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Simple Summary: This study represents a resourceful review article that can deliver resources on
neurological diseases and their implemented classification algorithms to reveal the future direction of
researchers. Researchers interested in studying neurological diseases and previously implemented
techniques in this field can follow this article. Various challenges occur in detecting different stages of
the disorders. A limited amount of labeled and unlabeled datasets and other limitations is represented
in this article to assist them in finding out the directions. The authors’ purpose for composing this
article is to make a straightforward and concrete path for researchers to quickly find the way and the
scope in this field for implementing future research on neurological disease detection.

Abstract: Neurological disorders (NDs) are becoming more common, posing a concern to pregnant
women, parents, healthy infants, and children. Neurological disorders arise in a wide variety of forms,
each with its own set of origins, complications, and results. In recent years, the intricacy of brain
functionalities has received a better understanding due to neuroimaging modalities, such as magnetic
resonance imaging (MRI), magnetoencephalography (MEG), and positron emission tomography
(PET), etc. With high-performance computational tools and various machine learning (ML) and deep
learning (DL) methods, these modalities have discovered exciting possibilities for identifying and
diagnosing neurological disorders. This study follows a computer-aided diagnosis methodology,
leading to an overview of pre-processing and feature extraction techniques. The performance of
existing ML and DL approaches for detecting NDs is critically reviewed and compared in this article.
A comprehensive portion of this study also shows various modalities and disease-specified datasets
that detect and records images, signals, and speeches, etc. Limited related works are also summarized
on NDs, as this domain has significantly fewer works focused on disease and detection criteria.
Some of the standard evaluation metrics are also presented in this study for better result analysis
and comparison. This research has also been outlined in a consistent workflow. At the conclusion,
a mandatory discussion section has been included to elaborate on open research challenges and
directions for future work in this emerging field.

Keywords: neurological disorders (NDs); computer-aided diagnosis (CAD); machine learning (ML);
deep learning (DL); detection and classification; challenges and opportunities

1. Introduction

Healthcare has become a crucial part of the human lifestyle now. Following that, the
change and development of healthcare systems have become very dominant in terms of
technologies. Identifying diseases has also become very dependent on biomedical tech-
nologies, such as ultrasound, X-rays, particle beams, and MRI, etc. With more use of
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technologies, the excessive growth of biomedical data is a problem for healthcare pro-
fessionals. Nevertheless, high-computing tools have increased the speed of analyzing
biomedical data and reduced work for healthcare professionals. In addition to that, these
advancements allowed the researchers to have more audacity to work with more complex
clinical patterns. Healthcare further points out disorders of human abnormality, inhibiting
or altering the vital functions of several human-body areas. Cardiovascular, genetic, psy-
chiatric, brain, skin, trauma, infectious, tissue, and digestive problems are only a few of the
many types of human disorders [1].

Neurological diseases (NDs) are a fragment of human disorders that identify compli-
cations of the brain. Neurological illnesses, often known as brain, behavioral, or cognitive
disorders, affect people’s abilities to walk, speak, learn, and move [2]. As the brain is the
control center of the human nerves, affecting the brain can threaten one’s life. Awareness
of these diseases has lessened the mortality rate; however, some chronic NDs can cause
permanent and partial disability or suffering. The global prevalence of these disorders
accounted for 10.2% of the cases. Furthermore, these illnesses have a high causality rate
of 16.8 % per year, respectively. These percentages indicate that neurological and neu-
ropsychiatric disorders have higher disability rates than other human disorders [3]. In
addition, the diagnosis of neurological illnesses is a developing problem and one of the
most complex challenges. For the identification, monitoring, and treatment of neurological
diseases, current diagnosis technologies, reviewed in Section 4, produce massive amounts
of data. Experts generally perform a manual analysis of big medical data to find and
comprehend problems. Recently, an advanced notion of an automated computer-aided
diagnosis (CAD) [4] system for experts or neurologists to detect neurological disorders
from big medical data has been proposed. The algorithms of significant CAD systems
are built using pattern recognition techniques and theories, and consequently, CAD is
considered one of the pattern recognition domains [5]. The techniques used by CAD sys-
tems are illustrated in Figure 1, and include data pre-processing, feature extraction, and
classification. The CAD solutions assist specialists in effectively evaluating big medical
data, improving diagnosis accuracy and consistency while reducing analysis time. The
CAD system is cost-effective and efficient, and it may be utilized by professionals in the di-
agnosis and treatment of neurological illnesses as a decision support system. The acquired
medical data (e.g., medical image data or medical signal data) were processed during the
pre-processing period to remove noise and reduce the complexity and computation time of
CAD algorithms. One of the essential elements of the CAD system is the feature extraction
section, which extracts disease bio-markers from the source data. The extracted feature
vectors are utilized as input in the classifier model for allocating the candidate to one of
the available categories (e.g., healthy or normal) based on the output of a classifier in the
classification process for CAD systems [6].

Diagnosis
Procedure

Pre-processing

Feature Extraction

Classification

Automatic
Disease

Diagnosis
Treatments &

Rehabilitations

Patient Clinician CAD

Figure 1. Computer-aided diagnosis (CAD) system architecture.

However, a few automated computerized categorization approaches for diagnosing
neurological illnesses have recently been proposed. They are sufficiently tough to handle
data points from various scanners in various applications. Additionally, many developed
CAD techniques have been reviewed in a single article. As a result, this study presents a
quick overview of some of the essential and recent research on neurological diseases and
diagnosing neurological illnesses. Following that, there are some studies, where Nadeem
et al. [7] presented an article that aimed to create a significant deep learning concept relevant
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to brain tumor analysis, reflecting the large variety of deep learning applications. This
study looked at brain tumors segmentation, classification, prediction, and evaluation using
deep learning. The significant characteristics of this developing subject were reviewed and
studied, and a comprehensive taxonomy of the study landscape was based on the existing
literature. In addition, Muhammad et al. [8] addressed the fundamental concepts of deep
learning-based brain tumor classification (BTC), such as pre-processing, feature extraction,
and classification, as well as its accomplishments and deficiencies. This overview outlines
the bench-marking datasets that have been used to evaluate BTC. Fundamental problems,
such as a lack of public data and end-to-end deep learning techniques, have also been
emphasized, and comprehensive suggestions for future research in the BTC field have
been made. Shoeibi et al. [9] investigated a wide range of studies centered on automated
epilepsy and seizure detection by applying DL approaches and neuroimaging modalities.
Several strategies for autonomously diagnosing epileptic seizures utilizing EEG and MRI
modalities are outlined. The significant challenges of integrating DL with EEG and MRI
modalities to detect automated epileptic seizures accurately were explored. In addition,
the most promising DL models were proposed, along with probable future developments.
With suitable signposting, Noor et al. [10] showed an overview of different DL designs and
pre-processing strategies for detecting anomalies in MRI data, namely a comprehensive
review of existing studies based on detection using MRI scans and classification using
neural network methods for NDs. In addition, he also provided a comprehensive analyses
of accessible datasets, including their origins and extensive data for the subjects (e.g.,
patients, age, gender, and MRI scan modalities). Yolcu et al. [11] proposed a DL method
for automatic facial expression recognition. This paper is the initial step to develop a
non-invasive computational system for neurological disease diagnosis, with the primary
goal of increasing the quality of service. The proposed framework integrates part-based
and holistic information for effective face expression identification. A new framework
based on deep learning techniques was suggested (ENDs) by Attallah et al. [12]. The
methodology relies on transfer learning and deep feature fusion to recognize ENDs. It
utilized raw embryo brain images to develop three deep convolutional neural networks
(DCNNs) with distinct architectures. Gautam et al. [3] provided a thorough examination of
various deep learning algorithms for diagnosing severe neurological and neuropsychiatric
illnesses. This study discovered that EEG- and MRI-based data could be more beneficial for
diagnosing epilepsy, stroke, Parkinson’s disease, and Alzheimer’s disease. A summarized
information of these related studies are tabulated in Table 1.

Here, a thorough study on the prevalence and diagnosis of major human neurological
and neuropsychiatric illnesses was conducted using a systematic review of methodologies.
Figure 2 depicts the overall workflow of this study.
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Figure 2. Workflow of neurological diseases detection and diagnosis study.
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Table 1. Neurological diseases-related recent surveys summary.

Ref. Purposes Challenges

[3]
This study discovered various deep learning algo-
rithms for diagnosing epilepsy, stroke, PD, and AD
on EEG- and MRI-based data

The application of deep learning techniques in diag-
nosing additional neuropsychiatric and neurological
illnesses, aside from those stated, was not considered
during the meta-analysis synthesis.

[7]
This study reflects on segmentation, classification,
and prediction of brain tumors using deep learning
techniques

Some challenges include labeling images of tumors
and label uncertainty directly in the loss function.

[8]

This study addressed the performance and deficien-
cies of deep learning-based brain tumor classification
(BTC) with various pre-processing, feature extraction,
and classification techniques

Lack of large training dataset; class imbalance due
to data augmentation.

[9]
This study investigated automated epileptic seizure
identification using DL approaches and modalities,
such as neuroimaging, EEG, and MRI.

Inaccessibility of datasets with long registration
times, and the datasets used to diagnose epileptic
seizures have a finite registration period; conducting
essential research on the subject of epileptic seizures.

[10]

This study showed an overview of different DL and
pre-processing strategies for detecting anomalies of,
and the diagnosis and classification of AD, PD, and
SZ with various open-access MRI data.

Predicting NLD in real-time from imaging data;
developing a bias-free neuroimaging dataset; and
adding adversarial noise to the neuroimages can re-
duce classification accuracy.

[12]
This study utilizes raw embryo brain images to de-
velop three deep convolutional neural networks (DC-
NNs) with distinct architectures

Not focused on common neurological diseases.

To organize the workflow, it was first summarized into four separate parts. First, a
logical selection methodology is used to extract relevant articles based on research motives.
Second, the data synthesis section explored NDs’ datasets and details and the detection
of NDs using modalities. Data classification includes a basic introduction and a critical
assessment of pre-processing techniques and various ML and DL techniques. Finally,
the analysis section shows the evaluation and interpretation of performance analysis and
the challenges related to major human neurological and neuropsychiatric disorders. The
overall contributions of this study are as follows:

• A concise introduction with the appropriate workflow of the different neurological
disease detections of other DL and ML architectures and the pre-processing techniques
used in detecting abnormalities from different neuroimaging modalities. It specified
the background for a new entrant to the field and was performed as a future reference;

• Thorough interpretation of the existing studies, we reported the purposes and limita-
tions for detecting and classifying neurological diseases. To the best of our knowledge,
this is the first attempt to review the ML- and DL-based classification approaches of
different neurological disorders from other imaging modalities;

• A comprehensive study on the most popular open-access datasets and their sources,
and extensive information on participants in various modalities. We will use open-
access datasets to verify and compare the implementation of the proposed technique;

• A robust discussion on recent research issues and future directions to assist entrants
in making an impact.

The rest of the paper is organized as follows: Section 2 provides an overview of
datasets. A detailed overview of the diseases and their symptoms is reported in Section 3.
Section 4 describes the commonly used imaging modalities and their categories. Pre-
processing and methods are covered in Sections 5 and 6, respectively. In Section 7, common
categories of machine learning and deep learning techniques are presented. A total of
the performance metrics for the analysis of the results of previous studies are presented
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in Section 8. Finally, an overview of the challenges related to this study is presented in
Section 9, and Section 10 concludes the article.

2. Dataset

The literature or review on the diagnosis and detection of neurological disorders
mainly focuses on techniques, technologies, and results. Therefore, various datasets on
neurological disorders are considered vital for a better analysis of these techniques and
technologies. However, these datasets also contain specific categories or types. For example,
MRI images for detecting neurological disorders and archiving them are vast. Magnetic
resonance imaging (MRI) is a non-invasive medical imaging technology for the brain
that is utilized to measure and visualize the brain’s anatomical structure, assess brain
abnormalities, identify diseased regions, and perform surgical planning and image-guided
procedures. MRI pictures are subjected to various image-processing techniques to identify,
detect, and classify illnesses and anomalies in the brain. Another popular category is the
EEG datasets of brain signals. The electrical activities of brain behaviors were reflected
in the electroencephalogram (EEG) data. EEG signals reflect the electrical impulses or
disorders of neurons in the human brain. EEG signal investigation is a signal-processing
strategy critical for monitoring and diagnosing neurological brain disorders, such as autism
spectrum disorder (ASD) and epilepsy. Such actions in the human brain define brain
illnesses, such as ASD and epileptic conditions. Currently, brain disorder diagnosis is
mainly performed manually by neurologists or competent clinicians by looking at EEG
patterns. Parkinson’s disease applications based on speech pattern analysis for developing
predictive telediagnosis and telemonitoring models are catching attention. A collection of
voice samples was compiled from a set of speaking exercises for people with Parkinson’s
disease, comprising sustained vowels, words, and sentences. Two key challenges are
learning from a dataset with many speech recordings per participant. First, the accuracy
of voice samples of various forms, such as sustained vowels versus words, in diagnosing
cases of Parkinson’s disease. Second, the accuracy of the central tendency and dispersion
of metrics represents all of a subject’s sample recordings. In addition, the handwriting
and facial images of patients with disorders were used to detect diseases. This study has
presented various summary tables, Tables 2–7 pointing out the number of patients, modality,
and available links of datasets of Alzheimer’s disease, Parkinson’s disease, Cerebral palsy,
Brain tumor, Epilepsy, respectively.

Table 2. A tabulation of popular datasets of Alzheimer’s disease.

Database Name Healthy Control(HC)/Patient(P) Modality Available in (Last Access Date)

Alzheimer’s Disease
Neuroimaging Initiative (ADNI) P: 47 HC: 34 MRI http://adni.loni.usc.edu/about/

(5 January 2022)

Open Access Series of Imaging
Studies (OASIS) 1 S: 416 MRI https://www.oasis-brains.org/

(5 January 2022)

OASIS 2 S: 150 MRI https://www.oasis-brains.org/
(5 January 2022)

OASIS 3 S: 1098 MRI & PET https://www.oasis-brains.org/
(5 January 2022)

Chosun University Hospital
(GUH) and Gwangju Optimal
Dementia Center (GODC) [13]

HC: 10 P: 10 EEG NA

http://adni.loni.usc.edu/about/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
https://www.oasis-brains.org/
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Table 3. A tabulation of popular datasets of Parkinson’s disease.

Database Name Healthy Controls(HSC)/
Patient(P) Modality Available in (Last Access Date)

Sprial Dataset (UC Irvine
Machine Learning Repository) P: 62 HC: 15 Handwriting

https://archive.ics.uci.edu/ml/datasets/
Parkinson+Disease+Spiral+Drawings+Using+
Digitized+Graphics+Tablet (7 January 2022)

Shanghai East Hospital of
Tongji University (TCS
Dataset)

P: 76 HC: 77 Ultrasound
Images

https://www.aimspress.com/article/doi/10.393
4/mbe.2019280?viewType=HTML (7 January 2022)

Dandenong Neurology Centre,
Melbourne, Australia [14] HC: 40 P: 41 NA NA

Parkinson’s Progression
Markers Initiative (PPMI) P: 498 HC: 203 Images https://www.ppmi-info.org/access-data-

specimens/data (7 January 2022)

Parkinson’s Disease
Classification Dataset P: 188 Speech

recordings

https://archive.ics.uci.edu/ml/datasets/
Parkinson%27s+Disease+Classification (7 January
2022)

Parkinsons Dataset P: 23 Voice
recording

https:
//archive.ics.uci.edu/ml/datasets/parkinsons
(7 January 2022)

Parkinsons Telemonitoring
Voice Dataset P: 42 Speech

Recordings
https://archive.ics.uci.edu/ml/datasets/
parkinsons+telemonitoring (7 January 2022)

Table 4. A tabulation of popular datasets of Cerebral palsy.

Database Name Healthy Control(HC)/
Patient(P) Modality Available in (Last Access Date)

Dataset cerebral Palsy Pre- and
Post-Botulinum Toxin A [15] P: 49 NA

https://figshare.com/articles/dataset/Dataset_
cerebral_palsy_pre_and_post_Botulinum_Toxin_
A\/2055729 (8 January 2022)

Table 5. A tabulation of popular datasets of brain tumor.

Database Name Healthy Control(HC)/
Patient(P)/Images(I) Modality Available in (Last Access Date)

Brain MRI Images for
Brain Tumor Detection I: 253 MRI https://www.kaggle.com/navoneel/brain-mri-images-for-brain-

tumor-detection (10 January 2022)

Sample Brain Tumor
Dataset NA MRI https://ieee-dataport.org/documents/brain-tumor-dataset (10 January

2022)

Brain Tumor Dataset I: 3064 MRI https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
(9 January 2022)

Br35H: Brain Tumor
Detection 2020 I: 3864 MRI https://www.kaggle.com/ahmedhamada0/brain-tumor-detection

(9 January 2022)

BraTS 2013 P: 55 MRI https://paperswithcode.com/dataset/brats-2013-1 (10 January 2022)

BraTS 2014 NA MRI https://paperswithcode.com/dataset/brats-2014-1 (10 January 2022)

BraTS 2015 I: 274 MRI https://paperswithcode.com/dataset/brats-2015-1 (10 January 2022)

BraTS 2017 I: 285 MRI https://paperswithcode.com/dataset/brats-2017-1 (10 January 2022)

BraTS 2018 NA MRI https://paperswithcode.com/dataset/brats-2018-1 (10 January
2022)

BraTS 2019 NA MRI https://paperswithcode.com/dataset/brats-2019-1 (10 January 2022)

https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://archive.ics.uci.edu/ml/datasets/Parkinson+Disease+Spiral+Drawings+Using+Digitized+Graphics+Tablet
https://www.aimspress.com/article/doi/10.3934/mbe.2019280?viewType=HTML
https://www.aimspress.com/article/doi/10.3934/mbe.2019280?viewType=HTML
https://www.ppmi-info.org/access-data-specimens/data
https://www.ppmi-info.org/access-data-specimens/data
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/Parkinson%27s+Disease+Classification
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/parkinsons
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://archive.ics.uci.edu/ml/datasets/parkinsons+telemonitoring
https://figshare.com/articles/dataset/Dataset_cerebral_palsy_pre_and_post_Botulinum_Toxin_A\/2055729
https://figshare.com/articles/dataset/Dataset_cerebral_palsy_pre_and_post_Botulinum_Toxin_A\/2055729
https://figshare.com/articles/dataset/Dataset_cerebral_palsy_pre_and_post_Botulinum_Toxin_A\/2055729
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://www.kaggle.com/navoneel/brain-mri-images-for-brain-tumor-detection
https://ieee-dataport.org/documents/brain-tumor-dataset
https://figshare.com/articles/dataset/brain_tumor_dataset/1512427
https://www.kaggle.com/ahmedhamada0/brain-tumor-detection
https://paperswithcode.com/dataset/brats-2013-1
https://paperswithcode.com/dataset/brats-2014-1
https://paperswithcode.com/dataset/brats-2015-1
https://paperswithcode.com/dataset/brats-2017-1
https://paperswithcode.com/dataset/brats-2018-1
https://paperswithcode.com/dataset/brats-2019-1
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Table 6. A tabulation of popular datasets of epilepsy.

Database Name Healthy Control(HC)/
Patient(P)/Sample(S) Modality Available in (Last Access Date)

Bonn Time Series Satabase NA EEG https://repositori.upf.edu/handle/10230/42894
(12 January 2022)

Bern–Barcelona S: 10,240 EEG https://www.upf.edu/web/ntsa/downloads (12
January 2022)

Temple University EEG corpus P: 10,874 EEG https://isip.piconepress.com/projects/tuh_eeg/
html/downloads.shtml (12 January 2022)

Neurology and Sleep Center,
New Delhi EEG Database S: 1024 EEG https://www.researchgate.net/publication/3087

19109_EEG_Epilepsy_Datasets (12 January 2022)

Children Hospital Boston,
Massachusetts Institute of
Technology (CHB-MIT) [16]

P: 22 EEG https://physionet.org/content/chbmit/1.0.0/
(12 January 2022)

Siena Scalp [17] P: 14 EEG
https:
//physionet.org/content/siena-scalp-eeg/1.0.0/
(12 January 2022)

Single Electrode Data HC: 15 P: 15 EEG
https:
//zenodo.org/record/3684992#.YYg27GBBzDd
(12 January 2022)

Epileptic Dataset P: 6 EEG
https:
//data.mendeley.com/datasets/5pc2j46cbc/1 (12
January 2022)

A Dataset of Seizures
Annotations NA EEG

https:
//zenodo.org/record/1280684#.YYg3v2BBzDd
(12 January 2022)

Table 7. This is a dataset for symptoms and detection modalities for different neurological diseases.

Disease Name Symptoms Detection

Parkinson’s disease
Tremor, sluggishness of movement, stiff muscles,
uneven gait, and balance and coordination issues
are symptoms of Parkinson’s disease.

Movement, speech, neuroimaging, handwriting pat-
terns, cerebrospinal fluid (CSF), optical coherence
tomography (OCT), magnetic resonance imaging
(MRI), and single-photon emission computed tomog-
raphy (SPECT).

Dementia
Memory loss, difficulty with tasks, confusion, lan-
guage issues, behavioral changes, and a loss of ini-
tiative are all symptoms of Alzheimer’s disease.

Listening to medical history, evaluating cognitive
performance and mental state, neuropsychological
testing, assessing daily activities, clinical laboratory
tests, and brain imaging testing.

Alzheimer’s disease

Early stage: Memory lapses, such as forgetting stan-
dard terms or where everyday objects are.
Middle stage: Misunderstand statements, become
upset or furious, and act strange, such as refusing to
bathe. Damage to nerve cells makes it difficult for
people to express their thoughts and do ordinary
tasks without help.
Late stage: Lose awareness of their surroundings
as well as recent experiences. Get into trouble walk-
ing, sitting, swallowing, and communicating, etc.
Become more susceptible to infections, including
pneumonia.

Raw neuroimaging modalities for combinatorial
measures, such as sub-cortical volumes, gray mat-
ter densities, cortical thickness, brain glucose
metabolism, and cerebral amyloid.

https://repositori.upf.edu/handle/10230/42894
https://www.upf.edu/web/ntsa/downloads
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://isip.piconepress.com/projects/tuh_eeg/html/downloads.shtml
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://www.researchgate.net/publication/308719109_EEG_Epilepsy_Datasets
https://physionet.org/content/chbmit/1.0.0/
https://physionet.org/content/siena-scalp-eeg/1.0.0/
https://physionet.org/content/siena-scalp-eeg/1.0.0/
https://zenodo.org/record/3684992#.YYg27GBBzDd
https://zenodo.org/record/3684992#.YYg27GBBzDd
https://data.mendeley.com/datasets/5pc2j46cbc/1
https://data.mendeley.com/datasets/5pc2j46cbc/1
https://zenodo.org/record/1280684#.YYg3v2BBzDd
https://zenodo.org/record/1280684#.YYg3v2BBzDd


Biology 2022, 11, 469 8 of 45

Table 7. Cont.

Disease Name Symptoms Detection

Multiple sclerosis
Fatigue, difficulty walking, stiffness, weakness, vi-
sion issues, dizziness, cognitive changes, emotional
changes, and sadness, etc., can occur.

MRI scan, as radio waves and magnetic fields are
used in it to assess the relative water content of bod-
ily tissues to distinguish between normal and patho-
logical tissues.

Cerebral Palsy Delays in development, irregular muscular tone,
and poor posture are all common.

X-ray computed tomography (CT scan) and mag-
netic resonance imaging (MRI) are two brain imag-
ing procedures. An electroencephalogram (EEG),
genetic testing, and metabolic testing are also per-
formed.

Brain Tumor
Some symptoms include headaches, seizures, vi-
sual and speech issues, memory loss, and loss of
balance.

A brain tumor is usually diagnosed in three steps:
An examination of the nervous system. Brain
scans include CT (or CAT) scans, MRIs, angiograms,
X-rays, and others. A biopsy is a procedure that is
used to examine (tissue sample analysis).

Epileptic seizures
Uncontrollable jerking motions of the arms and
legs, temporary disorientation, stiff muscles, con-
sciousness or awareness loss, and fear and anxiety.

EEG, EMG, ECG, motion, or audio/video recording
on the human head and body are used to monitor
brain and muscle activities, heart rate, oxygen level,
artificial sounds, or visual signatures.

This study focused on some of the most commonly used datasets in neurological
disease detection. These are ADNI, OASIS for Alzheimer’s disease; for Parkinson’s disease,
the most frequently utilized is PPMI with a very high number of subjects. Br35H, BraTS
(MRI), Temple University EEG corpus dataset has the highest number of subject/patients
data suffering from epilepsy. In addition, COBRE [18] dataset of schizophrenia patients is
the most common dataset and reliably excellent resource.

3. Neurological Diseases

The illnesses of the peripheral and central nervous systems are known as neurological
disorders. Muscle weakness, paralysis, convulsions, discomfort, poor coordination, and loss
of consciousness are common symptoms. There are more than 600 illnesses that affect the
neurological system, including brain tumors, Parkinson’s disease (PD), Alzheimer’s disease
(AD), multiple sclerosis (MS), epilepsy, dementia, headache disorders, neuro infections,
stroke, or traumatic brain injury. Neuropathological examinations of patients are widely
used to identify aberrant or atypical neurological diseases. However, most people have
abnormal neurological abnormalities that are not usually linked to a neurological illness [19].
Therefore, a brief review of the conditions and the related parts of the growing severity of
the diseases is given in Table 7.

3.1. Parkinson’s Disease (PD)

Parkinson’s disease (PD) is one of the most common neurological disorders worldwide,
involving one to two individuals per 1000 and with a prevalence rate of 1% in the population
over 60 years old [20]. Between 1990 and 2016, the anticipated global population affected by
PD more than quadrupled (from 2.5 million to 6.1 million), increasing the number of older
persons and age-standardized prevalence rates [21]. PD is a degenerative neurological
condition that affects several elements of movement, particularly planning, initiation, and
execution [22,23]. Before cognitive and behavioral abnormalities, including dementia,
movement-related symptoms such as tremors, rigidity, and initiating problems, can be
noted [24]. PD has a significant impact on patient quality of life, social functions, family
relationships, and it imposes high financial costs for individuals and societies [25–27].
Khojasteh et al. [14] investigated the effectiveness of a deep convolutional neural network
(DCNN) in discriminating between PD and healthy voices using spectral data. In addition,
the influence of various DCNN architecture designs and characteristics, such as frame
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size and the number of convolutional layers and feature maps, were examined on raw
pathological and healthy voices of differing lengths. Zhang et al. [28] used a PD screening
challenge with multiview data, which attempts to employ an MRI data diagnosis to prevent
and delay the progression of Parkinson’s disease. They presented a new DL architecture
dubbed DNN with broad views to accomplish this goal, based on Wasserstein generative
adversarial networks (WGAN), and ResNeXt can influence multiview data simultaneously.
Finally, Yuvaraj et al. [29] obtained high-order features using higher-order spectra (HOS)
to develop the PD diagnosis index (PDDI), which is a single value that can discriminate
between two classes. They also used various classifier techniques to aid clinicians in their
diagnosis and help test the efficacy of drugs. The efficiency of supervised classification
techniques, such as deep neural networks, in reliably diagnosing people with the condition
is investigated in this research(reference [30]). Wodzinski et al. [31] showed how to diagnose
Parkinson’s illness using vowels with prolonged phonation, and a ResNet architecture was
designed for picture classification. They estimated the audio recording’s spectra and used
them as an image input to the ResNet architecture, previously trained with the ImageNet
and SVD databases. Tagaris et al. [32] created a novel system that can make predictions
and judgments based on a dataset. Their core approach is to use deep learning approaches,
which are the state of the art in image analysis and computer vision-based CNN and
RNN. The study by Sivaranjini et al. [33] aimed to use a deep learning neural network to
categorize the MR images of healthy control and Parkinson’s disease participants. AlexNet,
a convolutional neural network design, was utilized to refine Parkinson’s disease diagnosis.
The transfer learning network trained and tested the MR images to determine accuracy
measures. The research by Shivangi et al. [34] aims to create a deep learning model with
two modules: a VGFR spectrogram detector and a voice impairment classifier. These
modules use convolutional neural networks (CNN) and artificial neural networks (ANN)
to provide a cheaper and more accurate objective diagnosis of PD early.

3.2. Dementia

Dementia is linked to the impairment of the elderly all over the world. Dementia
affects almost 50 million individuals worldwide, with an estimated 10 million new cases
diagnosed each year. Dementia is a syndrome in which cognitive performance, such as
thinking, remembering, and reasoning, deteriorates to the point where it conflicts with
daily life and tasks. Many dementia patients lose emotional control, and even personality
shifts occur. Memory loss, task difficulty, disorientation, language problems, behavioral
abnormalities, and lost opportunities for initiative are the most common indications and
symptoms of dementia. Dementia symptoms and signs were divided into three stages:
early, middle, and late. Due to the steady progression of 226 diseases, the early stage is
reasonably vague. It involves losing track of time, amnesia, and becoming lost in familiar
surroundings. The middle stage is more evident in events and identities. Additional signs
include communication difficulties and an increased need for personal care. With persistent
inquiry and roaming, behaviors are altered. The later stage is characterized by atypical
symptoms, such as near-total reliance and inactivity due to significant memory problems.
Difficulties walking, drastic behavioral changes, failures to recognize time and location,
and failures to identify relatives and friends are all detailed symptoms and indicators. The
five most common forms of dementia are as follows.

3.2.1. Alzheimer’s Disease

Alzheimer’s disease (AD) is a prevalent type of dementia, and a concern of health-
care in the 21st century. It is a degenerative brain condition characterized by the loss
of cognitive function, and is without a proper cure [35]. As a result, much work has
been in developing early detection tools, particularly in the pre-symptomatic phases, to
reduce or prevent disease progression [36,37]. Advanced neuroimaging technologies, such
as magnetic resonance imaging (MRI) and positron emission tomography (PET), have
been established and used to detect structural and molecular bio-markers associated with
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AD [38]. However, integrating large-scale, high-dimensional multimodal neuroimaging
data has become difficult because of the rapid advancements in neuroimaging techniques.
Lodha et al. [39] created a machine learning model that can reliably forecast a person’s risk
of AD based on a set of characteristics that include both cognitive and medical aspects.
Ebrahimighahnavieh et al. [40] developed a systematic literature review on DL to detect
AD from neuroimaging studies. A review of a new ML method for identifying Alzheimer’s
disease is also shown by Liu et al. [41].

3.2.2. Frontotemporal Dementia

Frontotemporal dementia (FTD) is a rare type of dementia that affects behavior and
communication and is detected in individuals aged <60. FTD is associated with aberrant lev-
els or types of tau and TDP-43 proteins. The most typical symptoms are extreme personality
changes, such as swearing, theft, or worsening personal cleanliness standards. Behavior
patterns that are socially improper, impulsive, or recurrent with impaired judgment, lack
of empathy, and lack of self-awareness are symptoms of this disease [42].

3.2.3. Lewy Body Dementia (LBD)

Lewy body dementia is a type of dementia characterized by Lewy bodies and aggre-
gates of alpha-synuclein. Following Alzheimer’s disease, it is the second most frequent
type of progressive dementia. It grows in the nerve cells in the parts of the brain that control
thinking, memory, and movement (motor control). It differs from Alzheimer’s disease,
which has less serious memory problems and more significant impairments in visuospatial,
attentional, and frontal-executive skills [43]. Only a post-mortem brain autopsy could
validate the probable diagnosis of LBD. However, researchers are looking for techniques to
detect LBD earlier in life and more accurately.

3.2.4. Vascular Dementia (VD)

Vascular dementia (VD) is a broad term that refers to reasoning, planning, judgment,
memory, and other thought processes [44]. This is generally caused by brain damage
resulting from reduced blood flow to the brain. It is a chronic condition encompassing a
wide range of cognitive dysfunctions produced by brain tissue damage induced by vascular
diseases [45]. VD is also a serious concern because of its significant incidence and absence of
effective treatments [46]. Though cognitive impairment caused by stroke usually improves
with time, vascular dementia caused by SVD is often progressive. Therefore, brain scans
such as computerized tomography (CT) or magnetic resonance imaging (MRI) are usually
performed on someone thought to be carrying VD to detect any alterations in the brain.

3.2.5. Mixed Dementia

Mixed dementia is a disorder in which the brain shows signs of more than one types of
dementias. The most prevalent forms are plaques and tangles associated with Alzheimer’s
disease and blood vessel alterations due to vascular dementia. When FTD is combined
with motor neuron disease, dementia progresses significantly more quickly with a mobility
problem. The typical life expectancy for persons with both illnesses was 2–3 years after
identification.

3.3. Multiple Sclerosis

“Scar tissue in various places” is the definition of multiple sclerosis. A scar or sclerosis
forms whenever the myelin sheath vanishes or is damaged in many locations. These
regions are also known as plaques or lesions. The brain stem, cerebellum (which regulates
movement), balance, spinal cord, optic nerves, and white matter in specific brain areas, were
affected. It is a potentially fatal brain and spinal cord condition (central nervous system). In
MS, the immune system attacks the protective sheath (myelin) that surrounds nerve fibers,
causing communication issues between the brain and the rest of the body. Four types of
MS are generally seen. The first is a clinically isolated syndrome (CIS), with symptoms
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persisting for at least 24 h. Relapse–remitting MS (RRMS) was the most frequent one. It
appears with episodes of new or worsening symptoms, followed by the symptoms being
subsided partially or entirely during periods of remission. Thirdly, primary progressive
MS (PPMS) cases are characterized by the persistent worsening of symptoms with no early
relapses or remissions. Fifteen percent of patients with MS had PPMS. Lastly, the secondary
progressive MS (SPMS) initially shows relapses and remissions in patients, regardless of
whether the disease proceeds slowly. Shoeibi et al. [47] reviewed DL techniques and the
applications of automated MS detection using MRI. Ye et al. [48] also developed a study
for the classification of multiple sclerosis lesions on deep learning using diffusion-based
spectrum imaging. In addition, an imaging-based machine learning approach to predict
conversion from a clinically isolated syndrome to multiple sclerosis was proposed by
Zhang et al. [49].

3.4. Cerebral Palsy (CP)

Cerebral palsy is a collection of neurological illnesses that begin in infancy or early
childhood and impact physical movement and muscle coordination for the rest of one’s
life. Damage or abnormalities in the developing brain create CP, which weakens the brain’s
capacity to control movements, maintain posture, and balance. Palsy is related to the
impairment of motor function, and cerebral refers to the brain. It affects the brain’s motor
region’s outer layer (also known as the cerebral cortex), which controls muscular action.
Zhang et al. [50] described the application of supervised machine learning algorithms in the
classification of the sagittal gait patterns of cerebral palsy in children with spastic diplegia
in their study. Bertoncelli et al. [51] identified factors associated with the autism spectrum
disorder in adolescents with cerebral palsy using artificial intelligence (AI). The medical
diagnosis of cerebral palsy rehabilitation using eye images in ML techniques was proposed
by Illavarason et al. [52].

3.5. Brain Tumor

A brain tumor is a collection of abnormal cells called neurons that form a mass. There
are many distinct types of brain tumors. Certain brain tumors were benign (noncancerous),
whereas the others were cancerous (malignant). The indications for a brain tumor vary
based mainly on tumor size and location. Many tumors infiltrate the brain tissue and
inflict direct injury, while others damage the surrounding brain. Missing borders, noise,
and low-contrast factors affected brain tumor segmentation in medical image processing.
MRI segmentation utilizing learning algorithms and patterns recognition technologies
for analyzing brain data is particularly effective. The technique is a parametric model
that considers functions chosen based on the density function [53]. With modern clinical
imaging modalities, the early detection of these brain tumors is critical for accessible
therapy and healthy living. Particle emission tomography (PET), MRI, and computed
tomography (CT) are the most popular modalities used to examine brain tumors [54]. Anil
et al. [55] proposed a brain tumor detection method from a brain MRI using deep learning
that classified into two classes: with tumor and without tumor. Wu et al. [56] used an
artificial intelligence algorithm to diagnose pregnancies complicated by brain tumors using
ultrasonic diagnostics. The role of AI in the study of pediatric brain tumor imaging was
also investigated in a comprehensive review by Huang et al. [57].

3.6. Epilepsy and Seizures

Epilepsy is a neurological condition characterized by recurrent seizures. It is a preva-
lent long-term mental illness. A seizure is an abrupt shift in behavior caused by a moment
of alteration in the brain’s electrical activity. Typically, the brain sends out small electric
signals regularly. This produces epileptic seizures, which are electrical bursts in the brain.
Epilepsy can be classified into four types: focal, generalized, combination-focal, and unde-
termined. The kind of seizure a person experiences depends upon the type of epilepsy they
experience. When a seizure occurs while an EEG is recorded, the usual pattern of brain ac-
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tivity is disrupted, and unusual bradycardia patterns emerge. When a seizure occurs, EEG
is recorded, the regular pattern of brain activity is disrupted, and unusual brain activity
can be observed. The electrodes on the brain area where the seizure is occurring can show
brain changes during focal seizures. Kaur et al. [58] provided a synopsis of studies on the
application of AI systems for real-time pattern detection in EEG for the clinical diagnosis of
epileptic seizures. By replicating brain network dynamics, An et al. [59] evaluated artificial
intelligence and computational methodologies for the automatic diagnosis and optimal
treatment for each epilepsy patient.

With the detailed analysis of NDs and their symptoms, the main focus is detecting
NDs with AI. For detection, images of the brain or other parts of the nervous system are
required, which is briefly described in the following section.

4. Neuroimaging Modalities

Neuroimaging modalities are screening procedures used to diagnose neurological
diseases. For clinicians and neurologists, functional neuroimaging is critical information
regarding brain function during the development of any condition [60–62]. Specialists
can learn a lot about persons who may have neurological issues using structural neu-
roimaging techniques [63]. The most used neuroimaging modalities include magnetic
resonance imaging (MRI) [64], electroencephalography (EEG) [65], magnetoencephalogra-
phy (MEG) [66,67], positron emission tomography (PET) [68,69], single-photon emission
computed tomography (SPECT) [70–72], functional MRI (fMRI) [73–75], computed tomog-
raphy (CT) [76], and functional near-infrared spectroscopy (fNIRS) [77–80], etc. In the
following subsection, we discuss the 370 most commonly used neuroimaging modalities.

4.1. Magnetic Resonance Imaging (MRI)

MRI is the best clinical procedure for diagnosing and analyzing various diseases,
including brain tumors and epilepsy [81,82]. Typically, a system controlled by hardware
or computers aids in automating a procedure to produce precise and timely results. It
is a painless and secure test that employs a magnetic field and radio waves to create
high-resolution two-dimensional or three-dimensional images of the brain stem. The
brain, spinal cord, and vascular anatomy have been described. Some advantages include
witnessing anatomy in all three planes: axial, sagittal, and coronal. MRI outperforms CT
in detecting circulating blood and cryptic vasculature abnormalities. It can also detect
demyelinating disease and does not have the beam-hardening artifacts of the CT images.
The posterior fossa was more prominent. As a result, MRI allows for a better visualization
of the posterior fossa than CT. Ionizing radiation was not used during the imaging process.

4.2. Electroencephalography (EEG)

Electrical activity on the skull is recorded using EEG, and brain neurons play an
influential part in stimulation. EEG is the most widely used method for studying the brain’s
functional anatomy throughout neurological disorders and collecting brain activity. This is
prevalent because of its superior temporal resolution, safety, and affordability [83,84]. These
non-Gaussian and non-stationary signals are used to determine the type of brain disease by
covering the brain’s electrical activity. Implementing either inbuilt amplifiers or external
amplifiers has the primary goal of reducing the influence of ambient noise. The readings can
distinguish normal and pathological brain processes. Experienced Neurologists investigate
epilepsy by analyzing continuously recorded EEG signals. One of the problems with EEG
is that it requires gels or saline liquids to reduce the skin–electrode resistance. In addition, it
requires a significant amount of human effort and time over days, weeks, or even months.

4.3. Magnetoencephalography (MEG)

MEG scanning, or magnetoencephalography, is a brain imaging technology that de-
tects and analyzes small magnetic fields created in the brain [85–87]. The scanning produces
a magnetic source image (MSI), which was used to identify the beginning of the seizures.
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MEG also monitors current flow in the brain to estimate the magnetic areas. Electric fields
go through the skull more frequently than magnetic fields, and they have a better spatial
resolution than EEG. The brain’s magnetic field was measured and evaluated using a
neuroimaging approach. It works on the outside of the head and is now routinely used
in clinical treatment. MEG has grown increasingly important, particularly for individuals
suffering from epilepsy and brain malignancies. It could help discover brain regions with
normal functions in epilepsy, tumors, or other mass lesions. MEG captures motions with an
extremely high temporal and spatial resolution as well. As a result, scanners must be placed
near the brain’s surface to detect the cerebral activity that produces small magnetic fields.

4.4. Positron Emission Tomography (PET)

Positron emission tomography (PET) is a functional imaging modality that visualizes
with radioactive chemicals called radio tracers [88–90]. It is a high-tech imaging technology
that examines brain activity in real-time and accomplishes the non-invasive monitoring
of cerebral blood flow, metabolism, and receptor binding. A PET-CT scan combined 3D-
generated images for a more precise diagnosis. Initially, PET was utilized only in research
due to the comparatively high costs and complexity of the associated equipment, includ-
ing cyclotrons, PET scanners, and radio-chemistry laboratories. Owing to technological
advancements and the ubiquity of PET scanners, PET scanning has been increasingly used
in clinical neurology in recent decades to enhance our knowledge of illness etiology and
facilitate diagnosis.

4.5. Functional Magnetic Resonance Imaging (fMRI)

Functional magnetic resonance imaging, or functional MRI, defines brain activity
by distinguishing the variations in blood flow. The concept that cerebral blood flow and
neuronal activity are connected is the foundation of this method. When a part of the brain
is used, blood flow to that part of the brain increases. Because fMRI has a high spatial
resolution, it is useful for detecting active brain regions [91]. The fMRI method has a low
time resolution of one to two [92]. It also has a low head-movement resolution, which might
cause distortions. Scans from fMRI are based on the same atomic physics principles as MRI
scans. On the other hand, MRI scans depict anatomical structures, whereas fMRI scans
measure metabolic function. As a result, the MRI scan results resemble three-dimensional
depictions of anatomic structures. It is used to track the progression of brain cancers, assess
how well the brain functions after a stroke or Alzheimer’s diagnosis, and detect where
seizures originated in the brain.

4.6. Functional Near-Infrared Spectroscopy (fNIRS)

Similar to fMRI, functional near-infrared spectroscopy (fNIRS) is a non-invasive brain
imaging technology that monitors variations in blood oxygenation [93]. The approach
detects variations in the absorption of light emitted by sources onto the surface of the head
and is monitored by the detectors. Any brain surgery requires extra oxygen. Capillary red
blood cells provide this extra oxygen to the neurons and increase blood flow in the active
brain regions.

4.7. Computed Tomography (CT)

One of the most often-utilized diagnostics in neurology is computed tomography
(CT) [76]. In the 1970s, it revolutionized neurology by allowing the high-resolution viewing
of cerebral structures. MRI has primarily replaced CT in the examination of several neuro-
logical conditions. However, it still plays a role in the crucial evaluation of stroke and head
trauma patients. It assesses head trauma, severe headaches, dizziness, and other symptoms
of an aneurysm, hemorrhage, stroke, and brain tumors using specialized X-ray equipment.
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4.8. Single-Photon Emission Computed Tomography (SPECT)

A single-photon emission computed tomography (SPECT) scan is an imaging exami-
nation. This illustrates how blood flows through the tissues and organs [70,94,95]. Seizures,
strokes, stress fractures, infections, and spinal malignancies may all be diagnosed using
the test. This scanning technique combines computed tomography (CT) and a radioactive
tracer to produce a nuclear imaging scan. Experts can see how blood travels to tissues and
organs using the tracers. It is primarily used to examine blood flow through the brain’s
arteries and veins. It may detect diminished blood flow in wounded regions. It has been
demonstrated to be more responsive to brain damage than both MRI or CT scanning in tests.
This test differs from a PET scan. The tracer remains in the bloodstream of humans instead
of being absorbed by surrounding tissues, limiting the images to areas where blood flows.
SPECT scans are cheaper and more readily available than higher resolution PET scans.

The images or brain signals extracted from these modalities contain so much noise that
they must be removed to classify better. The following section shows a standard number of
pre-processing techniques.

5. Pre-Processing Techniques for Neurological Disease Detection

Pre-processing improves the quality of experimental data and prepares it for statis-
tically significant analysis [10,96]. Neuroimaging modalities from various origins consist
of noise, including mobility, average signal intensity, and spatial distortions. To provide
proper analysis, this troubling amount of noise and other artifacts must be eliminated from
the dataset. Brain extraction [97], histogram normalization [98,99], and co-registration [100]
are among these processes.

5.1. Normalization (NM)

Normalization [101] is similar to image registration. It coordinates and warps the
present image data into a size and form similar to a generic anatomic template. Normaliza-
tion interprets the brain MRI on a standard shape and size by comparing different brain
MRI scans. It converts data from a discrete topic space to a reference space that includes a
template and source pictures. Most deep learning methods normalize the image intensity
with zero mean and unit variance. Normalization can be accomplished using various ways:
advanced normalization tools (ANTs) [102,103], standardization [104], intensity normaliza-
tion [105,106], spatial normalization [107–109], Z-score normalization [110,111], statistical
parametric mapping (SPM) [112,113], and numerical normalization, were used.

5.1.1. Histogram Normalization

Histogram normalization is a typical technique for enhancing fine detail in an im-
age [114]. The summation of the representation intensity histogram values, including the
grayscale values, was determined for each column in the cumulative histogram. After then,
it is scaled to a final value of 1.0. A histogram matching method was presented to address
changes in scanner sensitivity owing to variances in scanner performance [98,99]. Using
this strategy, differences in white matter (WM) intensities may be reduced from 7.5 to 2.5%.

g′(x, y, z) =
HIR− LIR
Smax − Smin

(g(x, y, z)− Smin) + LIR (1)

If the target histogram of the input image g(x, y, z) starts at Smin and extends up to
Smax grayscale levels, it can be scaled up between the lower and the upper boundaries.
This results in voxels in the new normalized image g′(x, y, z) lying between a minimum
level (LIR) and maximum level (HIR). The lower and higher boundaries of the reference
image before scaling up are represented by the variables m1 and m2.

5.1.2. Spatial Normalization

This entails deforming each patient’s brain image to accommodate a standardized
(template) brain image. Eliminating global differences in the size and orientation of each
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’normalized’ brain and ensuring that the same anatomical regions in each image occupy
the same voxels, results in lower statistical variance and higher power. It manipulates the
MRI scans into a stereotyped space so that the location of one MRI scan resembles that of
other MRI scans from the same patient [107,109,115–118].

5.1.3. Intensity Normalization

Intensity normalization is a crucial step in the study of brain magnetic resonance im-
ages (MRIs) [105,106]. Several scanners or parameters might be utilized to scan other people
or the same subject at different times during MR image acquisition, resulting in considerable
intensity fluctuations. It is used to decrease the intensity variance generated by scanning
various subjects or the same subject using different scanners or parameters [119,120].

5.1.4. Z-Score Normalization

A data normalization approach defines the divergence of sample data from the dis-
tributed methods to prevent outlier concerns [121]. Imagine utilizing Z-score normalization
to transform the data into a more straightforward format. In this situation, our brains have
no trouble comprehending it [110,111].

5.1.5. Numerical Normalization (NNM)

This refers to using a mathematical function to transform numerical numbers into a
new range. It helps to compare distinct empirical values on multiple scales, allowing their
relationship to shine clearly [101].

5.2. Filtering

Filtering is a method for altering or improving the images. It is a neighborhood
operation generated by running an algorithm on the values of pixels in the vicinity of the
matching input pixel. Filtering in image processing is often used to attenuate either the
image’s high frequencies, smoothing it out, or the image’s lower frequencies, boosting or
detecting the edges. There are a variety of filtering techniques, including spatial filtering
(SF) [122], temporal filtering (TF) [123], Wiener filtering (WF) [124,125], and high-pass
filtering (HPF).

5.2.1. Spatial Filtering (SF)

Spatial filtering is a technique for modifying the qualities of an optical image by
deleting the specific spatial frequencies that comprise an object [126]. This is a pixel-by-
pixel picture-enhancement approach. The value of the filtered current pixel is determined
by both itself and nearby pixels [122,127].

5.2.2. Temporal Filtering (TF)

A temporal filter determines the spatial placement of the pixel values. It recognizes the
collocated reference pixel at least one prior frame. It eliminates frequencies of interest from
the raw signal, resulting in a significant increase in signal-to-noise ratio (SNR) [123,128,129].

5.2.3. Wiener Filtering (WF)

Rician noise is a common signal-dependent disturbance found in MRI images. Wiener
filtering is a recommended technique for reducing the Rician noise. However, it is also an
MSE-optimal stationary linear filter for images split with frequency components and blur.
Therefore, the Wiener filter must be calculated based on the hypothesis that the signal and
noise processes are both second-order stationary.

5.2.4. High-Pass-Filtering (HPF)

A high-pass filter (HPF) is an electric filter that allows signals above a specific cutoff
frequency to pass while attenuating sounds below that frequency. For instance, low-
frequency fluctuations in fMRI data might be observed, distinguished by physiological and
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physical noise. If not addressed, these signal drifts could have a massive effect on statistical
data processing. In this case, the high-pass filter feature was used to cut frequencies below
a known threshold underneath the lowest frequency.

5.3. Stripping

A preliminary stage of MRI analysis is skull stripping, or brain extraction [130,131].
Skull removal is an important pre-processing stage that removes non-brain tissues from
brain MRI scans [132]. Several clinical applications and data analyses also require stripping
or brain extraction. Additionally, a practical way for improving data analysis speed and
experimental accuracy was determined by automated skull stripping. The FMRIB Software
Library’s (FSL) brain extraction program and the optimization of the multiplicative intrinsic
component are frequently used for skull stripping [133].

5.4. Scaling

Scaling is measuring and assigning numbers to items based on predetermined stan-
dards. Scaling, in other terms, is the process of situating measured items on a continuum,
a continuous sequence of numbers to which they are assigned. Image resizing, image
registration, resolution improvement, correction, and other difficulties in MRI scans require
modifications.

5.4.1. Image Resizing (IRE)

Image resizing is needed to increase or decrease the total amount of pixels in an
image. In contrast, it remaps when it compensates for lens distortion or rotating. The pixel
information in an image is modified when it is scaled [134,135].

5.4.2. Image Registration (IR)

IR is a technique for aligning several images in medical image analysis to validate the
spatial correlation of anatomy across distinct photos. Linear and non-linear are two types of
registration algorithms. Linear registration (Lrg) is global and uses either a six-parametric
rigid transformation or a 12-parametric affine transformation (rotation, translation, scaling,
and shearing on the x, y, and z axes). Non-linear registration, on the other hand, tends to
elevate the extent of the elasticity and local deformation of the model [136–138].

5.4.3. Distortion Correction (DC)

The fMRI sequences are sensitive to magnetic inhomogeneity (T2*) effects because they
detect gradient echoes. It affects the anterior temporal and frontal lobes, causing dropouts
of signals around the foundation of the skull and spatial distortions. Field mapping,
unwarping, and correction of phantom-based distortion are some of the ways to reduce
these distortions [139].

5.4.4. Contrast Enhancement (CE)

The CE method was employed to contain histogram clustering to rectify the distribu-
tion. CLAHE, a CE approach, was used in reference [140].

5.4.5. Bias Correction and Bias Regularization (BC, BR)

A low-frequency biased signal mostly contaminates the MRI images. Notably, a
variety of bias correction methods can be applied, as they are produced by older MRI
equipment [116,117,133].

5.5. Correction

Slice timing correction and motion correction are crucial pre-processing techniques for
correcting image slice-dependent delays and subject motion, respectively [141].
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5.5.1. Motion Correction (MC)

Head motion is the most common cause of error in fMRI research and is addressed
during valuable data acquisition. Unwanted variance in voxels was also introduced by
trivial head motions, thereby lowering data quality. Motion correction decreases the impact
of movements on the picture data by orienting the data to a reference time volume, as
explained in references [142–144]. The MCFLIRT module of the FSL library was used to
correct motion [115,145].

5.5.2. Slice Timing Correction (STC)

In most fMRI investigations, not every slice in a volume is acquired simultaneously.
This means that the signal captured from one portion may be off by up to several compared
with the signal recorded from the other [142]. As a result, the temporal discrepancies
between the slices must be considered. For slice timing correction, there are two primary
solutions to this. The most typical method is data shifting, which involves moving the
recorded points to consider their proper offset from the moment of incites.

5.6. Smoothing

Smoothing is a technique of eliminating noise in a picture and producing a less
pixelated image as a result [33].

Spatial Smoothing (SS)

The average of the signals from adjacent voxels is spatial smoothing. It improves the
SNR while lowering the spatial resolution, obscuring the image, and smudging started areas
onto adjacent voxels. The technique can be challenging since nearby voxels’ functions coor-
dinate blood supply. Spatial smoothing attempts to cope with the variability of functional
anatomy that has not been addressed by spatial normalization (“warping”), thereby improv-
ing SNR. The user must specify the kernel width in mm “full-width half max” when doing
spatial smoothing using a spatially stationary Gaussian filter [115,118,142,143,145,146].

After the pre-processing stage of the basic structure of ML or DL classification models,
an initial set of raw data analysis consists of various groups of subjects and their dimen-
sionality. Then, the process of reducing these data into more manageable groups and
dimensions named feature extraction is described in the following section.

6. Feature Extraction Techniques for Neurological Disease Detection

The primary feature extraction aims to obtain further information from the raw signals
by transforming extensive data into fewer feature vectors. Feature extraction approaches
are used to extract features with several varieties. Several of them are included in the
following section.

6.1. Discrete Wavelet Transform (DWT)

The DWT disintegrates a signal into many groups [147], and each is a time series of
coefficients characterizing the signal’s time development in the appropriate frequency band.
It decomposes a signal into a collection of finite-length basis functions called wavelets,
enabling specific signal properties to be targeted in time. DWT is called multi-analysis
(MRA) and simultaneously preserves both time and frequency information. Different
frequency bands provide helpful information for image processing. Sharp edges of the
images are found in the highest bars, whereas the global characteristics are distributed in
low-frequency bands. Hence only the approximation band is retained, and the remain-
ing band is eliminated [148]. Several researchers have utilized DWT for their feature
extraction [149–153].

6.2. Discrete Cosine Transform (DCT)

The discrete cosine transform (DCT) facilitates the separation of an image into portions
of different relevance in terms of visual quality. It transforms a signal or image from the
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spatial domain to the frequency domain, similar to the discrete Fourier transform (DFT).
It represents the sum of the sinusoids with various frequencies and amplitudes. This
transform focuses the majority of the signal power in a tiny portion of the domain, which
in the DCT domain is proven to be the upper-left corner of the transformed image [148].
As a result, fewer coefficients were measured by estimating the original signal, resulting in
sparse features. Researchers have utilized the DCT in references [154–157].

6.3. Linear Discriminant Analysis (LDA)

LDA is a technique used to reduce dimensionality in supervised learning. The goal is
to maximize the distance between every class while minimizing the spread of the class [158].
Consequently, LDA employs both within-class and between-class measures. Each class will
have generally distributed the discriminant parameters. Dimensional data are transformed
into a line in a given direction for a two-class problem. The projection direction was chosen
based on a variety of factors. Fisher’s linear discriminant aims to maximize the ratio of
between-class to within-class dispersions. The authors in references [159–162] utilized LDA
in their research.

6.4. Principal Component Analysis (PCA)

PCA is a superior statistical technique to extract features and reduce dimensionality. It
employs an orthogonal transformation to reduce a large number of associated smaller sets
of linear variable values [163]. PCA had the highest volatility characteristic that contained
the most information about specific classes. A p-dimensional dataset is represented in a
smaller set of n dimensions, with the idea being that each with n lead the eigenvectors of
the global covariance matrix [164]. Researchers have used PCA in references [165–169].

6.5. Independent Component Analysis (ICA)

ICA is a computational approach to split multivariate signals into additive sub compo-
nents in signal processing [170]. This is accomplished by assuming that the sub components
are statistically independent and possibly non-Gaussian signals. It emphasizes mutually in-
dependent components. The spatial ICA or temporal ICA domain is the common imposing
independent component for neuroimaging analysis. The cerebral activity is sparse over
several voxels, and spatial ICA is more commonly utilized in fMRI studies. Consequently,
autonomous components isolate as many coherent networks as feasible. However, the prob-
lem arises with the assumption of sparsity as spatial because ICA splits each non contiguous
activity cluster into independent components. Although scalp recordings have unique time
courses, ERP data are frequently utilized by temporal ICA. The underlying components
are temporally independent but can overlap spatial topographies [171]. Researchers have
utilized ICA in references [172–176].

6.6. Statistical Features

Several statistical measures have been used to extract while extracting neurological
features. These are skewness, kurtosis, and peaks. Some of these are as follows.

Skewness: Skewness is a time-domain metric that gauges the symmetry of a signal
around its mean. It can have one of three values: positive, negative, or zero. This is defined
as follows:

Skewness =
E
[
(S(n)− S̄)3]

σ3 (2)

where s and E represent the mean, standard deviation, and statistical expectation, respec-
tively. Skewness is negative when the left distribution is more pronounced than the proper
distribution and vice versa. It exhibits zero skewness when both are equal.

Kurtosis: Kurtosis determines whether the data are heavy or a light-tailed normal
distribution of the EEG signals. Heavy tails and a noticeable peak near the mean were
expected when kurtosis was strong, while the low kurtosis has light tails and a flat top
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near the mean rather than an intense peak, and the high kurtosis has a sharp peak. For a
genuine discrete signal s(n), the kurtosis is defined as:

Kurt =
m4[S(n)]
m2

2[S(n)]
(3)

where mi[s(n)] is the ith central moment of s(n)

mi[s(n)] = E
[
(S(n)− S̄)i

]
(4)

6.7. Hilbert–Huang Transform (HHT)

The Hilbert–Huang transform (HHT) obtains instantaneous frequency data by de-
composing a signal into an intrinsic mode and a trend [177]. It is an adaptive technique
with a wide range of stoppage criteria used in various applications, including geophysical
and biomedical signal processing. Empirical mode decomposition (EMD) and the intrinsic
mode function (IMF) are two processes of the HHT (IMF). The self-distinct oscillation
formed from the original data is a distinguishing feature of EMD. The signal is in the
self-oscillation phase, and the IMF can detect every change. The zero-crossing and the
number of local extremes must be the same, or the dissimilarity must be one, to obtain the
IMFs. Several researchers employed the HHT extraction process in their work, as seen in
references [178–182].

6.8. Wavelet Entropies

Wavelet-based entropies determine the information-related features of a signal. For
non-stationary signals, entropy was used to determine how the signals are laid out. Norm
entropy, sure entropy, threshold entropy, Shannon entropy, and logarithmic entropy are
some of the entropies that are employed. The sure entropy is a type of wave that can
be calculated using the discrete wavelet transform (DWT) [183]. Threshold Entropy is
a method for determining the number of times the signal exceeds the p threshold in a
certain period [184]. Because Parseval’s theory corresponds to the signal’s frequency of the
Fourier transform, it is a unified theory for estimating its energy despite specifying its time
domain [185].

6.9. Hybrid PCA-NGIST Method

The hybrid PCA-NGIST feature extraction method incorporates the PCA approach
with the GIST descriptor after normalization, using the L2 norm and resulting in a PCA-
based normalized GIST feature extraction method. Two studies of Gumaei et al. [186,187]
introduced a normalized GIST (NGIST) descriptor as an improved version of the original
GIST descriptor. The NGIST can use the L2 norm to overcome the problem of variations for
image illumination and shadow, respectively. It is a low-dimensional representation used
to summarize image orientations and scales, offering a rough depiction of normalized data
without segmentation. PCA is a typical feature extraction and reduction method, and it
builds a new compact set of relevant features from the original GIST features. Thereby it
can avoid the overfitting problem in the classification stage. The PCA-NGIST approach
calculates GIST features from brain pictures. It determines the eigenvectors with the
highest eigenvalues, then projects them onto a new feature subspace with the same or
fewer dimensions. Some other research work utilized this extraction method recently in
references [188,189].

6.10. Histogram of Oriented Gradients

The histogram of oriented gradients (HOG) defines all the aspects of an image’s objects.
HOG is a feature descriptor algorithm that uses many occurrences in localized sections to
identify the tumor region [190–193].
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After applying these various feature extraction techniques, the basic structure of the
detection model led to the classification of data points. The primarily used classification
algorithms that predict a particular outcome based on a given input from the test data are
described in the next section.

7. Classification Algorithms for Neurological Disease Detection

Artificial intelligence (AI) has touched every element of human life, and neurology
is no exception. The purpose of this study was to instruct medical practitioners on the
relevant aspects of artificial intelligence, namely machine learning and deep learning, to
review the development of technological advancements equipped with AI, and to explain
how machine learning can revolutionize the control of neurological diseases [194]. A
concise description of ML and DL algorithms is further given in this section.

7.1. Machine Learning Algorithms

Machine learning is a branch of artificial intelligence (AI) that allows computers to
learn and improve independently without explicitly being programmed. Machine learning
is concerned with creating computer programs that can access data and learn independently.
Researchers are using machine learning approaches to find statistical patterns in massive
datasets to solve a range of problems, including those in neuroscience. In some sectors,
recent improvements have resulted in an explosion in the scope and complexity of issues to
which machine learning can be applied, with accuracy that rivals or exceeds that of humans.
Machine learning (ML) has recently gained popularity for medical disease diagnosis owing
to its ease of implementation and high accuracy [195]. As a statistical probability, ML
also makes stage predictions of NDs. An ML-based technique was used to determine the
actual region to be operated on during ND brain surgery. Some researchers employed
machine learning to predict the tremor level of patients with NDs and quantify the cognitive
implications of NDs. A common structure of data analysis or classification of ML methods
is shown in Figure 3. In addition, some commonly used machine learning algorithms to
detect NDs are described below:

Input

Signal/MRI
images

Feature
Extraction

Classification
/Clustering

Diagnosis

Output

Figure 3. Representation of common machine learning structure.

7.1.1. Support Vector Machine (SVM)

The SVM uses a non-linear mapping function to map the input data into high-
dimensional areas called feature spaces [196]. They determine the appropriate hyperplane
for separating the data. SVMs execute linear modeling after projecting the data into another
space, whereas traditional linear modeling is performed in the input space. In most cases,
functioning as a “black box”, SVMs face problems in interpreting a model’s logic. There-
fore, it was a cutting-edge model until its NN architecture outperformed it. In addition,
SVM models can adapt effectively to imaging-specific tasks, such as anomaly detection,
by utilizing a one-class SVM. One class of SVMs also contributed to medical applications
to address the problems with brain tumor detection [197,198]. Some related studies about
SVM in the field of neurological diseases are tabulated in Table 8.
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Table 8. A tabulation of result analysis of SVM classifier.

Ref. Dataset Evaluation Metrics Methods Accuracy

[199] EEG Dataset [200] Epilepsy Accuracy, Sensitivity,
Specificity Above 95%

[201]
CP and Normal
Children’s Gait
Data [202]

Cerebral Palsy Accuracy, Sensitivity,
Specificity Above 82%

[203] 3D Brain MR Image Multiple Sclerosis Accuracy, Sensitivity,
Specificity 0.996

[204] ADNI Alzheimer Disease Precision, Recall,
F-measure 96.63%

[205] Brain Tumor MR
Images from Kaggle Brain Tumor Accuracy 92%

[206] U/I Dementia
Accuracy, Sensitivity,
Specificity, F1-Score,
Precision, MCC

92.36%

[207]
Parkinson’s Disease
Handwriting Data
(NewHandPD)

Parkinson’s Disease Accuracy, Sensitivity,
Specificity, F1-Score 77.45%

7.1.2. Gaussian Mixture Models (GMM)

Gaussian mixture models (GMM) are probabilistic models utilized in supervised and
unsupervised learning. According to the model hypothesis, data can be represented as
a weighted sum of finite Gaussian component densities. Two parameters characterize
each density component: a mean vector and a covariance matrix. Component parameters
are calculated using the “expectation maximization” (EM) algorithm, maximizing the
component densities’ log-likelihoods. Drawing from the calculated mixture of Gaussian
densities was used to achieve this inference. Due to its capacity to represent a vast class
of sample distributions, GMMs are frequently employed in biometric systems, such as
speaker recognition systems. The GMM’s capacity to produce smooth approximations to
arbitrarily shaped densities is one of its most impressive features. For datasets of NDs that
have significant voice data, GMMs can play a promising role in classifying them. The GMM
has shown promise in medical applications, such as medical imaging [208] and identifying
Parkinson’s disease [209]. Some corresponding analyses about GMM are tabulated in
Table 9.

Table 9. GMM classifier result analysis on various NDs

Ref. Dataset Evaluation Metrics Methods Accuracy

[210] Cancer-Imaging Archive Brain Tumor Accuracy, AUC 94.11%

[211] Image from Longitudinal MS Lesion
Segmentation Challenge Multiple Sclerosis

Dice Similarity Coefficient (DSC), True
Positive Rate (TPR), False Positive
Rate (FPR), Volume Difference (VD)
and Pearson’s r Coefficient

DSC: 0.62

[212] Epileptic EEG dataset [200] Epilepsy Accuracy 99%

[213]
Dataset from Department of
Neurology in Cerrahpaşa Faculty of
Medicine, Istanbul University [214]

Parkinson’s Disease Accuracy, MCC 89.12%

[215]
SPECT Datasets from Clinic of
Nuclear Medicine, University of
Erlangen-Nuremberg

Dementia Accuracy 93.39%
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7.1.3. K-Nearest Neighbors (K-NN)

The K-nearest neighbors (K-NN) is an instance-based model. The performance of the
inference depends on its nearest neighbor values. The model requires less training as all
training data are stored in memory and used throughout the prediction phase, which is
a significant advantage. The K-most-similar neighbors to the new sample are recognized
using a distance function [216]. The label of the unknown sample is the average of the labels
of its closest neighbors. The K-NN classifier determines the data vectors by considering the
classes and examining the diseases’ components. In some cases, where an ND has multiple
classes, including mild, severe, or healthy, the K-NN classifier shows the efficiency. Many
researchers used K-NN and FK-NN models to diagnose neurological illnesses [217]. Fuzzy
K-NN (FK-NN) is a more advanced approach that has been used to diagnose Parkinson’s
disease using computational speech analysis [218,219]. There are some corresponding
analyses about KNN that are tabulated in Table 10.

Table 10. KNN classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[220] Collected from
Clinical Courses Multiple Sclerosis F1-Score, Precision,

Accuracy F1: 81%

[217] PD Dataset [221] Parkinson’s Disease Sensitivity, Specificity,
Accuracy 96.07%

[222] EEG Dataset Epilepsy Sensitivity, Specificity,
Accuracy Above 95%

[223]
Hyperspectral Brain
Cancer Image
Database

Brain Tumor Euclidean &
Manhattan distance U/I

7.1.4. Generative Adversarial Networks (GAN)

A contemporary ML approach is the generative adversarial network (GAN). The two
ANN models competed in training each other simultaneously in the GAN. Machines can
use GANs to imagine and develop new images independently. It has been evaluated in
contexts of medical image synthesis [224] and patient-record production [225]. There are
some related analyses about KNN that are included in Table 11.

Table 11. GAN classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[226] ADNI Dataset Alzheimer’s Disease Accuracy, Recall,
Precision, F-2 94.1%

[227] ADNI & NIFD Alzheimer’s Disease Accuracy, Sensitivity 87.80%

[228]
CHB-MIT, Freiburg
Hospital &
EPILEPSIAE Dataset

Epileptic Seizure AUC above 80%

[229] UCI Dataset [230] Parkinson’s Disease Accuracy, Sentivity,
Specificity 91.25%

7.1.5. Random Forests (RF)

RF is a decision tree-based ensemble approach. Ensemble methods produce a more
efficient prediction model by combining the results of various learning algorithms. Each RF
tree was constructed using a random subset of the training data and the characteristics that
improve the generalization and robustness to outliers. The final estimation is the average
or the majority of the trees’ calculations, whether the goal is a regression or classification
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task [231]. There are some result analyses about RF that are included in neurological disease
detection in Table 12.

Table 12. RF classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[232] Parkinson’s Disease
Dataset [221] Parkinson’s Disease

Accuracy, Kappa,
Precision, Recall, AUC,
F-measure

94.89%

[233]
Collected from
Cerebrum Web
Informational Index

Brain Tumor Sensitivity, Specificity,
Accuracy 98.37%

7.1.6. Artificial Neural Network (ANN)

A neural network (artificial neuron network) is a computational model that shows
how nerve cells work in the brain. The term “ANN” refers to parallel architecture inspired
by how biological neural processing works. Artificial neural networks (ANNs) use learning
algorithms that can make adjustments or learn on their own as new information is received.
As a result, they are an excellent tool for non-linear statistical data modeling [234–236]. The
multi-layer feed-forward neural network is popular among various ANN architectures.
The L-M algorithm is efficient and strongly recommended for neural network training for
small- and medium-sized networks, according to Hagan et al. [237]. There are some result
studies about ANN that are tabulated in NDs detection in Table 13.

Table 13. ANN classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[238] Clinical & HRV data Cerebral Palsy AUC >90%

[239] Independent Samples Multiple Sclerosis ROC curve 94.5%

[240]
Population-Based Nested
Case-Control Study
Sesign

Alzheimer’s Disease Sensitivity, Specificity,
Accuracy, AUC 92.13%

[241]
University of California at
Irvine (UCI) Machine
Learning Repository

Parkinson’s Disease Accuracy, Sensitivity,
Specificity, MCC 86.47%

7.2. Deep Neural Network Algorithms

Deep learning (DL) is a more advanced tool for machine learning (ML) systems, which
is a subset of artificial intelligence (AI) in the computer science field [242]. In other words,
DL is considered a branch of machine learning that can be used to create models that
extract high-dimensional characteristics from data. It has gotten a lot of attention in recent
years, notably in the field of image analysis. A common structure of image analysis or the
classification of DL methods is shown in Figure 4. In addition, a brief discussion on DL
classifiers is represented further.

Input

Signal/MRI
images

Diagnosis

OutputInput Layer Multiple hidden layers

Feature Extraction + Classification

Figure 4. Representation of common deep neural network structure.
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7.2.1. Convolutional Neural Network (CNN)

CNN’s have performed admirably in various computer vision and pattern recognition
tasks recently. CNNs sparked significant interest after it won the ImageNet [243,244]
competition in 2012, although it was first published in 1989 [245]. This achievement
can be attributed to extracting fundamental spatial qualities from raw data. CNNs can
easily define data without requiring human intervention in feature selections [246]. The
convolution, pooling, and fully linked are the three primary layers of a CNN. CNNs
perform considerably better than the previous highest-computing algorithms on a dataset
of approximately one million photos containing thousands of different classifications.
CNNs are feed-forward neural networks usable in image processing, pattern recognition,
and classification problems. The visual cortex’s biological mechanism influenced this
architecture. That is why this architecture works far better in MRI image processing,
symptomatic pattern detection, or the classification of NDs. The convolution layer filters
the input data, such as kernels with trainable parameters, to create the feature map. The
feature map is then down-sampled using the pooling layer to reduce the dimension and
consequently the computational complexity and overfitting. These settings enabled the
learning of many network features while keeping the number of traceable parameters
low. The CNN has fewer specialized jobs than typical deep learning systems and learns to
extract features thoroughly. There are some result studies about CNN that are tabulated in
NDs detection in Table 14.

Table 14. CNN classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[247] MR Image Dataset [248] Seizure Detection

Sensitivity,
Specificity,
Accuracy, Precision,
F-Score

96.05%

[249] MRI Dataset from McGill
University Cerebral Palsy Accuracy 88.6%

[250]

Parkinson’s Disease Spiral
Drawings Using Digitized
Graphics Tablet
Dataset [251]

Parkinson’s Disease Accuracy, AUC,
F1-Score 96.5%

[252] OASIS Alzheimer’s Disease Accuracy 78.02%

7.2.2. Recurrent Neural Network (RNN)

Recurrent neural networks (RNNs) [253] are a type of artificial neural network that
can hold a state across numerous sequential inputs. The primary purpose is to assess the
temporal sequence of data points using computations from previous sequences. RNNs
contain a memory that keeps track of their present state, making them perfect for forecasting
time-series signals, such as EEGs. However, problems including exploding and vanishing
gradients and information morphing are common when using back propagation to train
RNNs. There are some result investigations regarding RNN that are tabulated in NDs in
Table 15.

Table 15. RNN classifier result analysis on various NDs.

Ref. Dataset Evaluation Metrics Methods Accuracy

[254] Daphnet Dataset Parkinson’s Disease AUC, Specificity, Sensitivity Avg 97%

[255] ADNI Alzheimer’s Disease Accuracy, Specificity,
Sensitivity 89.69%
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7.2.3. Long–Short-Term Memory (LSTM)

Long–short-term memory networks (LSTMs) [256] are a variety of RNNs used to
learn long-term dependencies. LSTMs tackle the problem of exploding and disappearing
gradients by preserving the mistake that is back propagated through layers and time. Long–
short-term memory units (LSTM) aid in disseminating knowledge times. The regulating
gates of an LSTM cell may store in, erase from, write to, and read from cells. An LSTM cell
creates two states with each time step: a cell state that acts as the input to the next step and
a concealed condition that results from this time step. Some of the result analysis regarding
RNN are tabulated in NDs in Table 16.

Table 16. LSTM classifier result analysis on various NDs.

Ref. Dataset Evaluation Metrics Methods Accuracy

[257] VGRF Dataset [258] Parkinson’s Disease
Accuracy, Specificity,
Sensitivity, MCC, PVV,
F-Score

98.60%

[259] Molecular Brain Neoplasia Data
(REMBRANDT) [260,261] Brain Tumor Accuracy 86.98%

[262] ADNI Alzheimer’s Disease Accuracy Above 85%

[263] MINI-RGBD, RVI-25 Accuracy, Specifity,
Sensitivity, PR, F1-Score Above 91%

7.2.4. Extreme Learning Machine (ELM)

Huang et al. [264] created an extreme learning machine (ELM). The ELM is a hidden
layer feed-forward neural network with randomly computed input weights and analytically
determined output weights. The ELM hidden layer uses sigmoidal, Gaussian, and hard-
limited activation functions, whereas the output layer uses a linear process. In comparison
to feed-forward networks that learn using the backpropagation method, ELM has a higher
generalization success rate. References [265–267] describe ELM’s learning algorithm. Some
of the result analysis regarding ELM are tabulated in NDs in Table 17.

Table 17. ELM classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[268] EEG Dataset [269] Epilepsy Accuracy, Sensitivity,
Specificity 90%

[270] ADNI Dataset Alzheimer’s Disease Accuracy, Sensitivity,
Specificity 76.9%

[271] Epileptic EEG Dataset [200] Epilepsy F-Measure, G-Means, AUC 82.77%

[272] Brain Tumor MRI Image Dataset [273] Brain Tumor Accuracy 94.23%

[274] Parkinson’s Dataset [221] Parkinson’s Disease Accuracy, Sensitivity,
Specificity, (AUC) 96.47%

[275] Collected Data from the Vasei Hospital in Sabzevar Multiple Sclerosis Accuracy, Sensitivity,
Specificity 97%

7.2.5. Gated Recurrent Unit (GRU)

The GRU is an LSTM variant that merges the input and forget gates into a single
update gate. It combines the input and forget gates and makes some other changes. The
number of gate signals was reduced to two: the reset gate and update gate signals. These
two gates determine the data that must be sent to the output. Some of the result analysis
regarding GRU are tabulated in NDs in Table 18.
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Table 18. GRU classifier result analysis on various NDs.

Ref. Dataset Evaluation Metrics Methods Accuracy

[276] ADNI Dataset Alzheimer’s Disease Accuracy, Sensitivity, Specificity 97.03%

[277] TUH EEG Seizure Corpus (TUSZ) Epilepsy Sensitivity, Specificity 96.9%

[278] ADNI Alzheimer’s Disease Accuracy 0.709%

7.2.6. Deep Boltzmann Machine (DBM)

The deep Boltzmann machine (DBM) is a 2009 generative and unsupervised learning
system comprising stacked layers of RBM. Similarly, the deep Boltzmann machine (DBM)
was built by combining numerous RBMs. An associative memory layer converts the DBM
model to the DBN model (at the top of the DBM). All layers of the DBM architecture
are linked in an undirected manner. The DBM technique, similar to a DBN, can handle
ambiguous inputs and sophisticated internal representations of input data in a robust way.
Extensive applications of the DBM include object and speech recognition, which can work
better in detecting PDs with its speech data. Some of the result analysis regarding DBM are
tabulated in NDs in Table 19.

Table 19. DBM classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[279] EEG Database Seizure Detection F-Measure, Accuracy,
TPR 99.5%

[280] Hand-Drawn Images
Dataset Parkinson’s Disease F1-Score, Accuracy 65.62%

7.2.7. Deep Belief Networks (DBNs)

Restricted Boltzmann machines (RBMs) are undirected graphical models representing
variations of deep Boltzmann machines (DBMs). Unconstrained Boltzmann machines may
be linked to concealed units. The RBMs were stacked to produce a DBN, and RBM was the
building block of the DBN. The DBNs are unsupervised probabilistic hybrid generative DL
models with latent and stochastic variables. Furthermore, the convolutional DBN (CDBN)
is a variant of a DBN that can successfully scale a high-dimensional model utilizing adjacent
pixels’ spatial information. DBNs are probabilistic, generative, unsupervised DL models
with visible and hidden units in many layers. Some of the consequences of studies regarding
DBNs are tabulated in NDs in Table 20.

Table 20. DBN classifier result analysis on various NDs.

Ref. Dataset Disease Evaluation Metrics Accuracy

[281] BraTS 2015 Brain Tumors Accuracy, Recall,
Precision 91.6%

[282] EEG Wave Files Epilepsy
Detection Accuracy >90%

[283] 18F-fluorodeoxyglucose-PET
images

Alzheimer
Disease

Accuracy, Sensitivity,
Specificity 86.6%

[284] PD Telemonitoring Dataset [285] Parkinson’s
Disease Accuracy 94%

7.2.8. Probabilistic Neural Network (PNN)

The PNN is a pattern recognition and classification algorithm. First, a Parzen window
with a negative function estimates the probability distribution function (PDF) in the PNN.
Next, the PDF function was used to calculate the likelihood of new input data. Finally, the
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new input data are assigned to the class with the highest posterior probability using the
Bayes rule. This strategy aids in reducing the amount of data misclassification.

7.2.9. Autoencoders (AEs)

The AE model is an unsupervised machine learning model in which the input and
output are the same. The input is compressed into a latent-space representation and used to
generate the output. As a result, the neural network and compression and decompression
functions are linked in the AE. The encoder, code, and decoder are the three components
of an AE. AE networks are most often employed in brain signal processing for feature
extraction or dimensionality reduction.

These classification algorithms are ordered by the most commonly utilized for detect-
ing NDs. Between these machine learning algorithms, the SVM, KNN, and Naive Bayes
are the most widely used methods and researchers’ first choices, as they give a better
memorization performance in the first phase of utilizing the models, thereby assuring
the performance of the models. However, These algorithms are not always suitable, as
some are not good enough for more extensive datasets. Therefore, there is some scope for
developing classification algorithms for real-time brain signal analysis. In deep learning
algorithms, the CNN, LSTM, GRU, and DBM have proven to be better in the study and
detection of neurological diseases. However, researchers improve deep learning algorithms
as they show better performance on time series and brain image data. Furthermore, transfer
learning and attention models were recently utilized in different studies to bring better
performance in extensive dataset analyses. In this section, we tried to establish a relation
between the most advantageous techniques of pre-processing, feature extraction, and clas-
sification, representing a CAD system that detects or diagnoses NDs. The quality measures
of the system are illuminated in the following section.

8. Evaluation Metrics

Evaluating a model is essential for developing a practical machine learning and deep
learning model. After pre-processing, training, and validation, the test images were sent
to the trained model for classification to evaluate its performance. The confusion matrix,
cross-validation, receiver operating characteristic curve (ROC), the area under the ROC
curve (AUC), and other evaluation metrics exist. The confusion matrix’s accuracy, precision,
recall, and F1-score are commonly used to evaluate the model of ND classification.

8.1. Accuracy

The accuracy metric measured the percentage of correctly identified samples. The
accuracy of the binary classification was calculated as follows:

Accuracy =

(
TP + TN

(TP + TN + FP + FN

)
(5)

where true positives (TP) denote correct positive example assignments, true negatives
(TN) denote correct negative example assignments, false positives (FP) denote incorrect
positive example assignments to negative classes, and false negatives (FN) denote incorrect
negative example assignments to positive classes.

8.2. Sensitivity or True Positive Rate or Recall

Sensitivity, also known as the recall and true positive rate, locates all positive samples
where denotesthe activity of the classifier. Sensitivity shows the ratio of correctly classified
patients with NDs to the total number of patients with NDs. The sensitivity formula is
determined as follows:

Sensitivity =
TP

TP + FN
(6)
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8.3. Specificity or True Negative Rate

The true negative rate (TNR), often known as the specificity of a test, is the percentage
of samples that test negative with the test in the truly negative issue. A test that identifies
all healthy persons as negative for a given condition, for example, is exceedingly specific.
In other words, the percentage of accurately diagnosed healthy persons across the entire
range of healthy people is referred to as specificity.

Specificity =
TN

TN + FP
(7)

8.4. Precision

The precision metric calculates the percentage of relevant issues that are relevant.
It assesses a classifier’s ability to reject irrelevant subjects. The recall metric measures
the number of relevant subjects that are discovered. It considers the classifier’s ability to
present all relevant subjects. The figures are written as follows:

PR =

(
TP

TP + FP

)
(8)

8.5. F1-Score

The F1-Score computes the harmonic mean between the precision and recall by group-
ing together with their values. The formula for F1-score is defined as:

F1− Score =
(

2 ∗ Precision ∗ Recall
Precision + Recall

)
(9)

8.6. Mcc

MCC represents a classifier’s ability to anticipate and generate a value between [1, +1].
If the MCC of the classifier is +1, then the classifier produces perfect predictions. Classifiers
with a value of one have utterly incorrect outputs. Closer MCC values imply that the
classifier makes random predictions.

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(10)

8.7. Roc Curve and AUC

The receiver operating characteristics (ROC) curve is used to demonstrate the effec-
tiveness of the classification model over several categorization levels. In this curve, the
true-positive rates (recall) and the false-positive rates (FPR) were employed. The term “area
under the ROC curve” is abbreviated as “AUC”. In other words, the AUC evaluates the
entire two-dimensional field under the ROC curve. The formula is used as follows:

FPR =
FalsePositive

FalsePositive + TrueNegative
(11)

8.8. Patient Score

If Nrec cancer photos are successfully recognized for each patient and NP is the total
number of cancer images for patient P, a patient score can be defined as in Equation (12) as
follows:

PatientScore =
Nrec

NP
(12)
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8.9. Patient-Recognition Rate

The patient-recognition rate is defined by the formula as follows:

PatientRecognitionRate =
∑ PatientScore

Total Numberof Patients
(13)

8.10. Image-Recognition Rate

The number of cancer photos in the test set was represented by Nall. The recognition
rate at the image level may be represented by Equation (14) if the system correctly classifies
Nrec cancer photos.

Image − recognitionrate =
Nrec

Nall
(14)

These evaluation metrics are the primarily utilized techniques and are arranged in
importance for detecting NDs by researchers. With this section, the research led to the
challenges faced while researching neuron-related disorders.

9. Challenges and Opportunities

As previously noted, AI has played a crucial role in identifying neurological illnesses.
It has transformed the massive amounts of data collected into clinically relevant data [286].
However, there were significant restrictions and uncertain legal repercussions despite these
advantages. Even with the most powerful algorithms, it is impossible to account for all the
potentially beneficial or adverse side effects [287]. DL algorithms prefer to minimize adverse
reactions and confusing factors, such as test results, to reach their aim. This can impair
patient safety and outcomes [287]. Table 21 presents several advantages and the limitations
of the DL and ML methods. Additionally, different reasoning methods, or a combination of
approaches, such as case-based, rule-based, model-based, fuzzy logic, genetic algorithms,
natural language processing, and neural networks, have been used by various computers
in a literature review. Each method has its capabilities and limitations [288]. The efficacy of
each technique differed, limiting their application in detecting rare and complex disorders,
such as multiple sclerosis [288]. Nonetheless, they could assist patients and clinicians in
making a rapid clinical diagnosis [288].

Table 21. Advantages and disadvantages of classification algorithms.

Classifier
Name Advantages Disadvantages

SVM

SVM is memory efficient and works
well in high-dimensional domains and
situations there is clear separation
between classes.

The SVM technique is unsuitable for big
datasets and does not perform well when
the dataset has a high level of noise.

GMM

It does not need the presence of a
subpopulation of data points. It enables
the model to automatically learn the
subpopulations.

There are numerous parameters to fit,
and getting decent results generally
necessitates a lot of data and several
iterations.

KNN

KNN is simple to install and fast
because it stores the training dataset
and only learns from it when making
real-time predictions.

It struggles with huge datasets, high
dimensions, and data that is noisy.

GAN
It provides the sharpest images because
of their adversarial training, and can be
trained using solely backpropagation.

It is hard to train as it is non-convergence
diminished gradient.
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Table 21. Cont.

Classifier
Name Advantages Disadvantages

Random
Forest

It can solve classification and regression
issues, is relatively steady, and is less
susceptible to noise.

It has complexity and long training period.

ANN

It has the ability to store information
throughout the whole network and
function with partial knowledge while
remaining fault tolerant.

It is hardware dependent and has an
inexplicable network behavior.

CNN

It is quite accurate in picture
identification and recognizes the crucial
aspects automatically without human
intervention.

It requires a vast amount of training data
and does not encode the location or
orientation of the object.

RNN
An RNN remembers all information
throughout time and is useful for a time
series prediction.

Training an RNN is a tough undertaking
that includes gradient vanishing and
explosion issues.

LSTM
It offers a wide range of parameters,
such as learning rates, input and output
biases, and so on.

It takes longer to train, requires more
memory, and is prone to overfitting.

GRU It requires less computational power. It has slow convergence rate and low
learning efficiency.

DBN
DBN has the ability to learn features,
which is accomplished by
layer-by-layer learning techniques.

It does not take into account the
two-dimen sional structure of the supplied
image.

PNN
It generates reliable predicted target
probability scores while being
somewhat insensitive to outliers.

The model requires extra memory space
to be stored.

DBM
It is both expressive and
computationally efficient, allowing it to
encode any distribution.

Takes a lot of time to calculate
probabilities and adjust weight.

9.1. Mostly Faced Challenges

DL-based frameworks for NLD prediction have become attractive with the significant
growth in computational capacity and the remarkable development of DL tools. However,
more studies should be performed to fine-tune DL algorithms to improve inferences. The
following are some of the concerns, along with potential prospects.

9.1.1. Lack of Standard Data

In machine learning, data standards and open data repositories are lacking. For
instance, the non-integration of motor and non-motor features and the lack of open data
storage and available programming have hampered the integration of existing commercial
medical instruments, such as Parkinson’s Kinetigraph TM, which have moderate healthcare
coverage [289].

9.1.2. Small Sample Size

The ML view implies that sample sizes ought to be a multiple of the number of input
and output variables [290]. However, studies have been conducted using small sample
sizes of patients [291–293]. Creating an extensive dataset of patients with these mental
disorders can be highly beneficial to physicians for accurately diagnosing diseases. Further
attention and more practical research in this field can fulfill the necessity for longitudinal
studies or a follow-up study on a patient’s transition.
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9.1.3. DL Algorithms Need a Large Trained Dataset

For massive datasets, DL algorithms provide impactful and accurate solutions. How-
ever, high-dimensional CNNs such as 2D-CNN and 3D-CNN for big and multimodal
neuroimages will yield high accuracy. A generative adversarial network (GAN) can create
a synthetic neuroimage utilized with a CNN. The availability of training datasets was one
of the most significant impediments to the application procedure of DL in neuroimaging,
which also comes in as a consequence of maintaining patient privacy. Simultaneously,
annotating these data is a significant challenge that necessitates expert assistance. As a
result, the dataset for uncommon diseases discovered was mainly unbalanced. Medical
practitioners and data analysts must collaborate to solve dataset development and annota-
tion challenges. Simultaneously, data augmentation techniques can be used to solve the
problem of unbalanced data by altering the volume and quality of the data

9.1.4. Bias-Free Neuroimaging Dataset

It is challenging to construct a bias-free neuroimaging dataset because it is a legacy
of a learning system that could result in a computational artifact. However, the risk can
be addressed by incorporating an extensive dataset into the model, examining the link
between the extracted features and fine-tuning the model’s parameters.

9.1.5. Limitation of ML Clinical Presentation

The clinical significance of ML in confounding groups with similar neurological,
psychological, or pathological manifestations are limited: for example, ML’s ability to
differentiate PNES not only from epileptic patients but also from patients based on psy-
chopathological displays, including major depression, or ML’s ability to discern epilepsy
from healthy controls versus application in patients with a panic disorder [294], schizophre-
nia [295], and drug-induced memory deficits with similar alterations in microstate C.

9.1.6. Non-Standardized Acquisition of Images

This resulted in discrepancies in the photos from different databases. It is a significant
challenge when using DL to evaluate neuroimages. To solve this difficulty, it is suggested
that transfer learning be used. These extensive training datasets are considered the founda-
tion for attaining better results with ML and DL techniques. The lack of these datasets is
one of the most significant impediments to the application process.

9.1.7. DL Models Are Black Box

A deep learning model is a black box that learns from data and models the data
collection process. Instead of being explainable, these models can be interpreted. However,
when the model is used to forecast with data that do not belong to the database, the
black box fails miserably. When the mechanism is employed to foresee an explainable
process, according to Rudin, DL is overly sophisticated, highly recursive, and challenging
to comprehend [296]. Consequently, the explanation frequently fails to provide sufficient
information to understand the DL mechanism. As a result, there is a frequent transition
between explainable and interpretable DL models.

9.1.8. Ethical and Legal Ramifications

While the ethical and legal implications are beyond the focus of this work, maintaining
patient trust would be critical in supporting collaboration and AI application [297]. AI-
enabled computer-aided diagnostic (CAD) solutions [298] are unfeasible in black-box
situations. The legal implications are unclear, especially whether the manufacturer or the
practitioner is to blame [299]. Therefore, standards for evaluating AI technologies must
be developed. It is debatable whether AI can replace doctors. Nonetheless, AI will play a
more significant role in integrating healthcare.
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9.1.9. Limitation of Supervised Architecture

Considering the time and labor necessary to manufacture label data, low scalability,
and the selection of optimal bias levels, the supervised architecture was excluded. For
image analyses, unsupervised learning was not a standard option. On the other hand,
unsupervised architecture learns features from a dataset. It creates a data-driven decision
support system from it. Consequently, an unsupervised deep architecture can overcome
medical imaging-related issues.

9.1.10. Adversarial Noise

It can enhance neuroimages while also lowering classification accuracy. As a result,
canceling adversarial errors is difficult.

9.1.11. Lack of Sufficient Hardware Resources

The most significant aspect of CAD is the identification of differentiating traits that
can lead to the identification of the valuable bio-markers of NDs. In addition, owing to
a lack of access to hardware resources and data availability, developing DL architectures
to diagnose NDs is challenging. Although tools such as Google Colab and others now
provide researchers with powerful computing processors, implementing and using these
methodologies in the real world still presents numerous challenges [300].

9.2. Future Research Directions

To overcome the existing challenges, approaches based on graph theory and machine
learning have quickly emerged as a significant trend to understand better paths to appropri-
ately diagnose and adequately handle disorders given the availability of high-dimensional
data and increased computing capacities. Under the umbrella of machine learning-based
solutions to neurological illnesses, deep learning has recently gained an ever-increasing
position in the era of health and medical studies. Our best hope for treating neurological
diseases in children is to combine applied deep learning with graph theory on a tailored
scale. However, doctors or clinicians must practically diagnose mental disorders by ac-
knowledging symptoms. These symptoms can be very similar to other diseases, which
can be confusing. For example, symptoms such as difficulties in movements and memory
or awareness loss were identical in several NDs. This is why doctors must be particular
in distinguishing diseases. DL in neuroimaging is also derived from the desire to protect
patient privacy. Simultaneously, annotating these data is a significant issue that necessi-
tates expert assistance. As a result, the datasets discovered for uncommon diseases are
typically unbalanced. These data primarily depend on brain signals that contain noise and
artifacts. Therefore, the health industry, medical practitioners, and data scientists must
solve dataset development and annotation challenges. Simultaneously, data augmentation
techniques can be used to address the issue of unbalanced data by altering data volume
and quality [10].

Some other aspects need to be handled in the case of the neurological disorder detec-
tion directions. These are indicated in the following section.

9.2.1. Deep Brain Stimulation (DBS)

It is a safe and effective surgical therapy option for patients with tremor manifes-
tations, including Parkinson’s disease (PD) [301,302] and essential tremor (ET) [303,304].
A neurologist currently determines DBS leads, and as a result, interpersonal variability
is a factor. AI could assist in making an objective analysis in this aspect, provided that
regulatory standards are met and medical clearance is obtained [291].

9.2.2. Open Data Portals

Open data portals may be in people’s best interests [86]. Study models, frameworks,
algorithms, and anonymous data samples have all been made open source by some re-
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searchers, making it easier to replicate in future investigations [291]. The use of low-cost
smartphones with widely available customized apps boosts their usefulness [291].

9.2.3. Testing Multiple Hypotheses

Compared with human skills, newer algorithms can test several hypotheses in an
acceptable amount of time and make prior assumptions [287]. It can be used to treat
various diseases and specialties [287]. ML can evaluate massive datasets at considerably
faster rates with an improved accuracy. ML methods such as the self-organizing map
(SOM) can be extended to include non-vestibular factors, including previous concussions,
neuropsychological results, and various other variables [305]. It also aids in the improve-
ment of diagnostic criteria by identifying characteristics across a wide range of patient
populations [306].

9.2.4. Utilizing Methodology in Brain Signal Analysis

Researchers still could not figure out the ultimate solution for brain signal analysis.
There is the requirement for making brain signals readable by using a method that can lead
us to the solution, which is identifying the early stage diseases that can occur in the brain
or neuron. There is massive scope for improving the classification methods in terms of the
neurological disease detection process.

We must establish the best practices for evaluating AI tools [307]. It is uncertain
whether AI will replace physicians, but it will undoubtedly play a more prominent role in
health care integration [194].

10. Conclusions

Advancements in high-speed computing techniques and remarkable improvements in
creating novel DL-based methods and models open up unique possibilities for predicting
and maintaining several neurological disorders. A comprehensive assessment of NDs
and their symptoms are exhibited in this study. The study also includes several works
on NDs, the datasets utilized in most detection procedures, and neurological modalities.
This paper summarizes the present methods for creating various types of NDs systems.
Some popular pre-processing techniques with machine learning and deep learning models
were reviewed thoroughly. Moreover, we can apply many neurological modalities to detect
early-stage neurological diseases. In that circumstance, the patient might begin taking
medication right away to fight the disease. More future studies are needed in this sector
that integrate various screening approaches to diagnose neurological diseases precisely
and quickly. Researchers should focus on embedded applications that enhance the accurate
identification of such disorders.
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prediction of cerebral palsy in infants with central coordination disturbance. Early Hum. Dev. 2012, 88, 547–553. [CrossRef]
[PubMed]

239. Garcia-Martin, E.; Pablo, L.E.; Herrero, R.; Ara, J.R.; Martin, J.; Larrosa, J.M.; Polo, V.; Garcia-Feijoo, J.; Fernandez, J. Neural
networks to identify multiple sclerosis with optical coherence tomography. Acta Ophthalmol. 2013, 91, e628–e634. [CrossRef]
[PubMed]

240. Wang, N.; Chen, J.; Xiao, H.; Wu, L.; Jiang, H.; Zhou, Y. Application of artificial neural network model in diagnosis of Alzheimer’s
disease. BMC Neurol. 2019, 19, 1–8. [CrossRef] [PubMed]

241. Berus, L.; Klancnik, S.; Brezocnik, M.; Ficko, M. Classifying Parkinson’s disease based on acoustic measures using artificial neural
networks. Sensors 2019, 19, 16. [CrossRef]

242. Deng, L.; Yu, D. Deep learning: Methods and applications. Found. Trends Signal Process. 2014, 7, 197–387. [CrossRef]
243. Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of

the 2009 IEEE conference on computer vision and pattern recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [CrossRef]
244. Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.

Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [CrossRef]
245. LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation applied to handwritten

zip code recognition. Neural Comput. 1989, 1, 541–551. [CrossRef]
246. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.

Process. Syst. 2012, 25, 1097–1105. [CrossRef]
247. Asif, U.; Roy, S.; Tang, J.; Harrer, S. SeizureNet: A deep convolutional neural network for accurate seizure type classification and

seizure detection. arXiv 2019, arXiv:1903.03232.
248. Chakrabarty, N. Brain mri images for brain tumor detection. J. Exp. Med. 2019, 216, 539–555. [CrossRef]
249. Yang, R.; Zuo, H.; Han, S.; Zhang, X.; Zhang, Q. Computer-Aided Diagnosis of Children with Cerebral Palsy under Deep Learning

Convolutional Neural Network Image Segmentation Model Combined with Three-Dimensional Cranial Magnetic Resonance
Imaging. J. Healthc. Eng. 2021, 2021, 1822776. [CrossRef] [PubMed]

250. Gil-Martín, M.; Montero, J.M.; San-Segundo, R. Parkinson’s disease detection from drawing movements using convolutional
neural networks. Electronics 2019, 8, 907. [CrossRef]

251. Isenkul, M.; Sakar, B.; Kursun, O. Improved spiral test using digitized graphics tablet for monitoring Parkinson’s disease. In
Proceedings of the International, Conference on e-Health and Telemedicine, Istanbul, Turkey, 22–24 May 2014; pp. 171–175.

252. Liu, J.; Li, M.; Luo, Y.; Yang, S.; Li, W.; Bi, Y. Alzheimer’s disease detection using depthwise separable convolutional neural
networks. Comput. Methods Programs Biomed. 2021, 203, 106032. [CrossRef]

253. Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [CrossRef]
254. Masiala, S.; Huijbers, W.; Atzmueller, M. Feature-Set-Engineering for Detecting Freezing of Gait in Parkinson’s Disease using

Deep Recurrent Neural Networks. arXiv 2019, arXiv:1909.03428.
255. Cui, R.; Liu, M.; Li, G. Longitudinal analysis for Alzheimer’s disease diagnosis using RNN. In Proceedings of the 2018 IEEE 15th

International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1398–1401. [CrossRef]
256. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
257. Balaji, E.; Brindha, D.; Elumalai, V.K.; Vikrama, R. Automatic and non-invasive Parkinson’s disease diagnosis and severity rating

using LSTM network. Appl. Soft Comput. 2021, 108, 107463.
258. Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley,

H.E. PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals.
Circulation 2000, 101, e215–e220. [CrossRef]

259. Fasihi, M.S.; Mikhael, W.B. Brain tumor grade classification Using LSTM Neural Networks with Domain Pre-Transforms. arXiv
2021, arXiv:2106.10889.

260. Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer
Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057.
[CrossRef] [PubMed]

261. Scarpace, L.; Flanders, A.E.; Jain, R.; Mikkelsen, T.; Andrews, D.W. Data from REMBRANDT. Cancer Imaging Arch. 2015, 10, K9.
262. Sethi, M.; Ahuja, S.; Rani, S.; Bawa, P.; Zaguia, A. Classification of Alzheimer’s Disease Using Gaussian-Based Bayesian Parameter

Optimization for Deep Convolutional LSTM Network. Comput. Math. Methods Med. 2021, 2021, 4186666. [CrossRef] [PubMed]
263. Hesse, N.; Bodensteiner, C.; Arens, M.; Hofmann, U.G.; Weinberger, R.; Sebastian Schroeder, A. Computer vision for medical

infant motion analysis: State of the art and rgb-d data set. In Proceedings of the European Conference on Computer Vision
(ECCV) Workshops, Munich, Germany, 8–14 September 2018.

264. Huang, G.B.; Ding, X.; Zhou, H. Optimization method based extreme learning machine for classification. Neurocomputing 2010,
74, 155–163. [CrossRef]

http://dx.doi.org/10.1109/72.329697
http://www.ncbi.nlm.nih.gov/pubmed/18267874
http://dx.doi.org/10.1016/j.earlhumdev.2012.01.001
http://www.ncbi.nlm.nih.gov/pubmed/22281057
http://dx.doi.org/10.1111/aos.12156
http://www.ncbi.nlm.nih.gov/pubmed/23647619
http://dx.doi.org/10.1186/s12883-019-1377-4
http://www.ncbi.nlm.nih.gov/pubmed/31286894
http://dx.doi.org/10.3390/s19010016
http://dx.doi.org/10.1561/2000000039
http://dx.doi.org/10.1109/CVPR.2009.5206848
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1162/neco.1989.1.4.541
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1084/jem.20182184
http://dx.doi.org/10.1155/2021/1822776
http://www.ncbi.nlm.nih.gov/pubmed/34804446
http://dx.doi.org/10.3390/electronics8080907
http://dx.doi.org/10.1016/j.cmpb.2021.106032
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1109/ISBI.2018.8363833
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1161/01.CIR.101.23.e215
http://dx.doi.org/10.1007/s10278-013-9622-7
http://www.ncbi.nlm.nih.gov/pubmed/23884657
http://dx.doi.org/10.1155/2021/4186666
http://www.ncbi.nlm.nih.gov/pubmed/34646334
http://dx.doi.org/10.1016/j.neucom.2010.02.019


Biology 2022, 11, 469 44 of 45

265. Huang, G.B.; Chen, L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71, 3460–3468.
[CrossRef]

266. Zhu, Q.Y.; Qin, A.K.; Suganthan, P.N.; Huang, G.B. Evolutionary extreme learning machine. Pattern Recognit. 2005, 38, 1759–1763.
[CrossRef]

267. Ding, S.; Xu, X.; Nie, R. Extreme learning machine and its applications. Neural Comput. Appl. 2014, 25, 549–556. [CrossRef]
268. Baykara, M.; Abdulrahman, A. Seizure Detection Based on Adaptive Feature Extraction by Applying Extreme Learning Machines.

Trait. Signal 2021, 38, 331–340. [CrossRef]
269. Tatum, W.; Rubboli, G.; Kaplan, P.; Mirsatari, S.; Radhakrishnan, K.; Gloss, D.; Caboclo, L.; Drislane, F.; Koutroumanidis, M.;

Schomer, D.; et al. Clinical utility of EEG in diagnosing and monitoring epilepsy in adults. Clin. Neurophysiol. 2018, 129, 1056–1082.
[CrossRef]

270. Lama, R.K.; Gwak, J.; Park, J.S.; Lee, S.W. Diagnosis of Alzheimer’s disease based on structural MRI images using a regularized
extreme learning machine and PCA features. J. Healthc. Eng. 2017, 2017, 5485080. . [CrossRef]

271. Zhou, J.; Zhang, X.; Jiang, Z. Recognition of Imbalanced Epileptic EEG Signals by a Graph-Based Extreme Learning Machine.
Wirel. Commun. Mob. Comput. 2021, 2021, 5871684. [CrossRef]

272. Gumaei, A.; Hassan, M.M.; Hassan, M.R.; Alelaiwi, A.; Fortino, G. A hybrid feature extraction method with regularized extreme
learning machine for brain tumor classification. IEEE Access 2019, 7, 36266–36273. [CrossRef]

273. Cheng, J.; Huang, W.; Cao, S.; Yang, R.; Yang, W.; Yun, Z.; Wang, Z.; Feng, Q. Enhanced performance of brain tumor classification
via tumor region augmentation and partition. PLoS ONE 2015, 10, e0140381. [CrossRef]

274. Chen, H.L.; Wang, G.; Ma, C.; Cai, Z.N.; Liu, W.B.; Wang, S.J. An efficient hybrid kernel extreme learning machine approach for
early diagnosis of Parkinson’s disease. Neurocomputing 2016, 184, 131–144. [CrossRef]

275. Rezaee, A.; Rezaee, K.; Haddadnia, J.; Gorji, H.T. Supervised meta-heuristic extreme learning machine for multiple sclerosis
detection based on multiple feature descriptors in MR images. SN Appl. Sci. 2020, 2, 1–19. [CrossRef]

276. Bakkouri, I.; Afdel, K.; Benois-Pineau, J.; Catheline, G. Recognition of Alzheimer’s Disease on sMRI based on 3D Multi-Scale
CNN Features and a Gated Recurrent Fusion Unit. In Proceedings of the 2019 International Conference on Content-Based
Multimedia Indexing (CBMI), Dublin, Ireland, 4–6 September 2019; pp. 1–6. [CrossRef]

277. Golmohammadi, M.; Ziyabari, S.; Shah, V.; Von Weltin, E.; Campbell, C.; Obeid, I.; Picone, J. Gated recurrent networks for seizure
detection. In Proceedings of the 2017 IEEE Signal Processing in Medicine and Biology Symposium (SPMB), Philadelphia, PA,
USA, 2 December 2017; pp. 1–5. [CrossRef]

278. Huang, M.; Lai, H.; Yu, Y.; Chen, X.; Wang, T.; Feng, Q.; Initiative, A.D.N. Deep-gated recurrent unit and diet network-based
genome-wide association analysis for detecting the biomarkers of Alzheimer’s disease. Med. Image Anal. 2021, 73, 102189.
[CrossRef] [PubMed]

279. Abdullah, O.A.; Aal-Nouman, M.I.; AlJoudi, A.K. Compliance Framework for Seizure Detection via Gaussian Deep Boltzmann
Machine Using EEG Data Signal. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in
Engineering and Technologies (CSUDET), Penang, Malaysia, 7–9 November 2019; pp. 1–5. [CrossRef]

280. de Souza, R.W.; Silva, D.S.; Passos, L.A.; Roder, M.; Santana, M.C.; Pinheiro, P.R.; de Albuquerque, V.H.C. Computer-assisted
Parkinson’s disease diagnosis using fuzzy optimum-path forest and Restricted Boltzmann Machines. Comput. Biol. Med. 2021,
131, 104260. [CrossRef]

281. Kharrat, A.; Néji, M. Classification of brain tumors using personalized deep belief networks on MRImages: PDBN-MRI. In
Eleventh International Conference on Machine Vision (ICMV 2018); International Society for Optics and Photonics: Bellingham, WA,
USA, 2019; Volume 11041, p. 110412M.

282. Liu, J.; Woodson, B. Deep learning classification for epilepsy detection using a single channel electroencephalography (EEG). In
Proceedings of the 2019 3rd International Conference on Deep Learning Technologies, Xiamen China, 5–7 July 2019; pp. 23–26.
[CrossRef]

283. Shen, T.; Jiang, J.; Lu, J.; Wang, M.; Zuo, C.; Yu, Z.; Yan, Z. Predicting Alzheimer Disease from mild cognitive impairment with a
deep belief network based on 18F-FDG-PET Images. Mol. Imaging 2019, 18, 1536012119877285. [CrossRef]

284. Al-Fatlawi, A.H.; Jabardi, M.H.; Ling, S.H. Efficient diagnosis system for Parkinson’s disease using deep belief network. In
Proceedings of the IEEE Congress on Evolutionary Computation (CEC), Vancouver, BC, Canada, 24–29 July 2016; pp. 1324–1330.
[CrossRef]

285. Little, M.; McSharry, P.; Hunter, E.; Spielman, J.; Ramig, L. Suitability of dysphonia measurements for telemonitoring of
Parkinson’s disease. Nat. Preced. 2008.; [CrossRef]

286. Wahl, B.; Cossy-Gantner, A.; Germann, S.; Schwalbe, N.R. Artificial intelligence (AI) and global health: How can AI contribute to
health in resource-poor settings? BMJ Glob. Health 2018, 3, e000798. [CrossRef]

287. Sands, D.; Mielus, M.; Umławska, W.; Lipowicz, A.; Oralewska, B.; Walkowiak, J. Evaluation of factors related to bone disease in
Polish children and adolescents with cystic fibrosis. Adv. Med. Sci. 2015, 60, 315–320. [CrossRef] [PubMed]

288. Arani, L.A.; Hosseini, A.; Asadi, F.; Masoud, S.A.; Nazemi, E. Intelligent computer systems for multiple sclerosis diagnosis: A
systematic review of reasoning techniques and methods. Acta Inform. Medica 2018, 26, 258. [CrossRef] [PubMed]

289. Seeley, W.W. Frontotemporal dementia neuroimaging: A guide for clinicians. Dement. Clin. Pract. 2009, 24, 160–167.
290. Ho, K.C.; Speier, W.; Zhang, H.; Scalzo, F.; El-Saden, S.; Arnold, C.W. A machine learning approach for classifying ischemic stroke

onset time from imaging. IEEE Trans. Med. Imaging 2019, 38, 1666–1676. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2007.10.008
http://dx.doi.org/10.1016/j.patcog.2005.03.028
http://dx.doi.org/10.1007/s00521-013-1522-8
http://dx.doi.org/10.18280/ts.380210
http://dx.doi.org/10.1016/j.clinph.2018.01.019
http://dx.doi.org/10.1155/2017/5485080
http://dx.doi.org/10.1155/2021/5871684
http://dx.doi.org/10.1109/ACCESS.2019.2904145
http://dx.doi.org/10.1371/journal.pone.0140381
http://dx.doi.org/10.1016/j.neucom.2015.07.138
http://dx.doi.org/10.1007/s42452-020-2699-y
http://dx.doi.org/10.1109/CBMI.2019.8877477
http://dx.doi.org/10.1109/SPMB.2017.8257020
http://dx.doi.org/10.1016/j.media.2021.102189
http://www.ncbi.nlm.nih.gov/pubmed/34343841
http://dx.doi.org/10.1109/CSUDET47057.2019.9214758
http://dx.doi.org/10.1016/j.compbiomed.2021.104260
http://dx.doi.org/10.1145/3342999.3343008
http://dx.doi.org/10.1177/1536012119877285
http://dx.doi.org/10.1109/CEC.2016.7743941
http://dx.doi.org/10.1038/npre.2008.2298.1
http://dx.doi.org/10.1136/bmjgh-2018-000798
http://dx.doi.org/10.1016/j.advms.2015.05.002
http://www.ncbi.nlm.nih.gov/pubmed/26183540
http://dx.doi.org/10.5455/aim.2018.26.258-264
http://www.ncbi.nlm.nih.gov/pubmed/30692710
http://dx.doi.org/10.1109/TMI.2019.2901445


Biology 2022, 11, 469 45 of 45

291. Xia, X.; Bai, Y.; Zhou, Y.; Yang, Y.; Xu, R.; Gao, X.; Li, X.; He, J. Effects of 10 Hz repetitive transcranial magnetic stimulation of the
left dorsolateral prefrontal cortex in disorders of consciousness. Front. Neurol. 2017, 8, 182. [CrossRef]

292. Rajagopalan, S.S.; Bhardwaj, S.; Panda, R.; Reddam, V.R.; Ganne, C.; Kenchaiah, R.; Mundlamuri, R.C.; Kandavel, T.; Majumdar,
K.K.; Parthasarathy, S.; et al. Machine learning detects EEG microstate alterations in patients living with temporal lobe epilepsy.
Seizure 2018, 61, 8–13.

293. Vasta, R.; Cerasa, A.; Sarica, A.; Bartolini, E.; Martino, I.; Mari, F.; Metitieri, T.; Quattrone, A.; Gambardella, A.; Guerrini, R.; et al.
The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures. Epilepsy
Behav. 2018, 87, 167–172. [CrossRef]

294. Melchiorre, M.G.; Chiatti, C.; Lamura, G.; Torres-Gonzales, F.; Stankunas, M.; Lindert, J.; Ioannidi-Kapolou, E.; Barros, H.;
Macassa, G.; Soares, J.F. Social support, socio-economic status, health and abuse among older people in seven European countries.
PLoS ONE 2013, 8, e54856. [CrossRef]

295. Nishida, K.; Morishima, Y.; Yoshimura, M.; Isotani, T.; Irisawa, S.; Jann, K.; Dierks, T.; Strik, W.; Kinoshita, T.; Koenig, T. EEG
microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s
disease. Clin. Neurophysiol. 2013, 124, 1106–1114. [CrossRef]

296. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead.
Nat. Mach. Intell. 2019, 1, 206–215. [CrossRef]

297. Ho, C.; Soon, D.; Caals, K.; Kapur, J. Governance of automated image analysis and artificial intelligence analytics in healthcare.
Clin. Radiol. 2019, 74, 329–337. [CrossRef] [PubMed]

298. Giger, M.L. Machine learning in medical imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [CrossRef] [PubMed]
299. Lee, J.G.; Jun, S.; Cho, Y.W.; Lee, H.; Kim, G.B.; Seo, J.B.; Kim, N. Deep learning in medical imaging: General overview. Korean J.

Radiol. 2017, 18, 570–584. [CrossRef] [PubMed]
300. Sadeghi, D.; Shoeibi, A.; Ghassemi, N.; Moridian, P.; Khadem, A.; Alizadehsani, R.; Teshnehlab, M.; Gorriz, J.M.; Nahavandi,

S. An Overview on Artificial Intelligence Techniques for Diagnosis of Schizophrenia Based on Magnetic Resonance Imaging
Modalities: Methods, Challenges, and Future Works. arXiv 2021, arXiv:2103.03081.

301. Deuschl, G.; Paschen, S.; Witt, K. Clinical outcome of deep brain stimulation for Parkinson’s disease. Handb. Clin. Neurol. 2013,
116, 107–128.

302. Jefferies, E.; Lambon Ralph, M.A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison.
Brain 2006, 129, 2132–2147. [CrossRef]

303. Paschen, S.; Deuschl, G. Patient evaluation and selection for movement disorders surgery: The changing spectrum of indications.
Curr. Concepts Mov. Disord. Manag. 2018, 33, 80–93.

304. Tepper, S.; Ashina, M.; Reuter, U.; Brandes, J.L.; Doležil, D.; Silberstein, S.; Winner, P.; Leonardi, D.; Mikol, D.; Lenz, R. Safety and
efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial.
Lancet Neurol. 2017, 16, 425–434. [CrossRef]

305. Visscher, R.M.; Feddermann-Demont, N.; Romano, F.; Straumann, D.; Bertolini, G. Artificial intelligence for understanding
concussion: Retrospective cluster analysis on the balance and vestibular diagnostic data of concussion patients. PLoS ONE 2019,
14, e0214525. [CrossRef]

306. Ganapathy, K.; Abdul, S.S.; Nursetyo, A.A. Artificial intelligence in neurosciences: A clinician’s perspective. Neurol. India 2018,
66, 934. [CrossRef]

307. Tang, A.; Tam, R.; Cadrin-Chênevert, A.; Guest, W.; Chong, J.; Barfett, J.; Chepelev, L.; Cairns, R.; Mitchell, J.R.; Cicero, M.D.; et al.
Canadian Association of Radiologists white paper on artificial intelligence in radiology. Can. Assoc. Radiol. J. 2018, 69, 120–135.
[CrossRef] [PubMed]

http://dx.doi.org/10.3389/fneur.2017.00182
http://dx.doi.org/10.1016/j.yebeh.2018.09.008
http://dx.doi.org/10.1371/journal.pone.0054856
http://dx.doi.org/10.1016/j.clinph.2013.01.005
http://dx.doi.org/10.1038/s42256-019-0048-x
http://dx.doi.org/10.1016/j.crad.2019.02.005
http://www.ncbi.nlm.nih.gov/pubmed/30898383
http://dx.doi.org/10.1016/j.jacr.2017.12.028
http://www.ncbi.nlm.nih.gov/pubmed/29398494
http://dx.doi.org/10.3348/kjr.2017.18.4.570
http://www.ncbi.nlm.nih.gov/pubmed/28670152
http://dx.doi.org/10.1093/brain/awl153
http://dx.doi.org/10.1016/S1474-4422(17)30083-2
http://dx.doi.org/10.1371/journal.pone.0214525
http://dx.doi.org/10.4103/0028-3886.236971
http://dx.doi.org/10.1016/j.carj.2018.02.002
http://www.ncbi.nlm.nih.gov/pubmed/29655580

	Introduction
	Dataset
	Neurological Diseases
	Parkinson's Disease (PD)
	Dementia
	Alzheimer's Disease
	Frontotemporal Dementia
	Lewy Body Dementia (LBD)
	Vascular Dementia (VD)
	Mixed Dementia

	Multiple Sclerosis
	Cerebral Palsy (CP)
	Brain Tumor
	Epilepsy and Seizures

	Neuroimaging Modalities
	Magnetic Resonance Imaging (MRI)
	Electroencephalography (EEG)
	Magnetoencephalography (MEG)
	Positron Emission Tomography (PET)
	Functional Magnetic Resonance Imaging (fMRI)
	Functional Near-Infrared Spectroscopy (fNIRS)
	Computed Tomography (CT)
	Single-Photon Emission Computed Tomography (SPECT)

	Pre-Processing Techniques for Neurological Disease Detection
	Normalization (NM)
	Histogram Normalization
	Spatial Normalization
	Intensity Normalization
	Z-Score Normalization
	Numerical Normalization (NNM)

	Filtering
	Spatial Filtering (SF) 
	Temporal Filtering (TF)
	Wiener Filtering (WF)
	High-Pass-Filtering (HPF)

	Stripping
	Scaling
	Image Resizing (IRE)
	Image Registration (IR)
	Distortion Correction (DC) 
	Contrast Enhancement (CE)
	Bias Correction and Bias Regularization (BC, BR) 

	Correction
	Motion Correction (MC) 
	Slice Timing Correction (STC)

	Smoothing

	Feature Extraction Techniques for Neurological Disease Detection
	Discrete Wavelet Transform (DWT)
	Discrete Cosine Transform (DCT)
	Linear Discriminant Analysis (LDA)
	Principal Component Analysis (PCA)
	Independent Component Analysis (ICA)
	Statistical Features
	Hilbert–Huang Transform (HHT)
	Wavelet Entropies
	Hybrid PCA-NGIST Method
	Histogram of Oriented Gradients

	Classification Algorithms for Neurological Disease Detection
	Machine Learning Algorithms
	Support Vector Machine (SVM)
	Gaussian Mixture Models (GMM)
	K-Nearest Neighbors (K-NN)
	Generative Adversarial Networks (GAN)
	Random Forests (RF)
	Artificial Neural Network (ANN)

	Deep Neural Network Algorithms
	Convolutional Neural Network (CNN)
	Recurrent Neural Network (RNN)
	Long–Short-Term Memory (LSTM)
	Extreme Learning Machine (ELM)
	Gated Recurrent Unit (GRU)
	Deep Boltzmann Machine (DBM)
	Deep Belief Networks (DBNs)
	Probabilistic Neural Network (PNN)
	Autoencoders (AEs)


	Evaluation Metrics
	Accuracy
	Sensitivity or True Positive Rate or Recall 
	Specificity or True Negative Rate
	Precision
	F1-Score
	Mcc
	Roc Curve and AUC
	Patient Score
	Patient-Recognition Rate
	Image-Recognition Rate

	Challenges and Opportunities
	Mostly Faced Challenges
	Lack of Standard Data
	Small Sample Size
	DL Algorithms Need a Large Trained Dataset
	Bias-Free Neuroimaging Dataset
	Limitation of ML Clinical Presentation
	Non-Standardized Acquisition of Images
	DL Models Are Black Box
	Ethical and Legal Ramifications
	Limitation of Supervised Architecture
	Adversarial Noise
	Lack of Sufficient Hardware Resources

	Future Research Directions
	Deep Brain Stimulation (DBS)
	Open Data Portals
	Testing Multiple Hypotheses
	Utilizing Methodology in Brain Signal Analysis


	Conclusions
	References

