

23, 287–318. [CrossRef]
8. Akasaka, K. Exploring the entire conformational space of proteins by high-pressure NMR. Pure Appl. Chem. 2003, 75, 927–936.

[CrossRef]
9. Akasaka, K. Probing conformational fluctuation of proteins by pressure perturbation. Chem Rev. 2006, 106, 1814–1835. [CrossRef]
10. Kalbitzer, H.R. High pressure NMR methods for characterizing functional sub-states of proteins. Subcell. Biochem. 2015,

72, 179–197.
11. Akasaka, K. Protein Studies by High Pressure NMR. In Experimental Approaches of NMR Spectroscopy; The Nuclear Magnetic

Resonance Society of Japan; Springer: Singapore, 2018; pp. 3–36.
12. Dubois, C.; Herrada, I.; Barthe, P.; Roumestand, C. Combining High-Pressure Perturbation with NMR Spectroscopy for a

Structural and Dynamical Characterization of Protein Folding Pathways. Molecules 2020, 25, 5551. [CrossRef] [PubMed]
13. Dobson, C.M. Protein folding and misfolding. Nature 2003, 426, 884–890. [CrossRef]
14. Bemporad, F.; Chiti, F. Misfolded Oligomers: Experimental Approaches, Mechanism of Formation, and Structure-Toxicity

Relationships. Chem. Biol. 2012, 19, 315–327. [CrossRef]
15. Fitzpatrick, A.W.P.; Debelouchina, G.T.; Bayro, M.J.; Clare, D.K.; Caporini, M.A.; Bajaj, V.S.; Jaroniec, C.P.; Wang, L.; Ladizhansky,

V.; Müller, S.A.; et al. Atomic structure and hierarchical assembly of a cross-β amyloid fibril. Proc. Natl. Acad. Sci. USA 2013,
110, 5468–5473. [CrossRef] [PubMed]

16. Chiti, F.; Dobson, C.M. Protein misfolding, amyloid formation, and human disease: A summary of progress over the last decade.
Annu. Rev. Biochem. 2017, 86, 27–68. [CrossRef]

17. Burns, A.; Iliffe, S. Alzheimer’s disease. BMJ 2009, 338, b158. [CrossRef] [PubMed]
18. Araki, S.; Ando, Y. Transthyretin-related familial amyloidotic poly-neuropathy—Progress in Kumamoto, Japan (1967–2010). Proc.

Jpn. Acad. Ser. B 2010, 86, 694–706. [CrossRef] [PubMed]

http://doi.org/10.1126/science.181.4096.223
http://doi.org/10.1371/journal.pbio.1001127
http://doi.org/10.1063/1.5013104
http://doi.org/10.1016/0003-2697(82)90327-X
http://doi.org/10.1016/S0167-4838(01)00352-1
http://doi.org/10.1021/bi981397a
http://www.ncbi.nlm.nih.gov/pubmed/9888815
http://doi.org/10.1146/annurev.bb.23.060194.001443
http://doi.org/10.1351/pac200375070927
http://doi.org/10.1021/cr040440z
http://doi.org/10.3390/molecules25235551
http://www.ncbi.nlm.nih.gov/pubmed/33256081
http://doi.org/10.1038/nature02261
http://doi.org/10.1016/j.chembiol.2012.02.003
http://doi.org/10.1073/pnas.1219476110
http://www.ncbi.nlm.nih.gov/pubmed/23513222
http://doi.org/10.1146/annurev-biochem-061516-045115
http://doi.org/10.1136/bmj.b158
http://www.ncbi.nlm.nih.gov/pubmed/19196745
http://doi.org/10.2183/pjab.86.694
http://www.ncbi.nlm.nih.gov/pubmed/20689228


Biology 2022, 11, 6 9 of 9

19. Yee, A.W.; Aldeghi, M.; Blakeley, M.P.; Ostermann, A.; Mas, P.J.; Moulin, M.; Sanctis, D.; Bowler, M.W.; Dieckmann, C.M.;
Mitchell, E.P.; et al. A molecular mechanism for transthyretin amyloidogenesis. Nat. Commun. 2019, 10, 925. [CrossRef]

20. Prusiner, S.B. Prions. Proc. Natl. Acad. Sci. USA 1998, 95, 13363–13383. [CrossRef]
21. Portales-Castillo, I.; Yee, J.; Tanaka, H.; Fenves, A.Z. Beta-2 Microglobulin Amyloidosis: Past, Present, and Future. Kidney360 2020,

1, 1447–1455. [CrossRef]
22. Foguel, D.B.; Suarez, M.C.; Ferrão-Gonzales, A.D.; Porto, T.C.R.; Palmieri, L.; Einsiedler, C.M.; Andrade, L.R.; Lashuel, H.A.;

Lansbury, P.T.; Kelly, J.W.; et al. Dissocia-tion of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their
reversible nature and the formation of water-excluded cavities. Proc. Natl. Acad. Sci. USA 2003, 100, 9831–9836. [CrossRef]

23. Westermark, P.; Sletten, K.; Johansson, B.; Cornwell, G.G. Fibril in senile systemic amyloidosis is derived from normal transthyretin.
Proc. Natl. Acad. Sci. USA 1990, 87, 2843–2845. [CrossRef]

24. Jansens, K.J.A.; Rombouts, I.; Grootaert, C.; Brijs, K.; Camp, J.V.; Meeren, P.V.; Rousseau, F.; Schymkowitz, J.; Delcour, J.A. Rational
design of amyloid-like fibrillary structures for tailoring food protein techno-functionality and their potential health implications.
Compr. Rev. Food Sci. Food Saf. 2019, 18, 84–105. [CrossRef]

25. Niraula, T.N.; Haraoka, K.; Ando, Y.; Li, H.; Yamada, H.; Akasaka, K. Decreased Thermodynamic Stability as a Crucial Factor for
Familial Amyloidotic Polyneuropathy. J. Mol. Biol. 2002, 320, 333–342. [CrossRef]

26. Niraula, T.N.; Konno, T.; Li, H.; Yamada, H.; Akasaka, K.; Tachibana, H. Pressure-dissociable reversible assembly of naturally
denatured lysozyme is a precursor for amyloid fibrils. Proc. Natl. Acad. Sci. USA 2004, 101, 4089–4093. [CrossRef]

27. Kamatari, Y.O.; Yokoyama, S.; Tachibana, H.; Akasaka, K. Pressure-jump NMR study of dissociation and association of amyloid
protofibrils. J. Mol. Biol. 2005, 349, 916–921. [CrossRef] [PubMed]

28. Tachibana, H. Basic equation in statics and kinetics of protein polymerization and the mechanism of the formation and dis-
sociation of amyloid fibrils revealed by pressure perturbation. Subcell. Biochem. 2015, 72, 279–299.

29. Akasaka, K.; Abdul Latif, A.R.; Nakamura, A.; Matsuo, K.; Tachibana, H.; Gekko, K. Amyloid protofibril is highly voluminous
and compressible. Biochemistry 2007, 46, 10444–10450. [CrossRef]

30. Sasaki, K.; Nakatsuka, K.; Hayashi, I.; Akasaka, K. Efficient conversion of intact hen lysozyme into amyloid fibrils by seeding.
J. Biol. Macromol. 2008, 8, 11–18.

31. Akasaka, K.; Maeno, A.; Murayama, T.; Tachibana, H.; Fujita, Y.; Yamanaka, H.; Nishida, N.; Atarashi, R. Pressure-assisted
dissociation and degradation of “proteinase K-resistant” fibrils prepared by seeding with scrapie infected hamster prion protein.
Prion 2014, 8, 314–318. [CrossRef]

32. Morimoto, N.; Mitsui, T.; Sakamoto, M.; Mahara, A.; Yoshimura, K.; Arata, J.; Jinno, C.; Kakudo, N.; Kusumoto, K.; Yamaoka,
T. A novel treatment for giant congenital melanocytic nevi combining inactivated autologous nevus tissue by high hydrostatic
pressure and a cultured epidermal autograft: First-in-human, open, prospective clinical trial. Plast. Reconstr. Surg. 2021, 9, 71e–76e.
[CrossRef] [PubMed]

http://doi.org/10.1038/s41467-019-08609-z
http://doi.org/10.1073/pnas.95.23.13363
http://doi.org/10.34067/KID.0004922020
http://doi.org/10.1073/pnas.1734009100
http://doi.org/10.1073/pnas.87.7.2843
http://doi.org/10.1111/1541-4337.12404
http://doi.org/10.1016/S0022-2836(02)00425-4
http://doi.org/10.1073/pnas.0305798101
http://doi.org/10.1016/j.jmb.2005.04.010
http://www.ncbi.nlm.nih.gov/pubmed/15907935
http://doi.org/10.1021/bi700648b
http://doi.org/10.4161/pri.32081
http://doi.org/10.1097/PRS.0000000000008084
http://www.ncbi.nlm.nih.gov/pubmed/34181614

	Introduction 
	Thermodynamic Consideration 
	In the “Anfinsen Regime” or the Low-Pressure Regime 
	In the “High-Pressure Regime” 

	Materials and Methods 
	Results 
	Experimental Demonstration: Turning Amyloid Fibrils “F” Back into the Folded State “N” in Hen Lysozyme 
	The Experimental Result 

	Discussion 
	Conclusions 
	References

