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Simple Summary: Knowledge of where invasive species could potentially establish (potential dis-
tribution) is critical to prioritizing and addressing biological invasion threats. In this study, we
predicted the potential distribution of Calonectria pseudonaviculata (Cps), an invasive fungal pathogen
that blights boxwood, an iconic landscape plant, major evergreen nursery crop, and keystone forest
species. We used climate data, presence records from Europe and western Asia, and multiple model-
ing approaches to predict the potential distribution of Cps at regional and global scales and to explore
the roles of temperature and moisture in shaping its distribution. Model predictions were validated
using an independent presence record dataset. A consensus map of model predictions revealed that
Cps could potentially spread and establish well beyond its currently invaded range in Europe, western
Asia, New Zealand, United States and Canada. These include a number of not-yet-invaded areas
in eastern and southern Europe, North America, and many regions of the world where boxwood is
native. This knowledge informs policymakers and other stakeholders in these areas on the need for
implementing a strict phytosanitary protocol for risk mitigation of accidental introduction, having
an effective surveillance for early detection, and developing a recovery plan for the pathogen when
accidental introductions occur.

Abstract: Boxwood blight caused by Cps is an emerging disease that has had devastating impacts on
Buxus spp. in the horticultural sector, landscapes, and native ecosystems. In this study, we produced
a process-based climatic suitability model in the CLIMEX program and combined outputs of four
different correlative modeling algorithms to generate an ensemble correlative model. All models
were fit and validated using a presence record dataset comprised of Cps detections across its entire
known invaded range. Evaluations of model performance provided validation of good model fit
for all models. A consensus map of CLIMEX and ensemble correlative model predictions indicated
that not-yet-invaded areas in eastern and southern Europe and in the southeastern, midwestern, and
Pacific coast regions of North America are climatically suitable for Cps establishment. Most regions of
the world where Buxus and its congeners are native are also at risk of establishment. These findings
provide the first insights into Cps global invasion threat, suggesting that this invasive pathogen has
the potential to significantly expand its range.

Keywords: Buxus; invasive plant pathogen; biological invasion; climatic suitability; CLIMEX;
ensemble model

1. Introduction

Invasive plant pathogens are a global threat to the health, productivity, and diversity of
plants in both agricultural and native ecosystems [1–4]. Plant pathogens including viruses,
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bacteria, oomycetes and fungi have been dispersing at unprecedented levels owing to
increasing global trade and human travel, often remaining undetected or unidentified until
they have spread and created visible impacts on hosts and recipient ecosystems [1,4,5]. In
forest ecosystems, anthropogenic introductions of fungal and fungal-like pathogens are the
main cause of emerging infectious diseases in trees, such as the well-known examples of
chestnut blight and Dutch elm disease in North America [1,3]. Ascomycete plant pathogens
that can infect multiple host species in cultivated (e.g., parks, gardens, orchards, or nurs-
eries) and native ecosystems tend to be particularly invasive and include some of the most
destructive pests of forest trees in countries with high levels of live plant trade [3,6,7].

Boxwood blight, also known as box blight, is an emerging disease of boxwood, a
major evergreen shrub crop and iconic landscape plant [8–10], as well as a keystone for-
est species [11–14]. This disease is caused by two invasive ascomycete fungi, Calonectria
pseudonaviculata (Cps) [15] and C. henricotiae [16]. Both pathogen species can infect and
blight boxwood foliage, resulting in rapid plant death. Calonectria henricotiae is only known
to occur in Europe, whereas Cps has a wider distribution that presently spans 24 countries
primarily in Europe, Asia, and North America (Figure S1) [8,16–18]. Long-distance disper-
sal of Cps typically occurs through human-mediated transport of diseased liners (young
plants) and nursery stock [8,19], often going undetected because plants can be asymp-
tomatic until exposed to weather patterns favoring infection and subsequent symptom
development [20,21]. After the initial detection of Cps in the United Kingdom in 1994 [22],
and New Zealand in 1998 [23], the pathogen had spread to at least eight countries in
continental Europe by 2013 [24]. It was first detected in western Asia in 2010, and has since
become widespread throughout native Buxus forests in the Black Sea region of Turkey and
the Caucasus [25–27] up to the Caspian Hyrcanian forests of northern Iran [28–30]. Initial
reports of Cps in North America were from the east coast of the United States [31,32] and in
Oregon [33] and British Columbia [34], and the pathogen has now been documented in at
least 30 US states throughout the Southeast, Northeast, Midwest, and Pacific coast [35,36].
The geographic origin of Cps is unknown but is hypothesized to be in a center of diversity
for Buxus in East Asia, the Caribbean, or Madagascar [8,18].

Boxwood blight caused by Cps poses a serious threat to the horticultural industry, local
economies, and ecosystem integrity [8,11,20]. In the United States, the ornamental horticul-
ture industry has sustained significant financial losses because boxwood is the number one
evergreen shrub sold, with an annual wholesale value greater than USD 140 million [37].
Boxwood blight increases the cost of producing boxwood because infected plants are un-
sellable and must be destroyed, and controlling the disease with chemical treatments is
expensive [8,36,38]. Total economic losses resulting from boxwood blight in Connecticut
alone amounted to more than USD 3 million within the first year of detection [38]. Addi-
tionally, the disease has caused declines in native Buxus forests in western Asia, which have
reduced habitat and resources for Buxus-associated biodiversity and negatively impacted
ecosystem services such as soil stability, water quality, and flood protection [11,13,39,40].
The full host range of Cps is unknown; however, none of 11 tested Buxus species were
immune to boxwood blight [41–43], and certain Buxaceae plants in the genera Sarcococca
Lindl. [41,44,45] and Pachysandra Michx. [46–48] are also vulnerable to infection. Artificial
inoculations demonstrated that the host range may even include plants in other taxonomic
families [49]. These findings suggest that Cps could be a significant threat to at least some of
the ca. 100 Buxus spp., which are primarily distributed in tropical and subtropical zones of
the world, and potentially to other Buxaceae and non-Buxaceae species. Despite the rapid
and ongoing spread of Cps, assessments of establishment risk for areas that have not (yet)
been invaded are not well developed. Identifying areas that are suitable for establishment
by invasive plant pathogens can guide surveillance efforts and increase the likelihood that
pathogens are detected early, which is the most effective and cost-efficient method to avoid
the potential ecological, economic, and societal consequences of their spread [3,6,50].

In this study, we used climatic suitability models to predict the potential distribution
of Cps at regional and global scales and explore how climatic factors shape its known range
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limits. Climatic suitability models have become an important tool for assessing establish-
ment risk for invasive fungal plant pathogens because their growth and survival is closely
related to climatic conditions, particularly temperature and moisture [51,52]. Epidemics
of Cps are often attributed to longer periods of high relative air humidity combined with
warm temperatures [19,20,53,54]. We used a workflow that combined both process-based
and correlative modeling algorithms to enhance the reliability of predictions and provide
independent perspectives into the potential distribution of invasive species [52,55–57]. Our
specific objectives were to identify range-limiting climatic factors for the pathogen, and
to identify areas of concordance in model predictions at both regional and global scales.
The models developed in this study may help with identifying locations for surveillance to
detect Cps before it establishes and may provide insight into its potential native range.

2. Materials and Methods
2.1. Modeling Overview

First, we developed a climatic suitability model for Cps based on its predicted re-
sponse to growth- and survival-limiting temperature and moisture factors using the “Com-
pare Locations (1-species)” module in CLIMEX [58,59]. CLIMEX’s “Compare Locations”
models (1-species and 2-species) are typically parameterized using a combination of eco-
physiological data (e.g., temperature thresholds for development and survival) and point
observations of occupancy or abundance from the species’ known geographical distribu-
tion [58,59]. Next, we developed climatic suitability models for Cps using four correlative
modeling algorithms. Correlative climatic suitability models (hereafter correlative models)
involve statistically linking spatial environmental data to species occurrences (presences
and/or absences) to estimate the probability of other locations being part of the species
distribution [57,60,61]. Compared to process-based models, correlative models require a
lower number of parameters [61–63]. For example, they only require known distribution
data as an input, whereas CLIMEX’s “Compare Locations” models require a more extensive
baseline knowledge of the species. Correlative models are most reliable in predicting a
species’ potential distribution in climates on which they are based and to a lesser extent
for novel climates [57,64,65]. By joining process-based and correlative approaches in a
combined workflow, we strived to incorporate advantages of each approach and obtain
independent insights into climatic suitability for and potential distribution of Cps.

2.2. Boxwood Blight Presence Records

To fit and validate CLIMEX and correlative models, we compiled 292 presence records
for Cps from 24 countries (Supplementary File S1), which span the entire known distribution
of the pathogen (Europe, Asia, New Zealand, and North America; Figure S1). While the
use of absence records could potentially increase the robustness of models, particularly if
they came from the pathogen’s well-established range in Europe, these data have not been
collected to the best of our knowledge. Presence records were derived from peer-reviewed
literature, theses, reports, media sources (e.g., online news articles), the Global Biodiversity
Information Facility (GBIF Occurrence Download https://doi.org/10.15468/dl.44z8yr,
accessed on 2 April 2021), CERIS Pest Tracker (https://pest.ceris.purdue.edu, accessed
on 3 April 2021), the Agricultural Research Service Fungal Database (https://nt.ars-grin.
gov/fungaldatabases, accessed on 13 October 2021), and personal communications. We
excluded any record collected from garden centers or newly established plantings with
boxwood plant stocks originating from another state. Ideally, positive confirmations of Cps
should be based on both morphological and laboratory-collected data (e.g., genetic and
physiological characterization) [8]; however, confirmations for a few records were based
only on morphological data or the source did not provide information on the confirmation
process. The likelihood that these few records were misdiagnosed is highly unlikely because
boxwood blight has several diagnostic characters that distinguishes it from other boxwood
diseases [8], and the records were from areas where Cps is known to occur.

https://doi.org/10.15468/dl.44z8yr
https://pest.ceris.purdue.edu
https://nt.ars-grin.gov/fungaldatabases
https://nt.ars-grin.gov/fungaldatabases
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2.3. CLIMEX Model

The CLIMEX model for Cps was generated using CLIMEX version 4.0 [58]. CLIMEX
estimates the overall suitability of a location for long-term persistence by a species using
the ecoclimatic index, which integrates the annual growth index (potential for population
growth) with annual stresses (cold, heat, dry, and wet stress) and potentially other limiting
factors that limit survival during unfavorable intervals [58,66]. Increasing ecoclimatic index
values signify higher potential for growth and survival [58]. The model used a 10′ gridded
global climatology centered on 1975 (1961–1990) that comes loaded with CLIMEX, which
was derived from the WorldClim and CRU CL1.0 and CL2.0 datasets [67]. Eco-physiological
information for Cps was derived from published studies on the impacts of temperature
and moisture on the development and survival of the vegetative and reproductive growth
stages as well as the more stress-tolerant microsclerotia stage, which can remain dormant in
the top soil layers for months or even years [41,68]. As described in the next two subsections
(Sections 2.3.1 and 2.3.2), we fine-tuned CLIMEX model parameters by fitting the model
to presence records from Europe and western Asia (n = 125), where the species may have
had more time to fill its climatic niche compared to more recently invaded regions such
as North America. Records from North America and New Zealand were reserved for
model validation (see Section 2.6). Final CLIMEX model parameters for Cps are provided
in Table 1.

Table 1. CLIMEX parameter values for Calonectria pseudonaviculata.

Parameter Description Value

Temperature index
DV0 Limiting low temperature (◦C) 8
DV1 Lower optimal temperature (◦C) 21
DV2 Upper optimal temperature (◦C) 25
DV3 Limiting high temperature (◦C) 29

Moisture index
SM0 Limiting low moisture 0.2
SM1 Lower optimal moisture 0.7
SM2 Upper optimal moisture 1.7
SM3 Limiting high moisture 3.0

Cold stress
TTCS Cold stress temperature threshold (◦C) −10
TCCS Cold stress temperature rate (week−1) −0.005

Heat stress
TTHS Heat stress temperature threshold (◦C) 32
THHS Heat stress temperature rate (week−1) 0.01

Dry stress
SMDS Dry stress threshold 0.2
HDS Dry stress rate (week−1) −0.001

Wet stress
SMWS Wet stress threshold 3.0
HWS Wet stress rate (week−1) 0.005

2.3.1. Temperature and Moisture Index Parameters

Four temperature index parameters in CLIMEX describe the ability for temperature-
driven population growth: DV0 (limiting low temperature), DV1 (lower optimal tempera-
ture), DV2 (upper optimal temperature), and DV3 (limiting high temperature). Develop-
ment of Cps may occur at temperatures as low as 5 ◦C [16,19,69], but we set DV0 to 9 ◦C
to avoid potential biases resulting from canopy temperatures being lower than estimates
from weather stations, which can produce errors in plant disease models [70]. We set DV1
and DV2 to 21 and 25 ◦C, respectively, because this temperature range is associated with
optimal growing conditions in both field and laboratory settings [16,19,39,54,69]. We used
an upper threshold of 29 ◦C because Cps colonies exhibit a low growth rate and have
irregular and sclerotized morphologies at temperatures ≥ 28 ◦C [16,19,54].
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Our unpublished re-analysis of Gehesquière (2014) [19] data indicated that 500 degree-
hours during continuous leaf wetness would cause between ca. 10–50% infection for
B. sempervirens and B. s. “Suffruticosa”, which is equivalent to 20 degree-days. However,
CLIMEX has no way to integrate moisture with degree-day calculations; thus, we used a
10× higher value of 200 as a rough stand-in for the degree-days per generation parameter
(PDD). The PDD value therefore has no true meaning with regard to actual infection
conditions because it accounts only for favorable temperatures.

CLIMEX describes the overall moisture characteristic of a location using estimates
of soil moisture, which combine the interactions of temperature, rainfall, and evapotran-
spiration. While precipitation and either high relative humidity or leaf wetness are the
primary moisture drivers of Cps growth [20,54,71], the use of soil moisture in CLIMEX
should capture the species’ response to its moisture environment in a broad sense. Four soil
moisture (SM) index parameters describe the influence of moisture on population growth:
SM0 (limiting low moisture), SM1 (lower optimal moisture), SM2 (upper optimal moisture),
and SM3 (limiting high moisture). For each SM parameter, a value of 0 indicates no soil
moisture, a value of 0.5 indicates soil moisture content is 50% of capacity, a value of 1
indicates that soil moisture content is 100% of capacity, and a value > 1 indicates a water
content greater than the soil holding capacity [58]. We set SM0 to 0.2, which is higher than
the permanent wilting point of plants in CLIMEX (SM0 = 0.1), because pathogens including
Cps require free water for parts of their lifecycles. We set SM1 to 0.7 because using higher
values resulted in certain presence records from more inland areas of the Black Sea and
Caspian Sea regions being excluded (i.e., ecoclimatic index = 0). The upper optimal value
(SM2) was set to 1.7 to ensure that wet conditions were suitable, and the upper threshold
(SM3) was set to 3 to remove any constraints on growth related to high rainfall.

2.3.2. Temperature and Moisture Stress Parameters

The cold and heat stress thresholds in CLIMEX (TTCS and TTHS, respectively) define
the temperature below (TTCS) or above (TTHS) the stress parameter value at which stress
begins to accumulate according to a weekly rate [58]. For example, if the average weekly
maximum temperature (Tmax) exceeds TTHS, then heat stress = (Tmax − TTHS) × THHS,
where THHS is described by the slope of the relationship between weekly heat stress and
average weekly Tmax. The threshold temperature function in CLIMEX has a multiplicative
factor (referred to as “week number”) that causes stress to accumulate exponentially during
consecutive weeks. To help identify appropriate TTCS and THHS values, we extracted
data on minimum temperature of the coldest week (bio6) and maximum temperature of
the warmest week (bio6) from the CliMond dataset for Cps presence records from Europe
and western Asia. According to this analysis, records with the coldest temperatures, which
were from northern Europe and high-elevation parts of Georgia, had weekly minimum
temperatures ≥ −8 ◦C. This finding is consistent with temperature limits of the most
cold-tolerant boxwood varieties, which are almost impossible to grow in areas where
temperatures drop below −10 ◦C [72], and with laboratory studies of Cps microsclerotia
survival [71,73]. We set TTCS to −10 ◦C and adjusted the cold stress rate (THCS) to ensure
that records for Cps in cold areas had an ecoclimatic index that exceeded zero. Additionally,
we considered maps of the northern range limit for European boxwood B. sempervirens
(Pojark.) in Norway, which is largely confined to districts south of 62◦ N [74].

We set TTHS to 32 ◦C and adjusted the heat stress accumulation rate (THHS) such that
records with the hottest temperatures, which were from northern Iran along the Caspian
Sea [28,75], had ecoclimatic index values exceeding zero. Microsclerotia have been shown
to survive at 40 ◦C for at least 24 h [73]; however, other data sources suggest that heat
stress accumulates at lower temperatures. An upper lethal temperature of 33 ◦C has been
suggested by Henricot and Culham (2002) [69] based on a laboratory study of conidial
growth and by field reports from Alabama [76]. Additionally, microsclerotia died after
two to five months at 30 ◦C under laboratory conditions [71], which if translated to field
conditions, would be slightly cooler in the soil under a canopy than in weather shelters.
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All but a single locality record for Cps in Europe and western Asia occurred in areas where
weekly maximum temperatures fell below 32 ◦C, which provides further evidence that this
temperature is an appropriate heat stress threshold.

Extremely low soil moisture reduces survival of Cps [54,71]. We set the dry stress
threshold (SMDS) to 0.2 and weekly dry stress rate (HDS) to−0.001 because this contributed
to the exclusion of the species (ecoclimatic index = 0) from relatively arid areas beyond the
Black Sea and Caspian Sea regions, where boxwood does not occur [39,77]. As excessive
moisture is not known to be detrimental to Cps survival, we used a relatively high wet
stress threshold (SMWS) of 3.0 and set the rate of wet stress accumulation (HWS) to 0.005.
We did not apply the hot-dry (interaction) stress parameter in CLIMEX because preliminary
analyses indicated that it did not assist in modeling the potential distribution.

2.4. Correlative Models
2.4.1. Data Inputs and Pre-Processing

Correlative modeling for Cps was performed using the ENMTML R package v. 1.0.0 [78]
in R version 4.1.3 [79]. ENMTML provides a suite of functions to preprocess occurrence
records and environmental data, fit models using a variety of algorithms, evaluate model
performance for each algorithm, and combine model outputs to produce an ensemble
model [78]. We fit models using presence records for Europe and western Asia, whereas
records for New Zealand and North America were reserved as an independent dataset
for validating predictions of presence (see Section 2.6). Prior to model fitting, we removed
records for Europe and western Asia that occurred within the same grid cell using the
“gridSample” function in the dismo R package v. 1.3.5 [80]. To reduce the potential nega-
tive effects of clustered geographic sampling on model performance [81,82], we created
a subsample of 70% of records based on the expected spatial intensity function of the
observed data using the “pp.subsample” function in the spatialEco R package v. 1.3.7 [83].
These processes resulted in 78 records (out of 125 records) for fitting correlative models
(Supplementary File S1).

Twenty-seven bioclimatic variables from the CliMond dataset [67] (https://www.
climond.org, accessed on 1 June 2021) were used to generate correlative models. CliMond
data were generated using the same baseline climatological inputs as CLIMEX data [67],
which should increase comparability of CLIMEX and correlative model predictions. The
first 19 bioclimatic variables (bio1–bio19) represent annual, weekly (interpolated from
monthly), and seasonal trends and extremes in temperature and precipitation [84]. The
remaining eight variables describe weekly, quarterly, and annual indices of soil moisture
(bio28–bio35), which were derived by Kriticos et al. (2012) [67] using a single-bucket soil
moisture model driven by the CLIMEX-formatted data. We cropped bioclimatic layers
to include all of Europe and areas of western Asia extending to the eastern edge of the
Hyrcanian forests in Iran (xmin =−11.5◦ W, xmax = 57◦ E, ymin = 35.6◦ N, ymax = 71.3◦ N).

A principal component analysis (PCA) based on the correlation matrix of all 27 vari-
ables was conducted because using PCA-derived variables for correlative modeling can
reduce model uncertainty and increase performance of model projections into new re-
gions [82,85–87]. The PCA was conducted using the “rasterPCA” function of the RSToolbox
R package v. 0.2.6 [88] within ENMTML, which resulted in six principal components (PCs)
that explained at least 95% of the total variance. The first and second PC axes explained
the highest proportion of the total variance (49.3% + 27.3% = 76.6%) and had the strongest
contributions from moisture and temperature variables, respectively (Table 2). The first PC
axis (PC1) had a strong positive loading for soil moisture seasonality (bio31) and strong
negative loadings for precipitation and soil moisture during warm quarters (bio18 and
bio34, respectively) and for moisture during the driest week (bio30), reflecting lower warm
season moisture and higher annual variation in moisture at positive PC1 scores (Table 2
and Figure S2). The second PC axis (PC2) had strong positive loadings for isothermality
(bio3) and temperatures during the coldest week and quarter (bio6 and bio11, respectively),
and strong negative loadings for temperature seasonality and annual range (bio4 and bio7,

https://www.climond.org
https://www.climond.org
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respectively), reflecting lower winter temperatures and higher annual variation in tempera-
tures at positive PC2 scores. PC axes 3 through 6 explained the remaining 19.4% of total
variance and were primarily related to moisture during cold and wet seasons (PC3), warm
and wet season temperature (PC4), dry season precipitation and precipitation seasonality
(PC5), and cold and wet season precipitation and annual precipitation (PC6).

Table 2. Summary of the principal component analysis of 27 bioclimatic variables used in correlative
modeling. Principal component (PC) axes were selected until the cumulative explanation proportion
reached 95% or more of the total variation of the original matrix. Loadings of PCs for each variable
are presented, as well as PC’s eigenvalues, the proportion of explained variance of each PC, and
accumulated proportion of explained variance. The largest loadings (positive or negative) for each
component (>0.30) are indicated with bold font.

Variables and Proportion of Variance PC1 PC2 PC3 PC4 PC5 PC6

Variable
Annual mean temperature (bio1) 0.10 0.26 0.06 0.29 −0.05 0.05

Mean diurnal temperature range (bio2) 0.19 −0.10 0.31 −0.03 −0.03 0.26
Isothermality (bio3) 0.04 0.35 0.11 −0.10 −0.04 0.10

Temperature seasonality (bio4) 0.11 −0.45 0.06 0.11 −0.07 0.05
Max temperature of warmest week (bio5) 0.22 −0.02 0.13 0.31 −0.09 0.12
Min temperature of coldest week (bio6) 0.01 0.41 −0.02 0.15 −0.02 −0.02

Temperature annual range (bio7) 0.15 −0.44 0.12 0.07 −0.05 0.11
Mean temperature of wettest quarter (bio8) −0.22 −0.07 −0.15 0.75 0.16 −0.14
Mean temperature of driest quarter (bio9) 0.21 0.25 0.08 −0.06 −0.06 0.11

Mean temperature of warmest quarter (bio10) 0.19 0.04 0.10 0.37 −0.09 0.08
Mean temperature of coldest quarter (bio11) 0.03 0.39 0.01 0.15 −0.01 0.01

Annual precipitation (bio12) −0.07 0.00 −0.05 0.02 −0.19 0.33
Precipitation of wettest week (bio13) −0.10 −0.01 −0.05 0.06 0.06 0.46
Precipitation of driest week (bio14) −0.11 0.01 0.02 0.02 −0.45 0.10

Precipitation seasonality (bio15) −0.06 0.04 0.08 −0.03 0.67 0.38
Precipitation of wettest quarter (bio16) −0.11 0.00 −0.05 0.05 0.04 0.44
Precipitation of driest quarter (bio17) −0.09 0.01 0.00 0.03 −0.45 0.11

Precipitation of warmest quarter (bio18) −0.33 −0.09 0.02 0.15 −0.09 0.15
Precipitation of coldest quarter (bio19) 0.14 0.06 −0.11 −0.07 −0.17 0.34
Annual mean moisture index (bio28) −0.13 0.00 −0.26 −0.07 −0.02 0.05

Highest weekly moisture index (bio29) 0.10 −0.02 −0.47 −0.03 0.02 0.08
Lowest weekly moisture index (bio30) −0.34 0.01 0.02 −0.04 −0.03 0.06

Moisture index seasonality (bio31) 0.41 −0.02 −0.11 0.01 0.05 0.09
Mean moisture index of wettest quarter (bio32) 0.09 −0.02 −0.48 −0.03 0.01 0.06
Mean moisture index of driest quarter (bio33) −0.33 0.02 −0.01 −0.06 −0.04 0.04

Mean moisture index of warmest quarter (bio34) −0.35 0.02 0.02 −0.06 −0.01 0.07
Mean moisture index of coldest quarter (bio35) 0.12 −0.02 −0.51 0.04 −0.05 0.03

Proportion of variance
Proportion explained by each PC (%) 49.3 27.3 8 4.6 3.7 3.1

Accumulated proportion explained by PCs (%) 49.3 76.6 84.6 89.2 92.9 96

2.4.2. Model Fitting and Performance

Four machine-learning algorithms were used to fit correlative models in ENMTML
and assess climatic variable importance. These included: boosted regression trees as
implemented using the “gbm.step” function of the dismo R package [80,89], Gaussian
process usage as implemented with the “graf” function of the GRaF R package v. 0.1-12 [90],
Maxent as implemented with the “maxnet” function of the maxnet R package v. 0.1.4 [91,92],
and random forest as implemented with the “randomForest” function of the randomforest
R package v. 4.7.1 [93]. These algorithms were used because they provide powerful and
efficient ways to deal with data that are nonlinear, have high dimensionality, and contain
complex interactions and missing values [57,86,94]. With the possible exception of Gaussian
process usage, all four methods are frequently used in species distribution modeling [52,60],
and their distinctive techniques should provide unique insights into establishment risk
for Cps. As described below, we edited the source code for ENMTML to change certain
model parameters from default values to potentially increase model performance [95]. We
used an equal number of presences and pseudo-absences (i.e., presences/absences ratio
equal to 1), which were randomly allocated within a calibration area (i.e., species accessible
area) delimited by a buffer of 400 km around presence records. This buffer should provide
an adequate characterization of the range of climatic conditions that Cps could potentially
experience given the distribution of native and ornamental Buxus spp. in Europe.
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As choices related to complexity can strongly influence correlative models [64,86,96],
we used quantitative evaluations available within the ENMeval R package v. 2.0 [95] to
determine optimal levels of complexity for the Maxent model (the package currently only
implements Maxent and BIOCLIM algorithms). This included building models that used
unique combinations of regularization multiplier (rm) values (1–5) and feature classes
(linear and quadratic features vs. linear, quadratic, and hinge features), for a total of
10 models with varying levels of complexity. Models were built and cross-validated
internally within ENMeval using the maxnet R package v 0.1.4 [92]. The background extent
was delineated by a 400 km buffer surrounding presences. A total of 10,000 randomly
sampled points were sampled from the background. Models were validated using the k-fold
partitioning method, in which records were randomly split into k = 4 sets, with one set was
used for model fitting and the remaining three sets used for model testing [97]. Optimal
models were selected using both the cAIC and validation AUC as performance metrics [95].
According to this analysis, both metrics identified a model with linear and quadratic
features as optimal, but they identified different optimal regularization multipliers (rm = 1
according to cAIC vs. rm = 2 according to AUC). We opted to use a regularization multiplier
of 2 to potentially avoid model overfitting [91,96]. Thus, the Maxent model produced
within ENMTML used a model with linear and quadratic features (“Maxent simple”) and a
regularization multiplier of 2.

The boosted regression trees, random forest, and Gaussian process models used
default parameters implemented from within ENMTML with the following exceptions.
The boosted regression trees model was assigned a tree complexity (number of nodes
in a tree, which control whether interactions are fitted) of 3, a bag fraction (stochasticity,
which introduces randomness into the model) of 0.6, and a learning rate (determines the
contribution of each tree to the growing model) of 0.0005. Bag fractions in the range of
0.5–75 have given the best results for presence–absence responses, and simple trees (tree
complexity of 2 or 3) and slow learning rates (between 0.01 and 0.005) are ideal for small
sample sizes [89]. The random forest model used default parameters except for the number
of trees to grow and the number of variables randomly sampled as candidates at each
split (mtry), which have a stronger influence on model accuracy than other parameters. We
changed the number of trees to 1000 based on recommendations to use a large number of
trees to ensure convergence and increase optimal performance [98]. The “tuneRF” function
in randomForest was used to search for optimal mtry values to use for producing a forest of
decision trees.

The performance for all four correlative algorithms was measured within ENMTML,
and model outputs were combined into an ensemble model. Models were validated using
the k-fold partitioning method and then evaluated using the area under the receiving
operating characteristic curve (AUC), true skill statistics (TSS), Sørensen, and F-measure on
presence-background data (Fpb) metrics [99–101]. Similarity indices from community ecol-
ogy including Sørensen and Fpb may provide better estimations of model discrimination
capacity than metrics that depend on prevalence (the proportion of sites where the species
is present) such as AUC [99–101]. An ensemble model was produced by conducting a
PCA of suitability predictions (probability of occurrence) across all algorithms. Consensus
models produced using PCA may outperform those produced using the weighted average
method [55,102]. Some studies have shown no particular benefit to using ensemble correla-
tive models over individual tuned models; however, they can reflect the central tendency
of individual models and potentially reduce predictive uncertainty [55,102,103].

2.4.3. Global Model Projections

Individual correlative models and the ensemble correlative model were projected at a
global scale using the same climatic PC predictors. We avoided interpreting predictions
for areas where model extrapolation into novel climates occurred because extrapolation
may change the correlation structure between parameters and lead to unreliable pre-
dictions when projected outside the model calibration area [57,65,86,89]. We tested the
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similarity of predictors between the model calibration and global projection areas using
a mobility-oriented parity (MOP) analysis [65], which is a modification and extension of
the Multivariate Environmental Similarity Surface metric [57]. The MOP analysis sampled
10% of reference points from the environmental space of the calibration area and was
conducted within ENMTML using the kuenm R package v. 1.1.7 [104]. Model outputs were
cropped to an “environmental overlap mask” defined as areas that had MOP values ≥ 0.9.
Areas where MOP values approach 0 represent strict extrapolation (complete dissimilarity
of environments), whereas areas with MOP values close to 1 have highly comparable
environments to those in the model calibration area [65].

2.5. Estimating the Potential Distribution

We overlaid predictions of the potential distribution generated by each method to pro-
duce a consensus map of the potential distribution of Cps at regional (Europe and western
Asia, and North America (contiguous United States and bordering areas)) and global scales.
In CLIMEX, any location with an ecoclimatic index greater than 0 indicates a potential for
establishment [58]; however, we defined the potential distribution as areas that had an
ecoclimatic index ≥ 10 because 99% of all presence records for Cps (i.e., those used both for
model fitting and validation) met this criterion. We used a threshold suitability value of
0.3 to produce binary maps of presence/absence for each correlative model including the
ensemble model. This threshold was chosen because preliminary analyses revealed that
the most permissive threshold (lower presence threshold) overpredicted presence (e.g., in
areas known to be too cold for the pathogen’s survival), whereas more restrictive methods
appeared to underpredict presence.

2.6. Model Validation

The predictive accuracy of the CLIMEX model and ensemble correlative model was
assessed by determining whether eight presence records from New Zealand and 159 records
from North America (Supplementary File S1) fell within the potential distribution as
estimated by each method. Most records for the United States were spatially resolved
only to the county or city level due to confidentiality concerns, which are typically coarser
resolution than model predictions (ca. 18.5 km2). We therefore assessed predictions for
entire counties and cities using boundary shapefiles in the tigris R package v. 1.6 [105].

2.7. Correlative Models Based on Climate Data for the Invasion Time Period

Our correlative models used historical 30-year climate normals centered on 1975
(1961–1990) because the current version of CLIMEX has no native ability to import and
process other forms of gridded data, and CliMond data for more recent time frames have
not been developed to the best of our knowledge. However, the invasion of Cps did
not begin until the mid-1990s, and global temperatures and precipitation patterns have
significantly changed in the past 30 years [106,107]. To explore whether climatic suitability
models for Cps based on historical climate normals may misrepresent establishment risk,
we compared correlative models produced using historical climate data (i.e., for 1961–1990)
to models based on climate data for the time frame of the continental Europe invasion
(2000–2020).

Climate data for both time frames were derived from the E-OBS dataset at 0.1◦ resolu-
tion (ca. 11.1 km2) [108] (https://surfobs.climate.copernicus.eu, accessed on 19 April 2022)
to increase comparability of model predictions. We calculated monthly averages from daily
estimates of minimum temperature, maximum temperature, and total precipitation for
each time frame and then generated bioclimatic variables (bio1–19) from these data using
the “biovars” function in the dismo R package. The E-OBS dataset lacks inputs needed to
produce bioclimatic variables related to soil moisture (bio28–bio35). All models were fitted
in ENMTML using procedures described in Section 2.4.2. However, the models used only
65 presence records owing to an absence of climate data for Iran and missing climate data
for certain coastal parts of Europe.

https://surfobs.climate.copernicus.eu
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3. Results
3.1. Correlative Model Evaluations and Variable Importance

Evaluations of the four individual correlative models and an ensemble correlative
model indicated good performance (Table 3). Across the individual models, AUC ranged
from 0.68 to 0.72, TSS ranged from 0.37 to 0.44, Sørensen ranged from 0.74 to 0.75, and Fpb
ranged from 1.18 to 1.22. Evaluation metrics for the ensemble model were similar.

The PC1 variable contributed most strongly (average = 27.3%) to correlative models
(Table 4), indicating an important role for warm season soil moisture and soil moisture
seasonality in shaping the potential distribution of Cps. The PC3 variable provided the next
highest contribution to correlative models (average = 23.3%), indicating that soil moisture
during cold and wet seasons is another important range-limiting factor. On average, the
PC2, PC4, and PC6 variables had similar contributions to models (14%, 14.2%, and 12.6%,
respectively), whereas PC5 had the lowest contribution (average = 8.6%).

Table 3. Evaluation metrics for individual correlative models and the ensemble correlative model for
Calonectria pseudonaviculata.

Algorithm AUC TSS Sørensen Fpb

Boosted regression trees 0.68 0.37 0.74 1.18
Gaussian process 0.70 0.42 0.75 1.21

Maxent (“simple”) 0.72 0.44 0.75 1.20
Random forest 0.71 0.44 0.75 1.21

Ensemble 0.72 0.48 0.76 1.22
AUC, area under the ROC curve; TSS, true skill statistics; Fpb, F-measure on presence-background.

Table 4. The percent contribution of each principal component (PC) variable to correlative models
produced by four algorithms. The climatic relevance of each variable (based on which bioclimatic
variables had the largest loadings (positive or negative, Table 2)) and average of contributions across
all algorithms is indicated.

Variable Climatic Relevance BRT GAU MXS RDF Avg. (%)

PC1 Warm season precipitation and soil moisture, soil moisture seasonality 26.6 38.4 24.7 19.5 27.3
PC2 Cold season temperatures, temperature seasonality 18.2 11.7 9.3 16.8 14
PC3 Cold and wet season soil moisture 23.2 24.6 27.1 18.4 23.3
PC4 Warm and wet season temperature 11.2 11.6 18.5 15.6 14.2
PC5 Dry season precipitation, precipitation seasonality 11.8 3.7 3.5 15.4 8.6
PC6 Cold and wet season precipitation, annual precipitation 9.1 10 16.9 14.3 12.6

BRT, boosted regression trees; GAU, Gaussian process; MXS, Maxent “simple”; RDF, random forest.

3.2. Climatic Suitability for and Potential Distribution of Cps in Europe and Western Asia

CLIMEX and correlative model predictions of climatic suitability and the potential
distribution for Cps in Europe and western Asia were mostly concordant (Figures 1 and 2b).
CLIMEX predicted the highest ecoclimatic and population growth index values in the
Atlantic region of western Europe, coastal areas of southern Europe, and the Black and
Caspian Sea regions of western Asia (Figures 1a and 3a), a finding which is consistent with
predictions of high climatic suitability for these areas produced by the four correlative
models (Figure 1b–e) and ensemble correlative model (Figure 1f). Consequently, these
regions were included in the potential distribution according to all models (Figure 2a).

In general, all models predicted lower climatic suitability in central and eastern
Europe compared to western Europe (Figure 1). However, some models predicted lower
suitability in these areas than others, which resulted in discordance in predictions of the
potential distribution. For example, CLIMEX included areas as far east as the western
border region of Russia in the potential distribution (Figure 2b), whereas the delineation of
presence according to most correlative models included few areas east of Poland (Figure 2a).
Predictions of suitability and the potential distribution in Europe and western Asia among
the four correlative models were largely consistent, although Maxent predicted slightly
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higher suitability in eastern Europe and lower suitability in northernmost regions (i.e., in
Scandinavia) than other algorithms.
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Figure 1. Maps of climatic suitability for Calonectria pseudonaviculata in Europe and western Asia. Cli-
matic suitability is estimated as the ecoclimatic index in the (a) CLIMEX model and as the probability
of occurrence in (b–f) correlative models produced using boosted regression trees (BRT), Gaussian
process (GAU), Maxent “simple” (MXS), random forest (RDF), and a principal component analysis
of predictions (ensemble) produced by the four algorithms (ENS-PCA). Pink lines delineate the
thresholds used to binarize models into presence–absence predictions: ecoclimatic index ≥ 10 for the
CLIMEX model and probability of occurrence ≥ 0.3 for correlative models.

Temperature and aridity were both important range-limiting factors for Cps in Europe
and western Asia. According to CLIMEX, cold stress is predicted to constrain Cps to
latitudes below ca. 60◦ N in Europe, and it would exclude the species from western



Biology 2022, 11, 849 12 of 29

Russia except for the southernmost regions (Figure 3b). Conversely, a combination of
heat stress and dry stress in Iran and countries on the eastern edge of the Caspian Sea
(e.g., Turkmenistan and Kazakhstan) is predicted to limit the species to predominantly
southwestern areas of the Caspian Sea region (Figure 3c,d). Heat stress and dry stress are
also predicted to exclude Cps from most of southern Spain.
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Figure 2. Estimates of the potential distribution for Calonectria pseudonaviculata in Europe and western
Asia. A consensus map of (a) presence predictions produced by individual correlative models (probability
of occurrence ≥ 0.3) depicts areas of high vs. low discordance and the approximate location of presence
records used for model fitting. A consensus map of (b) all models shows overlap in the potential
distribution according to the CLIMEX model (ecoclimatic index ≥ 10) and the ensemble correlative
model (purple shading) compared to areas that were included in the potential distribution by only the
CLIMEX model (red shading) or by the ensemble correlative model (blue shading).
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(range = 0–100). Climate stress indices (range = 0–999) include (b) cold stress, (c) heat stress, and
(d) dry stress. Pink circles depict the approximate locations of all presence records for the region.

Our use of historical climate normals for modeling analyses does not appear to mis-
represent establishment risk. Correlative models for Europe produced using E-OBS climate
averages for the invasion time period (2000–2020) produced broadly concordant predictions
with those developed using historical climate normals (1961–1990; Figure 4). However,
predictions differed somewhat in coastal areas of southern Europe (e.g., in Spain, Italy, and
Greece) and Turkey, where the correlative ensemble model for the invasion time period
predicted lower suitability and a more restricted potential distribution. Similar to correla-
tive models developed using CliMond data, models based on E-OBS data exhibited some
of the highest levels of discordance in eastern Europe (Figure 4c,d).
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the Mid-Atlantic and Southeast regions (Figures 5a and 7a), a finding which is consistent 
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Figure 4. Maps of (a,b) climatic suitability and (c,d) presence for Calonectria pseudonaviculata in Europe
based on correlative models developed using E-OBS climate data for 1961–1990 and 2000–2020 (left
and right panels, respectively). Pink lines in the ensemble correlative model (ENS-PCA) delineate the
threshold used to binarize models into presence–absence predictions (probability of occurrence ≥ 0.3).
Maps of concordance in presence predictions produced by individual correlative models show the
approximate locations of records used for fitting and testing models (pink circles).

3.3. Climatic Suitability for and Potential Distribution of Cps in North America

Predictions of climatic suitability and the potential distribution estimated by the
CLIMEX model and correlative models were mostly concordant for eastern parts of the
United States and southern Canada (Figures 5 and 6). CLIMEX predicted the highest
ecoclimatic and population growth index values in the eastern United States particularly in
the Mid-Atlantic and Southeast regions (Figures 5a and 7a), a finding which is consistent
with relatively high levels of climatic suitability predicted by correlative models for these
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areas (Figure 5b–e). Several southeastern and midwestern states where Cps is not known to
be established were predicted to be climatically suitable for this pathogen. These include
Arkansas, Missouri, Illinois, and Indiana.
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Figure 5. Maps of climatic suitability for Calonectria pseudonaviculata in the contiguous United States
and bordering areas in North America. Climatic suitability is estimated as the ecoclimatic index in the
(a) CLIMEX model and as the probability of occurrence in (b–f) correlative models produced using
boosted regression trees (BRT), Gaussian process (GAU), Maxent “simple” (MXS), random forest
(RDF), and a principal component analysis of predictions (ensemble) produced by the four algorithms
(ENS-PCA). Pink lines delineate the thresholds used to binarize models into presence–absence
predictions: ecoclimatic index ≥ 10 for the CLIMEX model and probability of occurrence ≥ 0.3
for correlative models. Areas with relatively high climatic dissimilarity to the correlative model
calibration area (MOP values < 0.9) are depicted in Figures 6, 8 and 9.

However, estimates of the potential distribution produced by the ensemble correla-
tive model differed from the CLIMEX model at the predicted range edges in the eastern
United States (Figure 6b). In the South, the ensemble correlative model included Texas
and Oklahoma in the potential distribution whereas CLIMEX included only coastal areas
of southeastern Texas. Additionally, the ensemble correlative model predicted a higher
latitude range limit than the CLIMEX model in the Northeast and a lower latitude limit
in the Midwest. Nonetheless, discordance in range limit predictions among individual
correlative models indicates model uncertainty (Figure 6a). For example, only some algo-
rithms included the entire state of Texas in the potential distribution (Gaussian process and
random forest), boosted regression trees predicted a more restrictive distribution in the
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Northeast, and Maxent and random forest predicted a higher latitude range limit in the
Midwest than other models (Figure 5b–e).
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Figure 6. Estimates of the potential distribution for Calonectria pseudonaviculata in the contiguous
United States and bordering areas in North America. A consensus map of (a) presence predictions
produced by individual correlative models (probability of occurrence ≥ 0.3) depicts areas of high
vs. low discordance and the approximate locations of all presence records for the region (pink
circles). A consensus map of (b) all models shows overlap in the potential distribution according to
the CLIMEX model (ecoclimatic index ≥ 10) and the ensemble correlative model (purple shading)
compared to areas that were included in the potential distribution by only the CLIMEX model (red
shading), or by the ensemble correlative model in areas with similar climates to the model calibration
area (MOP values ≥ 0.9; blue shading). Correlative model predictions for areas that had dissimilar
climates to the calibration area (MOP values < 0.9) and that were not included in CLIMEX’s estimate
of the potential distribution (dark gray shading) were not interpreted.

High levels of climatic suitability for Cps in the western United States and southern
Canada was limited almost exclusively to the Pacific coast region including in south-
ern British Columbia, western Oregon and Washington, and coastal areas of California
(Figure 5). The CLIMEX model and ensemble correlative model includes these areas in the
potential distribution but excluded most parts of the Intermountain West and Southwest
(Figure 6b). In general, predictions of climatic suitability and presence varied to a greater
extent across correlative models in the western United States (Figure 5b–e and Figure 6a).
For example, Maxent predicted low suitability (probability of occurrence < 0.1) for nearly
the entire region, whereas other algorithms predicted low to moderate suitability even in
certain parts of the Southwest (e.g., in southern New Mexico and Arizona).

Western regions of the United States exhibited greater climatic dissimilarity to the
model calibration area than eastern regions (Figure S3), with MOP values falling be-
low 0.9 in parts of the Southwest and the Cascade Mountains in the Pacific Northwest
(Figure 6b). While MOP values did not fall to levels indicative of strict model extrapolation
(close to 0), they may indicate that portions of environmental space in these areas represent
new combinations of predictors [65]. This finding may suggest lower predictive accuracy
of correlative models for climatically dissimilar parts of the western United States.

According to CLIMEX, cold stress was the primary range-limiting factor for Cps in the
contiguous United States and southern Canada (Figure 7b). Cold stress excluded the species
from high-elevation areas in the Intermountain West (most of the Rocky Mountains), from
northern parts of the Northeast (northern New York and most of Vermont, New Hampshire,
and Maine) and the Midwest (most of Wisconsin and all of North Dakota, South Dakota,
and Minnesota), and from southern Canada except for some coastal areas of the Pacific
Ocean. However, estimates of population growth (Figure 7a) indicated that populations
could grow in several of these excluded areas, a finding that suggests that Cps could at least
temporarily establish during favorable seasons. For example, population growth was high
in Wisconsin, New England, and southern parts of Ontario and Quebec; however, cold
stress is predicted to prevent long-term survival throughout most of these areas.
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Figure 7. Population growth and climate stress accumulation for Calonectria pseudonaviculata in the
contiguous United States and bordering areas in North America. Population growth in CLIMEX
is measured as the (a) annual growth index (range = 0–100). Climate stress indices (range = 0–999)
include (b) cold stress, (c) heat stress, and (d) dry stress. Pink circles depict the approximate locations
of all presence records for the region.

Arid conditions in the Intermountain West and hot temperatures throughout much of
the southern United States limited the pathogen’s distribution in those areas (Figure 7c,d).
Whereas heat stress contributed to the exclusion of Cps in eastern Texas despite high
population growth rates, both population growth and survival were low across most of the
Southwest and Intermountain West including in western Texas, New Mexico, Colorado,
Arizona, Nevada, Utah, southeastern California, and eastern Oregon and Washington.

3.4. Global Climatic Suitability for and Potential Distribution of Cps

Both the CLIMEX model and the ensemble correlative model predicted high climatic
suitability for Cps in several regions of the world where the pathogen is not known to occur,
such as much of Southeast Asia (e.g., in China, Japan, South Korea, Vietnam, and Indonesia),
coastal areas of Australia, high elevation areas of Africa, southern parts of South America
(e.g., southern Brazil, Uruguay, northern Argentina, and southern Chile) as well as the Andes
region, and parts of Central America and the Caribbean (Figure 8). Additionally, all models
predicted highly suitable conditions in New Zealand, where Cps has been reported on both
the North and South Island (Figure S4). A consensus map of the global potential distribution
of Cps indicates that establishment is possible for all of these regions (Figure 9), many of which
have endemic species in the Buxaceae family (see Section 4.2). According to CLIMEX, cold
temperatures were predicted to exclude the pathogen from most of northern and central Asia,
whereas hot temperatures would limit establishment throughout most of northern Africa, the
Middle East, India, and Australia (Figure S5).
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only the CLIMEX model (red shading), or by the ensemble correlative model in areas with similar cli-
mates to the model calibration area (MOP values ≥ 0.9; blue shading). Correlative model predictions
for areas that had dissimilar climates to the calibration area (MOP values < 0.9) and that were not
included in CLIMEX’s estimate of the potential distribution (dark gray shading) were not interpreted.

3.5. Validation of Predictions of the Potential Distribution

Predictive accuracy of CLIMEX and ensemble correlative model estimates of the
potential distribution was high. Both models included the eight New Zealand presence
records in the potential distribution. All 156 records for North America were included in
estimates of the potential distribution according to the CLIMEX model, whereas all but a
single record (Lake County, IL, USA) were included by the ensemble correlative model.

4. Discussion

This study used both process-based (CLIMEX) and correlative models to assess the
risk for Cps, a highly invasive plant pathogen, to establish at local, regional and global
scales. This assessment can help guide the development of local and regional phytosanitary
protocols for preventing further spread of the pathogen, prioritizing global surveillance
efforts for more effective early detection, and planning for eradication, containment and
management where accidental introductions occur. These three steps are critical to pre-
venting accidental introductions of Cps to and becoming established in predicted high risk
areas where it is not yet present [8,9]. They are also crucial to preventing boxwood blight
from becoming rampant in areas where Cps is at its early stages of establishment [109].
The pathogen has spread rapidly, as evidenced by its invasion of 24 countries across three
distant regions (Europe and western Asia, New Zealand, and North America) in less than
30 years [8,20,24]. Preventing its accidental introduction to and establishment in new areas
and mitigating its local spread are both pivotal to safeguarding global boxwood crops,
plantings, and forests [8,9].

All models performed well and were mostly consistent in their predictions of climatic
suitability and the potential distribution for the calibration area (Europe and western Asia)
and for the contiguous United States and bordering areas in North America. The CLIMEX
model and ensemble correlative model correctly predicted presence for the majority of
Cps records reserved for model validation, and evaluation metrics for the four individual
correlative models and ensemble correlative model indicated good performance for the
calibration area. Cold temperatures were a major range limitation at higher latitudes and
elevations, as evidenced by the predicted absence of the species from northern areas that
have high levels of cold stress in the CLIMEX model, and by the moderate contribution of
the cold-temperature-related PC predictor (PC2) to correlative models. Moisture during
warm seasons was also a major range limiting factor, as demonstrated by the absence of
Cps from hot and arid climates in the CLIMEX model and the strong contribution of the PC
predictor (PC1) related to warm season moisture and moisture seasonality to correlative
models. Hot temperatures, often in combination with arid conditions, play a range-limiting
role for Cps predominantly in the southern regions of western Asia (e.g., northern Iran) and
in the southern United States.

4.1. Climatic Suitability for and Potential Distribution of Cps in Europe, Western Asia, and
North America

Some of the highest levels of climatic suitability according to the CLIMEX model
and correlative models occurred in western Europe, western Asia (Black and Caspian Sea
regions), and the east coast of the United States, which is consistent with the widespread
presence of Cps in these regions. Oceanic climates in these areas have likely facilitated
the pathogen’s invasion and establishment because few gaps in precipitation and high
humidity over the year combined with warm-to-hot summer temperatures creates con-
ducive conditions for infections (Figure 10) [8,19]. In the eastern United States, Cps is
particularly prevalent in the Mid-Atlantic and northern parts of the Southeast. There are
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relatively few reports of the pathogen from Florida and the Deep South (southernmost
states in the Southeast), despite the inclusion of most of these regions in the potential
distribution. For example, boxwood blight has not been reported beyond two locations
in the Tallahassee area of northern Florida in 2016 where contaminated stock plants were
received and then eradicated in 2016 [110], and to date, there have been no positive reports
for Texas, Louisiana, and Mississippi [111].
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and Conner (2013) posited that disease development on container or field stock in Ala-
bama would most likely occur during extended periods of wet weather in mid-fall into 

Figure 10. Climate comparisons for sites that are expected to differ in favorability for boxwood
blight infections. Line plots depict monthly temperature (solid lines) and precipitation (dashed
lines) across eight sites in Europe (orange lines) and the United States (blue lines). Sites with a
Mediterranean climate (e.g., Cannes, France; Naples, Italy; Seattle, Washington; and Portland, Oregon)
are less conducive for infections than sites that have higher humidity, few gaps in precipitation, and
ideal temperatures for growth throughout the year, such as those in temperate/coastal climates in
western Europe (e.g., Brussels, Belgium and Bordeaux, France) and warm and humid climates in
the mid-Atlantic and southeastern regions of the United States (e.g., Virginia Beach, Virginia and
Atlanta, Georgia). Data source: 1981–2010 climate normals, World Meteorological Organization
(https://climatedata-catalogue.wmo.int; accessed on 24 September 2021).

According to CLIMEX, hot temperatures reduced climatic suitability throughout
Florida except for along coastlines and from southern parts of the Deep South (e.g., in
Alabama and Georgia), which may explain the paucity of reports from these areas. Hagan
and Conner (2013) posited that disease development on container or field stock in Alabama
would most likely occur during extended periods of wet weather in mid-fall into mid-
spring because temperatures would be more ideal for growth than during the summer [76].
Additionally, shade can reduce temperatures and create humid conditions that may create
more favorable conditions for infections in hot environments [8,112]. Additional data on
the pathogen’s ability to survive prolonged heat, particularly in the more heat-resistant
microsclerotia form [71,73,113], could help resolve whether it may establish in parts of the
Deep South that may have ideal growing conditions during cool seasons.

Many areas with Mediterranean climates, including those in southern Europe and
the Pacific coast region of the United States, were included in the potential distribution
according to a consensus map of CLIMEX and ensemble correlative model predictions,
but Cps has a limited presence in these regions to date. In southern Europe, Cps has been
reported on B. sempervirens “Suffruticosa” in nurseries or gardens from only a handful
of localities in northwestern Spain [114], southern France [115], northern Italy [116], and
Croatia [117]. The pathogen has seemingly had opportunities to invade southern Europe
given its rapid expansion throughout other parts of the continent since the early 2000s [8,20].
Host availability is unlikely an issue because boxwood is commonly grown in gardens and
landscapes throughout southern Europe, and native populations of B. sempervirens and
B. balearica occur in pockets in northern Africa (Morocco and Algeria), central France, the
southern European peninsulas (Iberian, Italian and Balkan), certain Mediterranean Islands,
and Turkey [118,119]. Models based on averages of E-OBS climate data for the invasion
time period (2000–2020) predicted lower climatic suitability in parts of southern Europe

https://climatedata-catalogue.wmo.int
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than models based on historical climate normals (1961–1990), which suggests that models
developed using CLIMEX and CliMond data may have overestimated establishment risk
for these areas. In the western United States, Cps has been documented only in a handful
of locations in western Oregon and the San Francisco Bay area (California) despite having
a potential distribution that encompasses Mediterranean climates throughout the region,
including most of the California coast and areas west of the Cascade Mountains in Oregon
and Washington.

Long warm-to-hot dry summers and cool wet winters that characterize Mediterranean
climates may hinder long-term establishment of Cps because optimal conditions for growth
that transpire during warm and wet weather occur too infrequently (Figure 10). However,
summer irrigation is regularly used in horticultural settings where boxwood is grown [72],
and it can play a key role in Cps growth and survival by increasing the humidity to levels
conducive for sporulation and infection [19,53,54,120]. Outbreaks in Oregon and California
are often associated with summer irrigation (J. Weiland, pers. comm.) or unusually wet spring
and summer weather [121]. Thus, regions with Mediterranean climates will likely be at higher
risk of establishment if boxwood is irrigated during periods of optimal temperatures for
Cps development, or during relatively wet years. Overhead irrigation in particular facilitates
boxwood blight outbreaks because it creates higher relative humidity and exposes leaf surfaces
to longer periods of wetness [19,120,122]. Locations that are climatically marginal for Cps, but
which have extensive boxwood plantings, may be best able to exclude or eradicate boxwood
blight outbreaks by implementing best practices such as using less dense plantings, limiting
shade cover, and exclusively make use of underground irrigation [8,112,123]. Additionally,
the avoidance of highly susceptible cultivars may help reduce the risk of establishment.

Climatic suitability tended to be lower in regions with humid continental climates
compared to those with oceanic climates, despite the inclusion of many of these areas in
the potential distribution. Optimal conditions for infections (warm and wet weather) in the
humid continental climate of eastern Europe including parts of Ukraine and Russia may
occur too infrequently owing to long, cold winters and warm-to-hot, dry summers. The
only reports of the pathogen from these regions have come from nurseries and gardens in
the Czech Republic [122,124] and a single nursery in western Ukraine [13]. The common
element of diseased boxwood in gardens in the Czech Republic was the use of irrigation
systems or partial-shade conditions, which created higher humidity and exposed leaves to
longer periods of wetness [122]. These findings suggest that establishment risk for Cps in
much of eastern Europe may be low in the absence of supplemental irrigation.

Climatic suitability tended to be lower in humid continental regions of North America,
but cold temperatures play a larger role than aridity in reducing the risk of establishment
for these areas. According to CLIMEX, cold stress lowered climatic suitability throughout
interior parts of New York, New England, and southeastern Canada, which is consistent
with an absence of Cps from these areas and with low climatic suitability predicted there by
correlative models. In the midwestern United States, Cps has a limited presence despite
the growing number of reports of the pathogen for this region, including from Missouri
(2014), Kansas (2014), Illinois (2016), Indiana (2018), Arkansas (2019), Michigan (2018), and
Wisconsin (2018). The establishment of the pathogen at the sites of introduction in these
states is yet to be determined. If Cps takes hold in the Midwest, economic damages to the
horticultural industry could be significant because this region is one of the top four regions
in inter-regional trade of boxwood [36]. Thus, it is important for boxwood producers and
users to be vigilant in watching for infections and quickly eradicating the pathogen when it
is observed [50].

Modeling analyses indicate that cold temperatures will likely prevent establishment
of Cps in Minnesota, North Dakota, South Dakota, and most of Wisconsin and Nebraska.
The pathogen was found in North Dakota in 2019 on contaminated stock plants that
were received from Ohio, but it has not been found in landscape settings where it could
potentially be exposed to winter conditions (Charles Elhard, pers. comm.). Future outbreak
reports from areas that are predicted to be too cold for establishment should be followed
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closely to assess the ability of Cps to overwinter. For example, soil or snow cover may
offer protection to overwintering microsclerotia that may allow the pathogen to survive in
areas that are predicted to be unsuitable by our models, and climate change may increase
overwintering survival rates.

Areas of Europe, western Asia, and the western United States that have arid or semi-
arid climates had some of the lowest levels of climatic suitability, and will therefore be
at relatively low risk of establishment at least in the absence of supplemental moisture.
Range expansion of Cps in northern Europe and Russia will likely be prevented by cold
temperatures; however, aridity often combined with hot temperatures may play a large
role in limiting the pathogen’s expansion at its eastern range edge (Caspian Sea region) and
southern range edge (Spain, Turkey and the Caspian Sea region). Cold temperatures were
predicted to exclude Cps from most of Canada and the Rocky Mountains region in western
North America, whereas aridity played a significant role in restricting the pathogen’s
potential distribution in the Intermountain West and Southwest. Infections in these latter
regions may only be possible in highly irrigated settings, and potentially in shaded areas
during the hot season. With the exception of New Mexico, states in these regions have
low rankings for production and total sales of boxwood [36], which could further limit the
chance for Cps to establish there.

4.2. Establishment Risk for Cps in Global Centers of Diversity for Buxus and Congeners

Maps of climatic suitability and the potential distribution for Cps according to CLIMEX
and the correlative models indicate that most regions of the world where Buxus and its
congeners (Didymeles, Haptanthus, Pachysandra, Sarcococca, and Styloceras) are native are
at risk of establishment. Most of the Buxaceae species are tropical or subtropical, with
native ranges that include western and southern Europe, southwest, southern and eastern
Asia, Africa, Madagascar, northernmost South America, Central America, Mexico and
the Caribbean [125–127]. The consensus map of CLIMEX and ensemble correlative model
predictions included much of eastern Asia and the Himalayas as Cps’s potential distribution
areas, which are home to ca. 40 species of Buxus [125], four species of Pachysandra, and
11 species of Sarcococca [126]. The potential distribution in the Neotropics included the
Andes region, where all five species of Styloceras Kunth ex A. Juss. are endemic [126],
and it overlapped with at least some of the ca. 50 species of Buxus native to Central
America and the Caribbean, such as in Mexico, Guatemala, Cuba, Hispaniola, and Puerto
Rico [125,127,128]. In Africa, the potential distribution included Madagascar, which has
nine endemic Buxus species [129], as well as other parts of Africa where Buxus species are
native such as in South Africa, Ethiopia, Kenya, Tanzania, Angola, and Cameroon [130].
An overall lack of comprehensive and current maps that depict the ranges of Buxaceae
species hinders making detailed assessments into the extent of overlap with the potential
distribution of Cps. Nonetheless, our broad-scale assessment indicates the potential for the
pathogen to expand its range globally.

Preventing the establishment of Cps in regions with native boxwood is important
because the pathogen can clearly cause ecological damage to affected ecosystems. Studies
of Cps in native stands of B. sempervirens subsp. colchica in Georgia and B. sempervirens subsp.
hyrcana in the Caspian Hyrcanian forests of northern Iran revealed rapid and intensive
defoliation of boxwood plants of different ages, with complete defoliation occurring in up to
90% of some populations in only one year after positive detection of boxwood blight [13,28].
Infected plants are also vulnerable to attacks by secondary opportunistic pathogens that can
lead to eventual death [13,14]. A literature survey showed that a loss of native boxwood in
Europe and the Caucasus could lead to reductions in soil stability and subsequent declines
in water quality and flood protection, changes in forest structure and composition, and
declines in Buxus-associated biodiversity including at least 63 potentially obligate species
of lichens, fungi, chromista and invertebrates [11]. Currently, there is no effective control
for boxwood blight in forests because removing infected plants or applying fungicides
across large areas is infeasible [13,131]. Early detection of Cps will therefore be the most
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economical and effective method to prevent additional invasions and establishments in
areas with susceptible native species.

The invasion of Cps could be particularly devastating to species that are vulnera-
ble both in terms of their conservation status and their susceptibility to infection. Many
Buxus species are already threatened or endangered because of small and isolated distri-
butions resulting from natural causes such as island endemism and post-glacial climate
change [118,128], anthropogenic disturbances such as deforestation and overharvesting of
wood [11], and invasions of non-native pests such as the box tree moth Cydalima perspectalis
(Walker, 1859) in Europe and western Asia [13,131–133]. For example, most of the Buxus
species native to tropical America are endemic to single islands in the Caribbean [125],
37 of which occur in Cuba alone [127,128]. None of the Buxaceae species tested to date
are completely immune to boxwood blight infections, although severity of disease varies
widely across Buxus species and cultivars [41–43], and it appears to be low in pachysandra
(Pachysandra) and sweet box (Sarcococca) species [45,134]. Susceptible species that have
at least partially overlapping native ranges with the potential distribution of Cps include
B. sempervirens and subspecies (southern Europe and the Black and Caspian Sea regions),
B. balearica (Mediterranean basin), B. bodinieri (China), B. glomerata (Cuba and Hispaniola),
B. harlandii (China to Vietnam), B. macowanii (South Africa), B. riparia (Japan), B. wallichiana
(Himalayas from east Afghanistan to Nepal), at least three Pachysandra species including
the endangered P. procumbens (eastern United States), and several Sarcococca species (East
Asia). More studies on the susceptibility of Buxaceae species to infection are needed to
better assess the risk of the pathogen establishing and causing ecological harm.

4.3. Potential Geographic Origin of Cps

Our global climatic suitability models for Cps provide some of the first insights into the
potential geographic origin of the pathogen, which is still unknown [18,135]. The CLIMEX
and ensemble correlative model both included a large part of southeastern China and Japan
in the potential distribution, a finding that supports the hypothesis that the pathogen may
have arrived to Europe on boxwood plants from East Asia [8]. A possible origin of Cps
from China is consistent with reports that most non-European imports of Buxus species to
Europe come from this country [136], and with a leading hypothesis for the likely origin of
invasive box tree moth in Europe [137,138]. Nonetheless, we cannot rule out the possibility
that Cps is native to another center of diversity for Buxus or other Buxaceae species such as
in the Caribbean or Madagascar [18], particularly given that these regions were included in
estimates of the potential distribution.

4.4. Model Uncertainty

Discordance between climatic suitability models for Cps in Europe, western Asia, and
North America occurred predominantly at the edges of the predicted distribution, a finding
consistent with observations that model uncertainty is often greater at range margins com-
pared with range cores [56,139]. Discordance in predictions among individual correlative
models can partly be explained by underlying differences in the machine-learning algo-
rithms, each of which has unique strengths and weakness, such as different sensitivities to
spatial dimensionality and correlation of environmental predictors [55,85,89,95]. For exam-
ple, the boosted regression trees and random forest algorithms estimated a more restrictive
potential distribution in central and eastern Europe than other algorithms, which is consis-
tent with studies demonstrating that these methods may be prone to overfitting [60,89,90].

The threshold methods used to binarize suitability values may explain some discor-
dance between CLIMEX and correlative model predictions of presence. For example, all
models were consistent in predicting low suitability in eastern Europe; however, only
CLIMEX included the majority of this region in the potential distribution. Similarly, the
ensemble correlative model predicted absence in parts of southern Wisconsin with doc-
umented Cps detections, but all models predicted low suitability in those areas. Thus,
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predictions of climatic suitability by individual models should be considered when evalu-
ating establishment risk near potential range edges.

For many regions of the world, the extrapolation of correlative models for Cps into
areas with dissimilar climates to the model calibration area (Europe and western Asia)
can explain model discordance. In particular, correlative models appeared to overpredict
suitability in regions with hotter and, in some cases, wetter conditions than the calibration
area. These include most equatorial regions on all continents as well as the southwestern
United States. The ability for correlative models to extrapolate may decline significantly
with increasing environmental distance from the calibration area, often resulting in pre-
dictions of unrealistically high levels of suitability under extreme climate values [64,65].
While the predictive performance of algorithms when extrapolating into novel climates can
vary, there is likely no specific algorithm that performs well with increasing extrapolation
in environmental space [64].

Process-based models such as CLIMEX are thought to be more reliable in predicting a
species’ potential distribution in novel climates than correlative models because they rely on
proximate constraints limiting distributions, rather than on model extrapolations [57,62,63].
For example, CLIMEX predicted that high levels of heat stress would exclude Cps from
many hot regions where some correlative models appeared to overpredict suitability. Heat
stress is measured using thresholds and rates that were calibrated using ecophysiological
information and records for the pathogen in the hottest parts of its known distribution,
and its predicted role in shaping the potential distribution of Cps seems realistic given
present-day knowledge of the species.

4.5. Future Directions

Future climatic suitability modeling work on Cps could explore the potential effects of
climate change on establishment risk. Models based on averages of E-OBS climate data for
historical (1961–1990) and contemporary (2000–2020) time frames did not reveal marked
shifts in the pathogen’s potential distribution; however, declines in climatic suitability in
parts of the Mediterranean Basin are consistent with warming temperatures and increasing
aridification in this region [140]. Higher minimum winter temperatures or decreased
frequency or intensity of extreme cold resulting from climate change may increase rates of
overwintering survival for invasive microbial pathogens [1,141], which raises the possibility
that establishment risk for Cps at higher latitudes will increase. Additionally, increasing
humidity, precipitation, and rising temperatures in certain regions such as the midwestern
United States [106,107] could increase risk of establishment, whereas aridification in regions
such as southern Europe, western and central Asia, and the western United States [106]
may reduce risk. Climatic suitability models that account for inter-annual variations in
climate may increase the accuracy of predictions under climate change because biologically
relevant climatic variation that can arise from events such as droughts or heat waves may
be obscured in aggregated climate datasets such as 30-year climate normals [142].

The CLIMEX model developed for this study could be modified to predict the potential
distribution of C. henricotiae, a closely related but genetically distinct species that also causes
boxwood blight [16,135]. As with Cps, the potential distribution and geographic origins of
C. henricotiae are not well understood. To date, C. henricotiae has only been found in five
countries in Europe, but further range expansion of this pathogen is expected and would
likely influence boxwood blight epidemiology in the landscape because its thermotolerance
is greater than Cps [113,135].

5. Conclusions

In developing species distribution models for Cps and evaluating the role of climatic
factors in shaping its known range limits, we have provided some of the first insights
into the potential invasive distribution and geographic origin of the most widespread and
damaging pathogen of boxwood. Understanding where Cps could establish is particularly
important in light of evidence for intercontinental dispersal and multiple introductions of
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the pathogen in the United States, which suggests that introductions are common and will
likely continue to occur. While our models can assist with identifying areas to watch for
Cps both regionally and globally, an assessment of local climates and irrigation practices for
a target area may further improve insights into the likelihood of the establishment.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11060849/s1, Figure S1: Known global distribution of
Cps; Figure S2: Eigenvectors (loadings) of the principal component analysis of 27 bioclimatic variables
used for producing correlative models; Figure S3: Mobility-oriented parity (MOP) assessment outputs
for correlative model projections; Figure S4: Maps of climatic suitability for Cps in New Zealand.
Figure S5: Maps depicting predictions of the accumulation of (a) cold stress, (b) heat stress, and (c) dry
stress at a global scale produced by CLIMEX. File S1: Presence records used for fitting and validating
climatic suitability models for Calonectria pseudonaviculata. The geographic origin (continent, country,
region, site name, and geographic coordinates), year of collection if known (i.e., when the pathogen
was detected), and data source for each record are indicated. The “Corr_mod” column indicates
whether the record was used for fitting and testing correlative models. Site information for seven
Oregon records are not provided due to confidentiality concerns.
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