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Simple Summary: Deep learning has become a popular technique in modern computer-aided (CAD)
systems. In breast cancer CAD systems, breast pectoral segmentation is an important procedure to re-
move unwanted pectoral muscle in the images. In recent decades, there are numerous studies aiming
at developing efficient and accurate methods for pectoral muscle segmentation. However, some meth-
ods heavily rely on manually crafted features that can easily lead to segmentation failure. Moreover,
deep learning-based methods are still suffering from poor performance at high computational costs.
Therefore, we propose a novel deep learning segmentation framework to provide fast and accurate
pectoral muscle segmentation result. In the proposed framework, the novel network architecture
enables more useful information to be used and therefore improve the segmentation results. The
experimental results using two public datasets validated the effectiveness of the proposed network.

Abstract: As an important imaging modality, mammography is considered to be the global gold stan-
dard for early detection of breast cancer. Computer-Aided (CAD) systems have played a crucial role
in facilitating quicker diagnostic procedures, which otherwise could take weeks if only radiologists
were involved. In some of these CAD systems, breast pectoral segmentation is required for breast re-
gion partition from breast pectoral muscle for specific analysis tasks. Therefore, accurate and efficient
breast pectoral muscle segmentation frameworks are in high demand. Here, we proposed a novel
deep learning framework, which we code-named PeMNet, for breast pectoral muscle segmentation
in mammography images. In the proposed PeMNet, we integrated a novel attention module called
the Global Channel Attention Module (GCAM), which can effectively improve the segmentation
performance of Deeplabv3+ using minimal parameter overheads. In GCAM, channel attention maps
(CAMs) are first extracted by concatenating feature maps after paralleled global average pooling and
global maximum pooling operation. CAMs are then refined and scaled up by multi-layer perceptron
(MLP) for elementwise multiplication with CAMs in next feature level. By iteratively repeating
this procedure, the global CAMs (GCAMs) are then formed and multiplied elementwise with final
feature maps to lead to final segmentation. By doing so, CAMs in early stages of a deep convolution
network can be effectively passed on to later stages of the network and therefore leads to better
information usage. The experiments on a merged dataset derived from two datasets, INbreast and
OPTIMAM, showed that PeMNet greatly outperformed state-of-the-art methods by achieving an
IoU of 97.46%, global pixel accuracy of 99.48%, Dice similarity coefficient of 96.30%, and Jaccard of
93.33%, respectively.
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1. Introduction

Breast cancer is one of the most common female cancers worldwide and the second
leading cause of mortality in women [1]. Breast cancer commonly affects women between
the ages of 35 and 55 and men aged over 40 and over 150,000 deaths are recorded per
year [2,3]. In the US, the breast cancer incidence rate has increased slightly per year
from 2012 to 2016; however, fatalities declined [4]. Moreover, the contribution of newly
developed therapies on reducing mortality rate, breast mammography, a gold standard in
the community, has also significantly improved survival due to earlier detection and is of
great significance. While there are numerous modalities for breast imaging, mammography
is considered to be one of the most effective methods given the feasibility and performance.

The advancement of technology transformed mammography procedures from
radiography-based films form to digital form, which was known as full-field digital
mammography (FFDM). The advantage of digital mammography is that radiologists are
able to magnify mammograms or change the brightness or contrast of mammograms for
better interpretation. Another reason digital mammography has gained in popularity is that
it is cheap, while acquired images can be stored as Digital Imaging and Communications
in Medicine (DICOM) files. Usually, a breast is imaged in two projection planes including
Cranio-Caudal (CC) and Medio-Lateral-Oblique (MLO) and in two sides, which leads to
LCC, RCC, LMLO, and RMLO, equaling four images. The mammography images are often
inspected by a specialist towards identification of abnormalities and localization. However,
the complexity of breast tissue and subtlety of cancer in early stages are intrinsic chal-
lenges in interpreting mammograms, which itself is a time-consuming task. As radiologists
have to read many mammograms in a single day, it is likely that they may fail to show
consistent performance when making diagnoses and considering artificial factors such as
fatigue or distraction. Studies have shown that at least 10% of cancers are missed during
examination [5]. One straightforward way to solve this is to have a second radiologist for
interpretation; however, two further problems emerge. One is the inconsistent diagnostic
conclusions from the different radiologists. A third radiologist can be invited when there is
disagreement on the diagnostic conclusion. However, another problem that needs to be
considered is the extra costs of a second read. Instead, computer-aided systems (CADs)
for breast cancer analysis have emerged as an attractive alternative. These systems aim to
automatically locate and classify abnormalities in mammograms so that radiologists are
able to improve their efficiency. Regarding the analysis tasks, CAD systems can be broadly
classified into computer-aided detection (CADe), which is mainly responsible for breast
abnormality detection (such as breast mass and calcification) and computer-aided diagnosis
(CADx) systems that focus on classifying the detected abnormalities or entire images into
one of several categories. These two systems can be integrated to form an end-to-end
system for higher efficiency, but they can also be separated for specific applications.

Before the prevalence of deep convolutional neural networks (CNNs)-based CAD
systems, mammography-based CAD systems for breast cancer analysis mainly consisted
of four steps including pre-processing, segmentation, feature extraction and analysis. Pre-
processing, which is a crucial step before analysis as the quality of input images possibly
determines the bottleneck of subsequent modules, enhances the desired features in the im-
ages while depresses the unwanted natures. Segmentation, which plays a key role in image
analysis, remains a challenging task while considerable efforts using traditional methods
such as threshold methods and active contours-based methods have been made [6]. After
segmentation, meaningful features, such as edges and shapes, are extracted by feature
extraction and then used for final diagnosis. With the development of deep learning, seg-
mentation, feature extraction and classification can be simply integrated into one single
deep learning model. Pre-processing, however, remains too large a topic to be included
in single models. For breast cancer analysis, pre-processing mainly includes image en-
hancement and breast region segmentation. Image enhancement, especially for medical
images, is generally applied to improve the brightness, contrast, saturation of images.
Given that the size of a mammography image can be thousands by thousands of pixels,
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breast region segmentation will benefit CAD systems by narrowing down the regions that
should be focused on while the efficiency of those systems can be improved as smaller
numbers of pixels are involved in computation. The pectoral muscle, which is commonly
shown in MLO viewed mammograms, is usually removed before analysis as it can be
easily misclassified as fibroglandular tissues. Additionally, artefacts that are accidentally
produced during image acquisition may show in pectoral muscle areas of mammography
images. Moreover, pectoral muscle regions can be examined by radiologists for auxiliary
lymph abnormalities. Aimed at developing a robust and highly efficient breast pectoral
muscle segmentation system, we developed an automatic segmentation framework named
PeMNet in this paper. Inspired by the work [7,8], we further explored the possibility of
combining channel attention architecture with segmentation frameworks. In this study, the
datasets used for method evaluation were INbreast and OPTIMAM while segmentation
framework is Deeplabv3+ [9–11]. The main contributions of this study can be concluded as
follows:

• We developed a novel deep learning framework, i.e., PeMNet, that outperformed the
performance of the state-of-the-art methods for breast pectoral muscles segmentation
in mammograms; Based on the Deeplabv3+ framework, we incorporated deep learn-
ing models with the novel attention module and found Incepresnetv2-based segmen-
tation framework performed best among all models. Additionally, the Incepresnetv2-
based segmentation framework, which is called PeIRv2 for short, outperformed the
state-of-the-art methods by a large margin, showed the IoU of 97.46%, global pixel ac-
curacy of 99.48%, Dice similarity coefficient of 96.30%, Jaccard of 93.33%, respectively,
on a merged dataset.

• We proposed a novel attention module named GCAM to extract channel information
globally in deep CNNs. Compared to the attention module proposed in [7,8], the
proposed attention module is more parameter efficient as fewer learnable training pa-
rameters are introduced. By doing so, the number of parameters are then significantly
reduced. Furthermore, the proposed attention module can be flexibly integrated with
different deep CNN models.

• The proposed attention module is effective for improvement of performance of seg-
mentation frameworks and is of high robustness. At a low parameter-cost, the pro-
posed attention module can greatly improve the performance of the Deeplabv3+
model. Furthermore, this is the first attempt to integrate a novel attention module into
any breast pectoral segmentation framework. The experiments on a merged dataset
from INbreast and OPTIMAM, where images are collected by different imaging de-
vices, showed the robustness of the proposed model as our model provided consistent
segmentation results on the testing set.

This paper is organized as follows. In Section 2, we will briefly review the related
works and potential improvements in the area. We then introduce our proposed framework
in Section 3 in details, followed by Section 4, where we will introduce more details about
the datasets and experimental settings. In Section 5, we will discuss some issues related to
the proposed framework and we conclude this paper in Section 6.

2. Related Works

Segmentation, a consistently challenging task in the community of computer vision,
has also greatly benefited from the development of deep CNNs as semantic segmentation
is no longer an exclusive task by human beings. In terms of pectoral segmentation, there
have been considerable endeavours towards effective methods aiming at breast pectoral
segmentation during recent decades. Before the deep learning era, pectoral segmentation
was mainly implemented through following methods including intensity-based meth-
ods, region growing methods, line estimation methods, curve estimation methods etc. [2].
In [12], Shrivastava et al. developed a sliding window based algorithm for pectoral muscle
removal. In the proposed method, the pectoral muscle is first ensured to be located in the
top left region of the wall. A 5 × 5 window was defined to slide over the mammogram
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while the absolute intensity differences of pixels in the top-left and bottom-right corners
of the window are computed. The proposed method achieved 91.3% visual inspection
accuracy using the MIAS dataset. Region growing is another widely used technique to
estimate pectoral muscle boundaries based on the intensity variations in mammograms. In
region growing-based methods, a single seed point inside the pectoral region is selected
while pixels that are similar to the seed points are then included in the segmentation results.
The segmentation finishes when no more pixels can be included [13]. In another region
growing-based method [14], image intensity is rescaled from 0 to 1 while a classical image
contrast enhancement method called CLAHE was used to improve the image contrast. The
images were then binarized into binary images using a threshold value of 0.03. A set of
geometric rules and a region growing method was applied to refine the initial pectoral
muscle region. The evaluation of the proposed method on MIAS and DDSM datasets
showed promising segmentation results of 95% and 94%, respectively.

Line estimation methods are the most intuitive methods and remain one of the most
widely used approaches. A Canny edge detector for pectoral muscle removal was proposed
in [15]. In the proposed method, the initial pectoral region was estimated based on a Canny
edge detector and the region intensity while the boundary of the pectoral muscle was
estimated by straight-line estimation method for refinement. In another similar work [16],
a straight-line estimation method was proposed by Zhou et al. for pectoral muscle segmen-
tation. Initial pectoral muscle boundaries were estimated by introducing a Sobel operator
for horizontal edges detection while Linear Hough Transform (LHT) was followed to deter-
mine the final pectoral muscle boundary. However, no statistical performance measures
were given but visual inspection of the accuracy of the segmentation was given. Compared
to line estimation methods, curve estimation methods can be considered to be an advanced
version of line estimation methods. In the work [17], a cascaded framework for pectoral
segmentation was proposed. In the first stage, a four-class K-means clustering method was
carried out to cluster the breast pixels into one of the four classes. Then the cluster with
highest intensity was taken as the candidate region of pectoral muscle regarding the desired
pectoral muscle location. Secondly, the cluster boundary was smoothed by deploying mor-
phological operation, followed by a Hough transform method for initial pectoral muscle
boundary extraction. Finally, a second-degree polynomial curve fitting method was applied
to initial boundary to obtain the final boundary. Another curve estimation method was
proposed in [18], where a multilevel thresholding approach that can successfully segment
96.81% images from MIAS dataset. Based on the assumption that pectoral region could
be roughly denoted as an relatively brighter triangle region, initial pectoral muscle region
was acquired via a morphological selection algorithm. A cubic polynomial fitting method
was then introduced to refine the initial boundary. However, all mentioned methods suffer
from several issues. One is that these methods strictly rely on certain restrictions such as
the location of pectoral muscle has to be located on the left side of the images. The second
one is that some methods are just concluded based on visual segmentation results while no
statistical results can be given [15,17]. Given these factors, the robustness and generality of
these methods remain to be explored.

Benefitting from facilitating advancement of deep learning, the segmentation task has
experienced significant changes as well. For breast pectoral segmentation, there are also
some deep learning-based methods [19–22]. In [20], U-Net was trained on a merged dataset
that had 633 MLO view mammograms in the first stage. The region identified with high
confidence in the first stage was then refined by a generative adversarial network (GAN) to
form the overall pectoral muscle shape. The reported performance of the proposed method
outperformed the trained U-Net by 5.1% and 1.9% in Dice similarity coefficient on two
datasets, respectively. In another work [21], Ali et al. introduced residual connection into
the deep learning model for breast pectoral segmentation. Ten-fold cross-validation on three
public datasets including MIAS, INbreast and DDSM showed a mean Intersection over
Union (IoU) of 97%, dice similarity coefficient (DSC) of 96% and accuracy of 98%. As can
be seen, the above mentioned deep learning-based methods seem to become popular given
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the advantages on performance. However, developing segmentation frameworks with
higher performance still needs more input. In this study, we proposed a novel segmentation
framework for pectoral muscles that achieved even higher performance than the state-of-
the-art methods by introducing novel attention framework. Furthermore, the proposed
method showed higher robustness as consistent segmentation results were found on two
datasets with different imaging patterns.

3. Methodology

The entire segmentation system can be divided into two components including pre-
processing and segmentation components. In the pre-processing module, we will briefly
introduce breast region acquisition and view classification as the only basic digital image
pre-processing operations involved. In mammography images, breast regions only appear
in a limited area and therefore acquisition of breast-only regions at the beginning will signif-
icantly reduce the overall computational costs. View classification is also an indispensable
module in an automatic breast cancer analysis system so that MLO view mammograms
can be segmented accordingly while CC view mammograms can be analyzed directly.
In the segmentation module, we will briefly revisit the architecture of the segmentation
framework Deeplabv3+. Then we will introduce the details of the proposed attention
model GCAM. We then conclude the segmentation section with the overall structure of the
proposed segmentation framework PeMNet.

3.1. Pre-Processing

One breast usually has four mammograms including LMLO, RMLO, LCC, RCC. An
example can be seen in Figure 1.

(a) (b) (c) (d)

Figure 1. Four example mammograms of one breast (a) Left MLO view images (b) Right MLO view
images (c) Left CC view images (d) Right CC view images.

The purpose of pre-processing is to align the pectoral wall to the left side of the image
and then extract the breast region for the following modules. The data flow of our proposed
pre-processing framework can be seen in Figure 2.
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Figure 2. Data flow in pre-processing module. Reference means the beast image is acquired from
original mammograms by referring to the binarized mammograms.

In Figure 2, the pectoral wall is on the left hand side of the mammogram when the
number of non-zero pixel values on the left side outnumbers the number of non-zero pixel
values on the right hand side. Otherwise, the pectoral wall, which is on the right hand side
of a mammogram, is flipped with the mammogram to the left hand side. Furthermore, as
can be seen from Figure 1a, the real breast region only occupies a small area of the entire
mammogram and should be extracted to avoid unnecessary computational cost. To do
this, we chose 20 as the threshold value to binarize the images and the biggest connected
components are then taken as the masks for the breasts. Morphological opening operation
is applied to remove disturbing objects such as characters or artefacts produced during
image acquisition process. Regarding the masks, we are able to extract breast regions from
the whole mammogram. The resultant images corresponding to each procedure can be
seen in Figure 3.

(a) (b) (c) (d)

Figure 3. Breast region extraction (a) Original mammogram (b) Binarized mammogram (c) Extracted
breast region (d) Flipped breast region.

The extracted breast region images in the first stage of pre-processing are then clas-
sified into MLO view and CC view based on GoogLeNet. In this study, we used transfer
learning technique for view classification as we used GoogLeNet trained on a natural
image classification tasks as the source network instead of training it from scratch. The
reason we used GoogLeNet is that mammography views are quite different from each
other so no over-large models should be applied. Considering this, we used GoogLeNet
as the backbone, as it is a relative small scale network with decent performance on image
classification tasks [23]. To adapt GoogLeNet for our view classification task here, we
simply removed the top layers including the classification layer in the original GoogLeNet
and added two new fully connected layers and a dropout layer, and then fine-tuned the
newly generated network on our dataset for view classification.

3.2. Segmentation Module
3.2.1. Revisit Deeplabv3+

Compared to Unet and SegNet [24,25], Deeplabv3+ model has shown to be preferable
given its performance [26,27]. As a result, in this study, we took Deeplabv3+ as the
segmentation framework. Deeplabv3+ deploys an encoder-decoder structure that can
simultaneously encode multi-scale contextual information and capture the boundaries
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of sharper objects when recovering the spatial information via decoder. The novelty of
Deeplabv3+ is that depthwise separable convolution is embedded into the Atrous Spatial
Pyramid Pooling (ASPP) and decoders module, where ASPP is the improved version of SPP
with Atrous convolution or dilated convolution. The introduction of depthwise separable
convolution and dilated convolution is to reduce the parameters of the framework while
the performance of the framework will not be harmed. The encoder-decoder architecture is
shown in Figure 4. One more advantage of Deeplabv3+ is the flexibility of combination
with different deep CNN models. Therefore, we chose ResNet18, ResNet50, MobileNetv2,
XceptionNet and InceptionResNetv2 [28–30] as the backbones for Deeplabv3+ in this study.
All these models are state-of-the-art deep CNN models that achieved high accuracy on
image classification challenge and have been widely used in computer vision tasks such as
detection, regression besides classification.

Figure 4. Encoder-Decoder with dilated convolution in Deeplabv3+.

3.2.2. Global Channel Attention Module

Attention mechanism, which allows humans to focus on salient areas instead of
processing the whole scene, plays an important role in human visual task [31]. To improve
the performance of deep learning models, experts in the community have explored possible
methods to integrate attention mechanism into those models [32,33]. In this study, we aimed
at extracting global channel attention maps for segmentation performance improvement,
we, therefore, proposed to embed a light-weighted attention module titled GCAM into our
PeMNet framework [7].

Given an image I ∈ RH×W×3 and the intermediate feature maps after certain convo-
lutional blocks in deep CNNs as Mx ∈ RWx×Hx×Cx in feature level x, where W, H stands
for width, height of the image I, respectively. Wx, Hx and Cx stands for the width, height
and number of channels of Mx, respectively. In GCAM, global max-pooling and global
average-pooling are deployed to obtain 1D CAMs from the feature maps in certain depth
of deep CNNs, which can be denoted as:

Mx
cat = [GMP(Mx); GAP(Mx)] (1)

where Mx
cat in R1×1×2Cx is the concatenated CAMs, [·] means concatenation operation,

GMP(·) and GAP(·) stands for global maximum pooling and global average pooling,
respectively. Mx

cat refined by CAM refinement module to produce Mx
RCAMsin R1×1×2Cx+1 ,

which refers to refined CAM here. Cx+1 is the number of channel map in feature level x + 1.
The detailed architecture of the refinement module can be seen in Figure 5.
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Figure 5. CAM refinement module.

The refinement process can be defined as:

Mx
RCAMs = MLP(Mx

cat) = δ(W1δ(W2Mx
cat)) (2)

where W1 and W2 stands for the weights of hidden layer and output layer, respectively. To
reduce the number of parameters in the MLP, a shrinking rate r is normally introduced. By
doing so, the total number of parameters becomes

C
r
× C + C

′ × C
r

(3)

i.e.,
C
r
(C + C

′
) (4)

where C is the number of input channel while C
′

stands for the number of output channel.
The acquired Mx

RCAMs are then multiplied with concatenated CAMs in next feature
level of deep CNNs, as can be expressed as:

Mx+1
MCAMs = Mx

RCAMs ·Mx+1
Cat (5)

where Mx+1
MCAMs in R1×1×2Cx+1 stands for resultant CAM after the multiplication of Mx

RCAMs
and Mx+1

Cat . · indicates elementwise multiplication here. Similarly, Mx+1
MCAMs is then refined

by the CAM refinement module to produce the refined CAMs Mx+1
RCAMs for next feature

level. By repeating these procedures for multiple times, we then have the final Mx+n−1
MCAMs,

which is then multiplied with final feature maps directly without further CAM refinement
and results in the refined feature maps MGCAMs, which is

MGCAMs = Mx+n ·Mx+n−1
MCAMs (6)

where Mx+n stands for the feature maps at feature level x + n. The Detailed procedures of
GCAM can be seen in Figure 6.
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Figure 6. Global channel attention module.

3.2.3. Overall Segmentation Architecture

The final feature map MGCAMs is then forwarded to Atrous Spatial Pyramid Pooling
(ASPP) module in the framework of Deeplabv3+ for feature resampling prior to convo-
lution. The refined encoder in the proposed PeMNet can be seen in Figure 7. Note that
the architecture of decoder is relatively simple than that of encoder so that we keep it
unchanged in the proposed model. By doing so, we then have our proposed PeMNet.

Figure 7. The architecture encoder in PeMNet.

A detailed architecture of our segmentation model PeMNetInceptionResNetv2 that takes
InceptionResNetv2 as the backbone can be seen in Figure 8.
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Figure 8. The architecture of PeMNet with the backbone of InceptionResNetv2.

In PeMNetInceptionResNetv2, the “Convs” indicates the stem of InceptionResNetv2 that
produces feature maps of 0.25 height and width of the input images

4. Experiment

In this section, we will begin with the details of the datasets used in this study. Then,
we will move to the measurements for performance evaluation of the view classification
and segmentation, followed by pectoral segmentation results. Finally, we will compare
our proposed framework with the state-of-the-art methods to show the advantages of our
proposed framework.

4.1. Experiment Configurations

The segmentation model was trained on the SPECTRE High-Performance Computing
Facility at the University of Leicester with a single GPU Tesla P100 PCI-E(16GB). The train-
ing parameters are listed in Table 1 when training the segmentation model on the merged
dataset. When training the model, devices with large GPU memory are recommended
as the training time can be greatly reduced by increasing the minibatch size. Here, we
just fixed the minibatch size to be 32 to avoid possible memory leaks when training large
models such as Deeplabv3+s that uses InceptionResNetv2 as the backbone.

Table 1. Training parameters for pectoral segmentation model.

Parameter Value

Minibatch size 32
Initial learning rate 1 × 10−4

Maximum training epochs 50
Learning rate drop factor 0.5
Learning rate drop period 20

Shuffle per epoch Yes
Loss function Cross-entropy

4.2. Dataset

In this study, we used two datasets, namely OPTIMAM and INbreast, to evaluate
the performance of the proposed framework. In total, we merged 682 MLO view mam-
mography images from the OPTIMAM dataset and 200 MLO view mammography images
from the INbreast dataset as the new dataset. We then randomly chose 80% (545 images)
from the OPTIMAM dataset and 80% (160 images) from INbreast for training while the
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remaining 20% of each dataset were used for evaluation. Detailed composition of the
training set and testing set can be seen in Table 2.

Table 2. Dataset composition for pectoral muscle segmentation.

Data OPTIMAM INbreast Total

Training set 545 160 705
Testing set 136 40 176

Total 682 704 881

In Figure 9, we show two examples from the two datasets for intuitive interpretation.
As can be seen, breast regions only appear in the top left corner while there is a large
margin on the right hand size of the images. Therefore, the pre-processing procedure is
meaningful to extract breast-only regions from the images and reduces potential overall
computational cost. As for the image contrast between pectoral muscle and breast region,
the mammography image from OPTIMAM dataset has better contrast as it shows a salient
boundary between pectoral muscle and breast while the pixel intensities of the pectoral
muscle area and breast area in images from INBreast seem to be more homogeneous.

(a) (b)

Figure 9. Mammography image examples from OPTIMAM and INbreast datasets. (a) An example
image from OPTIMAM. (b) An example image from INBreast.

4.3. Measurements

For segmentation, we used PGT to stand for the area of true pectoral muscle while PP
stands for the area of predicted pectoral muscle. The number of predicted pectoral pixels
that are true pectoral pixels are denoted as TP while the correctly predicted non-pectoral
pixels are denoted as TN. FP stands for number of pixels that are wrongly segmented as the
pectoral muscle while FN stands for number of pectoral muscle pixels that is segmented as
background. Based on these values, we are able to measure the segmentation performance
from Intersection of Union (IoU), Global Pixel Accuracy (GPA), Dice Similarity Coefficient
(DSC), Jaccard coefficient, Sensitivity and Specificity. The definition of IoU is given in
Equation (7) as:

IoU =
|PGT ∩ PP|

|PGT |+ |PP| − |PGT ∩ PP|
(7)

GPA is expressed as:

GPA =
TP + TN

TP + TN + FP + FN
(8)



Biology 2022, 11, 134 12 of 21

Similarly, DSC can be written as:

DSC =
2|PGT ∩ PP|
|PGT |+ |PP|

(9)

Jaccard coefficient can be calculated through:

Jaccard =
|PGT ∩ PP|
|PGT ∪ PP|

(10)

Sensitivity and Specificity, which are two common metrics for classification task
evaluation, are introduced here to evaluate the performance of segmentation models on
segmenting true pectoral muscle and true background. The reasons why we include these
two metrics are mainly two fold. One is that the values of sensitivity and specificity
determines the values of IoU and GPA, which mean these two metrics are indispensable
metrics. Another reason is that we can have a more intuitive understanding of the model on
segmenting the true pectoral muscle area, which is indicated by sensitivity. The definitions
are given below.

Sensitivity =
TP

TP + FN
(11)

Speci f icity =
TN

TN + FP
(12)

4.4. Pectoral Segmentation Results

As mentioned before, we deployed numerous deep CNNs for the segmentation task
in this study. Before we embed GCAM into our PeMNet, we first trained and tested the
performance of the original Deeplabv3+ models based on them. We repeatedly trained
the models ten times and then have ten individual models evaluated on the test set. The
results on the test set are given below in Table 3. Deeplabv3+ResNet18, which is DLResNet18
for short, means the Deeplabv3+ model that takes ResNet18 as the backbone and so forth.
For better comparison, we also compared the performance of Unet with Deeplabv3+ [24].
Correspondingly, the number of learnable training parameters are shown in Table 4.

Table 3. Performance of the trained Deeplabv3+ based on different deep CNN models.

Model IoU GPA DSC Jaccard Sensitivity Specificity

Unet 76.09 ± 10.08 92.13 ± 2.91 72.87 ± 10.38 60.77 ± 11.97 98.43 ± 0.43 91.37 ± 6.17
DLResNet18 96.65 ± 0.57 99.30 ± 0.15 94.80 ± 0.82 90.47 ± 1.47 98.44 ± 0.42 99.41 ± 0.18
DLResNet50 96.87 ± 0.75 99.35 ± 0.22 95.21 ± 1.28 91.19 ± 2.24 98.43 ± 0.66 99.47 ± 0.26

DLMobileNetv2 96.47 ± 0.34 99.27 ± 0.24 94.97 ± 0.57 90.68 ± 1.11 97.33 ± 0.62 99.52 ± 0.15
DLXceptionNet 96.65 ± 0.55 99.30 ± 0.25 94.80 ± 0.92 90.52 ± 1.61 98.11 ± 0.62 99.46 ± 0.19

DLInceptionResNetv2 97.13 ± 0.28 99.42 ± 0.48 95.60 ± 0.40 92.29 ± 0.36 96.64 ± 1.96 99.77 ± 0.10

Table 4. Number of training parameters of different models.

Model Number of Layers Number of Parameters

UNet 46 7,697,410
DLResNet18 100 20,594,356
DLResNet50 206 43,923,380

DLMobileNetv2 186 6,749,044
DLXceptionNet 205 27,579,844

DLInceptionResNetv2 853 71,045,012

As can be seen in Table 3, all Deeplabv3+ models showed over 95% of IoU, 99% of
GPA, 95% of Sensitivity and Specificity, which validated the effectiveness of deeplabv3+
model for pectoral segmentation task. However, the overall DSC and Jaccard metrics
remained to be low as the averaged DSC is just around 95% while the averaged Jaccard
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is only around 90%. Nevertheless, the model based on InceptionResNetv2 consistently
showed high performance in terms of IoU, GPA, DSC, Jaccard and Specificity though the
Sensitivity is slightly lower than other models. As can be seen from Table 4, the Deeplabv3+
model that takes InceptionResNetv2 as backbone showed predominating performance due
to the depth of InceptionResNetv2 and the number of the training parameters. Interestingly,
the Deeplabv3+ model that takes MobileNetv2 as the backbone showed much higher
performance than UNet. This finding further boosted our choice on using Deeplabv3+
as the basic framework. One segmentation example from OPTIMAM by Deeplabv3+
with different backbones is given in Figure 10. The blue areas in the figures indicate the
segmentation results given by the segmentation models.

(a) (b) (c)

(d) (e) (f)

Figure 10. A segmentation example from OPTIMAM by Deeplabv3+ with different backbones.
(a) Pre-processed image. (b) DLResNet18: 98.29% of IoU, 99.73% of GPA, 97.70% of DSC, 95.50% of
Jaccard, 99.89% of Sensitivity, and 99.72% of Specificity. (c) DLResNet50: 99.18% of IoU, 99.87% of GPA,
98.35% of DSC, 96.75% of Jaccard, 99.90% of Sensitivity, and 99.87% of Specificity. (d) DLMobileNetv2:
99.35% of IoU, 99.90% of GPA, 98.64% of DSC, 97.32% of Jaccard, 100% of Sensitivity, and 99.89% of
Specificity. (e) DLXceptionNet: 98.87% of IoU, 99.83% of GPA, 98.08% of DSC, 96.23% of Jaccard, 98.04%
of Sensitivity, and 99.99% of Specificity. (f) DLInceptionResNetv2: 98.99% of IoU, 99.85% of GPA, 98.30%
of DSC, 96.65% of Jaccard, 98.15% of Sensitivity, and 100% of Specificity.

As can be seen from Figure 10a, there are two masses in the breast region while there is
one more mass-like artefact in the pectoral muscle. In this scenario, pectoral segmentation
plays a key role in removing the artefact, which turns out the be the side benefit of pectoral
removal. The segmentation results seem to quite similar while the MobileNetv2-based
model seems to give the best results as it consistently provides highest IoU, GPA, DSC and
Sensitivity. Another segmentation example from INbreast dataset by Deeplabv3+ with
different backbones is shown in Figure 11.
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(a) (b) (c)

(d) (e) (f)

Figure 11. A segmentation example from INbreast by Deeplabv3+ with different backbones.
(a) Pre-processed image. (b) DLResNet18: 97.99% of IoU, 99.80% of GPA, 96.85% of DSC, 93.89% of
Jaccard, 100% of Sensitivity, and 99.60% of Specificity. (c) DLResNet50: 98.60% of IoU, 99.86% of GPA,
97.39% of DSC, 94.92% of Jaccard, 100% of Sensitivity, and 99.72% of Specificity. (d) DLMobileNetv2:
98.15% of IoU, 99.82% of GPA, 96.82% of DSC, 93.83% of Jaccard, 100% of Sensitivity, and 99.63% of
Specificity. (e) DLXceptionNet: 98.87% of IoU, 99.83% of GPA, 98.08% of DSC, 96.23% of Jaccard, 98.04%
of Sensitivity, and 99.99% of Specificity. (f) DLInceptionResNetv2: 99.21% of IoU, 99.88% of GPA, 98.28%
of DSC, 96.62% of Jaccard, 99.89% of Sensitivity, and 99.86% of Specificity.

We can see from Figure 11a that the lower part of the pectoral muscle has a very weak
boundary between it and the breast region, which could be a challenging situation for
traditional image segmentation methods. However, all Deeplabv3+ models successfully
segmented the pectoral muscle while the InceptionResNetv2-based one performed best
among all models in terms of all evaluation metrics except Sensitivity.

We then tested the performance of the proposed PeMNet on the test set while the
segmentation results on the test set can be seen in Table 5. PeR18, PeR50, PeMov2, PeXcep,
PeIRv2 stands for PeMNet that takes ResNet18, ResNet50, MobileNetv2, XceptionNet and
InceptionResNetv2 as the backbones, respectively. Similarly, we compared the number
of training parameters of different models in Table 6, where the last column indicates the
number of the increased parameters of PeMNet compared to Deeplabv3+ models.

Table 5. Performance of the trained PeMNets.

Model IoU GPA DSC Jaccard Sensitivity Specificity

PeR18 96.98 ± 0.50 99.38 ± 0.20 95.33 ± 0.84 91.45 ± 1.53 98.28 ± 0.56 99.51 ± 0.18
PeR50 96.78 ± 0.78 99.33 ± 0.21 95.06 ± 1.20 90.93 ± 2.11 98.41 ± 0.56 99.45 ± 0.24

PeMov2 96.45 ± 0.33 99.27 ± 0.24 94.78 ± 0.45 90.65 ± 0.87 97.43 ± 0.58 99.50 ± 0.13
PeXcep 96.70 ± 0.48 99.32 ± 0.49 94.93 ± 0.58 90.93 ± 1.12 97.61 ± 1.11 99.54 ± 0.18
PeIRv2 97.46 ± 0.45 99.48 ± 0.29 96.30 ± 0.66 93.33 ± 1.04 97.12 ± 0.56 99.78 ± 0.07
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Table 6. Number of training parameters of PeMNets.

Model Number of Layers Number of Parameters Parameters Increment

PeR18 116 20,760,500 166,144
PeR50 220 44,909,876 986,496

PeMov2 200 6,927,964 178,920
PeXcep 226 28,787,168 1,207,324
PeIRv2 874 80,670,948 9,625,936

As can be seen from Table 5, PeIRv2 performed best among all PeMNets. Moreover,
PeIRv2 beats the best-performing Deeplabv3+ model, i.e., Deeplabv3+InceptionResNetv2, by a
significant margin as PeIRv2 achieved much higher evaluation metrics. Furthermore, the
parameter increment of different PeMNets showed a linear relationship with the depth of
backbones, where PeIRv2 again gained the highest increment. However, as can be seen from
Tables 3 and 5, the performance of some PeMNets is even worse than the counterpart
models. The reason behind this could be the depths of these models are much shallower
for meaningful CAMs to be extracted and therefore be used when compared to PeMNet
based on InceptionResNetv2. The segmentation example from OPTIMAM by PeMNet can
be found in Figure 12.

(a) (b) (c)

(d) (e) (f)

Figure 12. A segmentation example from OPTIMAM by PeMNet with different backbones.
(a) Pre-processed image. (b) PeR18: 99.00% of IoU, 99.70% of GPA, 98.41% of DSC, 96.87% of Jaccard,
99.53% of Sensitivity, and 99.88% of Specificity. (c) PeR50: 99.53% of IoU, 99.92% of GPA, 99.03% of
DSC, 98.08% of Jaccard, 99.90% of Sensitivity, and 99.93% of Specificity. (d) PeMov2: 99.57% of IoU,
99.78% of GPA, 99.20% of DSC, 98.41% of Jaccard, 99.59% of Sensitivity, and 99.97% of Specificity.
(e) PeXcep: 99.43% of IoU, 99.72% of GPA, 99.00% of DSC, 98.01% of Jaccard, 99.49% of Sensitivity,
and 99.95% of Specificity. (f) PeInv2: 99.49% of IoU, 99.76% of GPA, 99.03% of DSC, 98.08% of Jaccard,
99.56% of Sensitivity, and 99.95% of Specificity.

Same as basic Deeplabv3+ models, all PeMNets achieved successful segmentations
but with better performance in terms of IoU, DSC and Jaccard. Visually, the segmentation
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results are quite similar to each other. In this case, however, PeMov2 obtained the highest
values from IoU, GPA, DSC, Jaccard and Specificity and therefore is considered the best-
performing model.

Similarly, we then performed our trained PeMNets to the same example image from
INbreast for comparison. The results are shown in Figure 13.

(a) (b) (c)

(d) (e) (f)

Figure 13. A segmentation example from INbreast by PeMNet with different backbones. (a) Pre-
processed image. (b) PeR18: 99.27% of IoU, 99.93% of GPA, 98.40% of DSC, 96.85% of Jaccard, 100%
of Sensitivity, and 99.86% of Specificity. (c) PeR50: 99.42% of IoU, 99.94% of GPA, 98.55% of DSC,
97.14% of Jaccard, 100% of Sensitivity, and 99.89% of Specificity. (d) PeMov2: 99.46% of IoU, 99.84% of
GPA, 98.67% of DSC, 97.37% of Jaccard, 99.75% of Sensitivity, and 99.92% of Specificity. (e) PeXcep:
99.64% of IoU, 99.96% of GPA, 98.85% of DSC, 97.72% of Jaccard, 100.00% of Sensitivity, and 99.93%
of Specificity. (f) PeIRv2: 99.91% of IoU, 99.96% of GPA, 99.14% of DSC, 98.30% of Jaccard, 99.96% of
Sensitivity, and 99.95% of Specificity.

As can be seen from Figure 13, all PeMNets presented successful segmentation results
while PeIRv2 provided best segmentation results with 99.91% of IoU, 99.96% of GPA, 99.14%
of DSC, 98.30% of Jaccard, 99.96% of Sensitivity, and 99.95% for Specificity. Furthermore,
it is worth noting that some PeMNets, such as PeR50, PeXcep, also achieved comparable
segmentation results while some of them even obtained 100% Sensitivity. From the above
experiments, we can conclude that PeIRv2 was the best model for pectoral muscle segmen-
tation in terms of the evaluation metrics. However, PeMov2 turned out to be preferable
considering the trade-off between the size of the model and the performance gained.

However, mammography images can be complicated where breast tumors may even
be adjoining or close to pectoral muscles though it is quite rare. One example can be seen in
Figure 14. We then segmented the image via the proposed PeMNet and the result is shown
in Figure 14a. Post-processing, the segmentation results are refined to be more precise as
shown in Figure 14b.
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(a) (b) (c)

Figure 14. A segmentation example by PeIRv2 when tumor is adjoining to pectoral muscle. (a) Pre-
processed image. (b) Original segmentation results by PeIRv2. (c) Post processed segmentation results.

As can be seen, PeIRv2 successfully segmented the real pectoral muscle from breast
tissue and the tumor. Instead of relying on context information in the images for segmen-
tation, PeIRv2 effectively followed a semantic segmentation pattern. The situation when
breast tumors are located in the pectoral muscle is also quite rare and can be quite obvious
to be distinguished from common mammography images.

The variations of the pectoral muscles, such as the low image contrast, too small
or too big pectoral muscle areas, can also lead to challenging pectoral segmentation. In
Figure 15a, the quality of the image seems to be poor as the upper part of the pectoral
muscle is not visually clear from the breast area. However, the segmentation result is quite
visually accurate as the pectoral muscle has been correctly segmented out from breast area.
More specifically, the lower part of the pectoral muscle seems to be connected to the breast
tissues in the image. However, the proposed model successfully partitioned the pixels into
pectoral muscle and breast without taking breast tissues as pectoral muscle. The size of
pectoral muscle may also vary from mammogram to mammogram and thus post threat to
stable and accurate segmentation results. In Figure 16, we showed some possible situations
in practice.

(a) (b)

Figure 15. A segmentation example by PeIRv2 when image is of low contrast. (a) A low contrast
mammography image. (b) Segmentation results by PeIRv2.
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(a) (b)

(c) (d)

Figure 16. Segmentation examples by PeIRv2 with varied size of pectoral muscle. (a) Mammog-
raphy images in the presence of the small pectoral muscle. (b) Segmentation results by PeIRv2.
(c) Mammography images in the presence of the large pectoral muscle. (d) Segmentation results
by PeIRv2.

In Figure 16a, the real pectoral muscle region is quite small in the mammogram. How-
ever, PeIRv2 still correctly segmented the pectoral muscle area though over segmentation
is induced slightly. On the contrary, the pectoral muscle region could be quite big in the
mammograms under some situations, as shown in Figure 16c. The segmentation results
in Figure 16d is of high accuracy as the edge of the segmented pectoral muscle is smooth.
From the above experiments, we believe that PeMNet, especially PeIRv2, can be used for
pectoral muscle segmentation in MLO-view mammography images.

4.5. Method Comparison

In this section, we will compare our proposed segmentation methods with the state-
of-the-art methods. The results are presented in Table 7.
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Table 7. Method comparison. The bold font indicates the best.

Method Dataset IoU GPA DSC Jaccard Sensitivity Specificity

Shen et al. [18] INbreast - - 89.10 ± 16.54 84.61 ± 18.15 - -
Soleimani et al. [19] INbreast - - 95.60 ± 8.40 92.60 ± 10.60 95.20 ± 8.6 99.80 ± 1.80
Ali et al. [21] INbreast 87.9 ± 4.5 95.00 ± 3.15 94.00 ± 3.72 - - -
Rampun et al. [34] INbreast - - 89.60 ± 10.10 84.60 ± 15.60 89.60 ± 9.60 99.70 ± 0.80
Guo et al. [20] Private - - 96.22 ± 0.05 - - -
PeIRv2 INbreast & 97.46 ± 0.45 99.48 ± 0.29 96.30 ± 0.66 93.33 ± 1.04 97.12 ± 0.56 99.78 ± 0.07(Our method) OPTIMAM

As can be seen, our proposed method showed predominating performance compared
with the state-of-the-art methods. Additionally, our proposed method has the highest IoU,
GPA, DSC, and Sensitivity among all methods.

5. Discussion

Given the importance of breast pectoral segmentation, many efforts ranging from
traditional methods to the state-of-the art deep CNNs methods have been performed.
However, it remains a problem that must be resolved. One main issue concerning breast
pectoral segmentation is the lack of large-scale well-annotated datasets for training of high
performance models. In recent years, considerable effort has been devoted to developing
intelligent and robust methods for breast pectoral segmentation. However, the majority of
the methods are evaluated on self-annotated public datasets or even private datasets due to
the limited availability of datasets. In this study, we evaluated our segmentation framework
both on access limited dataset, i.e., OPTIMAM and on a public dataset named INbreast.
Based on Deeplabv3+ model, we integrated the proposed novel attention module into
PeMNet for image segmentation task. Compared to traditional methods that suffered from
poor performance, our method turned out to be more reliable with higher performance.
Compared to the deep CNN based methods, our proposed novel PeMNet still offers the
architectural novelty while the performance of our model remains to be the best performing
one compared to other methods.

Another issue with the models for pectoral segmentation is the robustness of the
methods. Before the advent of deep learning, feature-based methods dominated the field.
However, the robustness of these kinds of systems remain to be improved as minor changes
in the images could lead to failure of the systems. Therefore, the advantage of deep
learning-based methods is such that the robustness has been drastically enhanced. In terms
of robustness, the proposed segmentation framework has been proven to be robust against
various situations and turned out to be suitable for pectoral muscle segmentation tasks.

6. Conclusions

In this study, we successfully developed an automatic breast pectoral segmentation
model named PeMNet for mammogram pre-processing in mammography image analysis.
The key of the model is the proposed novel attention model that was architecturally
friendly to deep CNNs and therefore can be easily repurposed for new computer vision
tasks. By integrating the attention module, our proposed PeMNet framework showed
highest performance on pectoral muscle segmentation.

Nevertheless, there are still some limitations to this study. One problem is the effec-
tiveness of the proposed attention module remains to be improved. As can be seen from
the experiment, the PeMNet with shallow deep CNNs backbones performed even worse
than Deeplabv3+ models with same backbones. The reason could be from the dataset
perspective as the datasets for validation are still quite small. As we mentioned before, the
publicly available datasets for breast pectoral segmentation are quite limited. Therefore, we
may validate the proposed attention module on larger-scale datasets in future. However,
there is still further work that can be done from the perspective of architecture as further
exploration on architecture should be done. Another issue is the choice of backbones for
the segmentation model. In this study, we simply deployed numerous deep CNNs as
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the backbones, but more state-of-the-art models should be explored for better performing
segmentation models in future.
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