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Simple Summary: Global climate change is accelerating and modifying the distribution of many
extant species. Dragonflies, as a group, inhabit aquatic as well as terrestrial environments and are
considered sensitive climate change indicators. In this study, we model and predict the range of a
large, tropical damselfly Neurobasis chinensis L. under the last glacial maximum (LGM), the current,
and four future warming scenarios. The models show that the species mainly occupies forest
ecosystems below 1200 m (preferring 500 to 1200 m) and had two historic core distribution areas
in LGM, one of which survived, namely south-central Vietnam. The future scenarios show that
the core distribution, high suitable habitats, and even the whole species range of N. chinensis will
extend northwards.

Abstract: Neurobasis chinensis is widely distributed in eastern tropical Asia. Its only congener in
China, the N. anderssoni, has not been observed for decades. To protect N. chinensis, it is necessary to
understand the ecological properties of its habitats and specie’s range shift under climate change.
In the present study, we modeled its potential distribution under one historical, current, and four
future scenarios. We evaluated the importance of the factors that shape its distribution and habitats
and predicted the historical and current core spatial distributions and their shifting in the future.
Two historical core distribution areas were identified: the inland region of the Bay of Bengal and
south-central Vietnam. The current potential distribution includes south China, Vietnam, Laos,
Thailand, Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka,
Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan, and foothills of the Himalayas, in total, ca.
3.59 × 106 km2. Only one core distribution remained, concentrated in south-central Vietnam. In a
warming future, the core distribution, high suitable habitats, and even the whole range of N. chinensis
will expand and shift northwards. Currently, N. chinensis mainly resides in forest ecosystems below
1200 m above sea level (preferred 500 m to 1200 m a.s.l.). Annual precipitation, mean temperature of
driest quarter, and seasonality of precipitation are important factors shaping the species distribution.
Our study provides systematic information on habitats and geographical distribution, which is useful
for the conservation of N. chinensis.
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1. Introduction

The large damselfly Neurobasis chinensis, conspicuous by its iridescent metallic colors
in the male, was the first dragonfly recorded from China in the 10th edition of Linnaeus’s
Systema Naturae of 1758 [1]. It is the most widespread species in the genus Neuroba-
sis [2]. The genus of Neurobasis contains 13 known species, which are all distributed
in the eastern tropics of Asia [1,2]. With the exception of N. chinensis, other Neurobasis
species are rare or locally endemic (many are island species), and some are endangered
or extinct [1,2]. Neurobasis kaupi, for example, is restricted to the island of Sulawesi [2].
Such species have a high extinction risk under habitat loss. IUCN red list category and
criteria assessed Neurobasis daviesi as the level of Vulnerable D2, which is endangered
(https://www.iucnredlist.org/species/139120960/146601168, Version 2021–3, accessed
on 18 April 2022). Neurobasis anderssoni, the only congener of N. chinensis in China, has
not been observed for decades and is considered extinct [1]. In order to promote future
conservation efforts for extant species, we need to recognize the properties of their habitats,
core spatial distribution, and factors disturbing and shaping the species’ range. The range
of N. chinensis is limited to the eastern tropics of Asia (East Asia, South Asia, Southeast
Asia), including China, Vietnam, Laos, Myanmar, Thailand, India, Sri Lanka, Bangladesh,
Nepal, Peninsular Malaysia, and Sumatra in South [3,4]. Comparatively, N. anderssoni is
endemic to China, recorded from Sichuan, Zhejiang, Fujian, and Guangxi, and its range is
smaller and more northern than that of N. chinensis. N. chinensis prefers small, shallow, par-
tially shaded rivers in forests. It usually perches on exposed rocks and oviposits in stream
vegetation with a preference for grassy river borders. It also breeds in some disturbed
habitats [5]. It frequently appears in hill streams within a span of 2500 m a.s.l. (the highest
occurrence recorded is in the Nilgiri Hills, India) above sea level, but it most commonly
occurs between 500 and 2000 m a.s.l. [2,4].

As climate variables are critical to the life history of N. chinensis [4], it tends to colonize
new habitats and shift its distribution under global warming. Global climate change is
becoming more and more visible, and, consequently, geographic areas corresponding to eco-
logical zones are changing and affecting the distribution of many plants and animals [6,7].
The 5th Assessment Report (AR5) by the Intergovernmental Panel on Climate Change
(IPCC) stated that global warming is expected to continue with the average temperature
of Earth increasing by 0.3–4.5 ◦C by 2100 compared with the 1986–2005 period [8,9]. Un-
like the dramatic effects of extremely high or low temperature on insect physiology, the
large-scale, long-term, and relatively mild environmental temperature change will result
in insect distributions shifting to higher altitudes and latitudes [10,11]. For example, due
to the increase in average temperature, forest insects such as Operophtera brumata (winter
moth), Epirrita autumnata (autumnal moth), and Dendroctonus ponderosae (mountain pine
beetle) extended their areas to higher latitudes and to the north [10–13].

Species distribution, habitat selection, and dispersal are mainly influenced by mete-
orological elements [14–16]. Climate change is modifying species distribution on a large
scale [14,17]. The maximum entropy model (MaxEnt) provides an efficient way to model
and predict species distribution with species occurrence records and environmental vari-
ables [14,18]. The model has the advantages of high prediction accuracy, simple and fast
operation, and small sample requirements [19]. It has been applied in conservation biol-
ogy [20,21], invasion biology [22], and genetic geography [23]. The present study aims
to explore the potential distribution of N. chinensis under historical and current climates
and its possible shift in the future and to investigate the important variables shaping
the distribution.

2. Materials and Methods
2.1. Data Collection

We obtained the occurrence records of N. chinensis across its species range using three
methods: extensive literature retrieval, downloading from the Global Biodiversity Informa-
tion Facility (GBIF, https://www.gbif.org/, accessed on 18 April 2022), and combined with

https://www.iucnredlist.org/species/139120960/146601168
https://www.gbif.org/
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our field investigation works from 2011 to 2012 and from 2016 to 2021. When occurrence
records lacked exact geo-coordinates, we obtained the latitude and longitude by using
Google Earth (http://ditu.google.cn/, accessed on 18 April 2022). A sighting point map
was developed by ArcGIS 10.7 (Esri, Redlands, CA, USA) and then created a 5 km × 5 km
grid. The points except those closest to the center of the grid cell are removed so that only
one point occurs within each grid cell. Finally, a total of 532 documented presence records
of N. chinensis (64 sites from literature, 383 from GBIF, and 85 from our previous fieldwork)
were obtained for input to the modeling (Figure 1).
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Figure 1. Occurrence records of N. chinensis in the world. Data were obtained from literature, the GBIF
database, and our fieldwork. The female N. chinensis in the bottom left was from Nankunshan
Provincial Nature Reserve, Guangdong Province, and the male was from Shiwandashan National
Forest Park, Guangxi Province. Pictures were both taken by Jian Liao in 2021.

2.2. Environmental Variables

We initially selected 20 environmental factors that may influence the distribution
of N. chinensis for the next simulation. These included 19 bioclimatic variables and one
elevation parameter (Table 1). All the environment layers, including current (interpolations
of observed data, representative of 1970–2000), historical (the last glacial maximum, LGM),
and future (the 2100s) layer parameters, were obtained from WORLDCLIM 2.0 at 2.5 min res-
olution (ca. ~5 × 5 km2 at ground level) (https://www.worldclim.org/data/bioclim.html,
accessed on 18 April 2022) [24]. In terms of future climate, the four shared socioeconomic
pathways (SSPs) represent different levels of carbon emissions: (i) the low-end SSP1-2.6,
(ii) the middle SSP2-4.5, (iii) the medium-high SSP3-7.0 and (iv) the worst-case SSP5-8.5
(stabilizes radiative forcing at 2.6 W m−2, 4.5 W m−2, 7.0 W m−2, and 8.5 W m−2), approxi-
mately 376 ppm, 650 ppm, 1011 ppm and 1228 ppm CO2-equivalent in 2100 [25].

To avoid autocorrelated environmental factors, we removed the factors with multi-
collinearity by using USDM version 1.1-18 in R [26]. We calculated the variance inflation
factor (VIF = 1/(1 − Ri2)), removed those with a VIF value greater than 10, and 9 environ-
mental factors were selected as evaluator variables: BIO2, BIO5, BIO8, BIO9, BIO12, BIO14,
BIO15, BIO18, and BIO19. The Jackknife test was performed based on the current scenario
to assess the relative importance of environment variables [14].

http://ditu.google.cn/
https://www.worldclim.org/data/bioclim.html
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Table 1. Environmental variables and elevation information that may shape species distribution.

Abbreviations Environmental Variables

BIO1 Annual mean temperature
BIO2 Mean diurnal range (mean of monthly max temperature–min temperature)
BIO3 Isothermality ((BIO2/BIO7) × 100)
BIO4 Temperature seasonality (standard deviation × 100)
BIO5 Max temperature of warmest month
BIO6 Min temperature of coldest month
BIO7 Temperature annual range (BIO5–BIO6)
BIO8 Mean temperature of wettest quarter
BIO9 Mean temperature of driest quarter
BIO10 Mean temperature of warmest quarter
BIO11 Mean temperature of coldest quarter
BIO12 Annual precipitation
BIO13 Precipitation of wettest month
BIO14 Precipitation of driest month
BIO15 Precipitation seasonality (coefficient of variation)
BIO16 Precipitation of wettest quarter
BIO17 Precipitation of driest quarter
BIO18 Precipitation of warmest quarter
BIO19 Precipitation of coldest quarter
Ele. Elevation (meter a.s.l.)

2.3. Distribution Modeling and Statistical Analysis

MaxEnt model version 3.3.3k [14] (http://www.cs.princeton.edu/, accessed on 18 April
2022) was applied to predict the distribution range areas of N. chinensis by using occurrence
records and environment variables filtered by autocorrelation analysis (current, historical,
and future environments). To estimate the capacity of the model, 25% of the data was used
for testing, while 75% was used for training. The algorithm ran 1000 iterations of these
processes or continued until they converged (threshold 0.00001). A threshold-independent
receiver-operating characteristic (ROC) analysis was carried out to evaluate the perfor-
mance of MaxEnt and then calculate the area under receiver-operating characteristic curve
(AUC) values. AUC value is used to evaluate model accuracy, and there are five conditions:
excellent (>0.9), good (0.8~0.9), fair (0.7~0.8) and poor (0.6~0.7) and fail (<0.6). The final
potential species distribution map was used to calculate the area of the potential suitable
habitats according to the suitability value (range from 0 to 1) in ArcToolbox of ArcMap
version 10.7 by 3D Analyst Tool. If the suitability value was closer to 1, the species was to
occur more likely in that habitat. All potential habitats were classified into four subdivisions
according to the suitability values: ‘high’ (>0.6), ‘moderate’ (0.4–0.6), and ‘low’ potential
habitats (0.2–0.4), as well as ‘not potential habitat’ (<0.2) [8]. If the suitability values are
greater than 0.8, the habitats were considered a core distribution area. To detect the ele-
vation effect and habitat selection, we extracted and analyzed the elevation layer (from
WORLDCLIM 2.0) and ecosystem type layer (from Resource and Environment Science and
Datacenter, China, https://www.resdc.cn/data.aspx?DATAID=198, accessed on 18 April
2022), as well as the suitability value of each site in the Spatial Analysis tool in ArcGIS.
All the ecosystems in which the habitats are located were classified into disturbed (farm-
land ecosystem, wetland ecosystem, and settlement ecosystem) and undisturbed habitats
(forest ecosystem and grassland ecosystem). Then, nonlinear regression was conducted
to demonstrate the elevation effect, and the one-way ANOVA was performed to test the
differences among five ecosystem types. All the statistical analyses were performed in
SPSS 25 (IBM, Armonk, NY, USA), and the figures were generated with Origin Pro 2022
(OriginLab, Northampton, MA, USA).

http://www.cs.princeton.edu/
https://www.resdc.cn/data.aspx?DATAID=198
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3. Results
3.1. Prediction of Current Suitable Habitat Areas and Model Accuracy

The average AUC values were 0.929 and 0.914 for the training data set and test data
set, respectively, indicating that the MaxEnt model can accurately predict the locations of
potential suitable habitats. The current potential distribution map was drawn based on
suitability, including high potential habitats, moderate potential habitats, and low potential
habitats (Figure 2). The identified potential suitable habitats of N. chinensis were located in
south China (including the Hainan Island and Taiwan Island), Vietnam, Laos, Thailand,
Myanmar, Luzon of Philippines, Malaysia, southwest and northeast India, Sri Lanka,
Indonesia (Java, Sumatera), Bangladesh, Nepal, Bhutan and foothills of the Himalayas
(Figure 2), in total, covered ca. 3.59 × 106 km2. The current distribution area with high
suitability covered ca. 4.87 × 105 km2, with moderate suitability covered ca. 1.37 × 106 km2,
and the current habitats with low suitability covered ca. 1.73 × 106 km2 (Table 2).
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Figure 2. Current distribution area with different potential habitats of N. chinensis according to
occurrence records. Except for blue areas, all colors represent potential habitat distribution. Potential
habitats were classified into high potential habitats (>0.6), moderate potential habitats (0.4~0.6), and
low potential habitats (0.2~0.4) according to suitability value.

Table 2. Change of suitable habitat area and core distribution (km2) of N. chinensis in current and
future under four levels of greenhouse gas emission scenario.

Scenario
High

Suitable
Habitat

Moderate
Suitable
Habitat

Low
Suitable
Habitat

Core
Habitat Total

Current 4.87 × 105 1.37 × 106 1.73 × 106 1.67 × 104 3.59 × 106

SSP1-2.6 7.30 × 105 1.32 × 106 2.16 × 106 5.34 × 104 4.20 × 106

SSP2-4.5 7.15 × 105 1.45 × 106 2.27 × 106 5.70 × 104 4.43 × 106

SSP3-7.0 1.52 × 106 1.08 × 106 2.02 × 106 6.22 × 105 4.62 × 106

SSP5-8.5 7.37 × 105 1.35 × 106 2.12 × 106 4.22 × 104 4.21 × 106
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3.2. Important Environmental Variables

The Jackknife test showed that annual precipitation (BIO12, 47.664% of variation),
mean temperature of the driest quarter (BIO9, 12.654% of variation), and precipitation
seasonality (BIO15, 11.516%) well explained the distribution of N. chinensis (Table 3). Envi-
ronmental factors contributing more than 10% were selected to be analyzed independently
for their effects on the potential habitats. With annual precipitation between 1500 mm and
6300 mm, the suitability of N. chinensis ranges from 0.53 to 0.70, and with annual precipita-
tion over 6300 mm, the suitability reaches a higher level (about 0.9) (Figure 3A). In high
and moderate potential habitats of N. chinensis, the mean temperature of the driest quarter
was between 9 ◦C and 23 ◦C, with the optimum temperature of the driest quarter being
14 ◦C (Figure 3B). In addition, there were two peaks for precipitation seasonality (coefficient
of variation) (Figure 3C). When the coefficient of variation of seasonal precipitation was
around 140, potential habitats presented low suitability values (0.2–0.4), but when the
coefficient was around 78, it showed a high suitability of values (>0.6).

Table 3. Percentage explanation and permutation importance of the bioclimatic variables.

Abbreviation Variable Explanation Importance

BIO2 Mean diurnal range in temperature 2.237% 0.445
BIO5 Max temperature of warmest month 8.500% 7.356
BIO8 Mean temperature of wettest quarter 2.195% 4.198
BIO9 Mean temperature of driest quarter 12.654% 32.538
BIO12 Annual precipitation 47.664% 10.636
BIO14 Precipitation of driest month 0.515% 1.090
BIO15 Precipitation seasonality 11.516% 8.095
BIO18 Precipitation of warmest quarter 5.036% 19.720
BIO19 Precipitation of coldest quarter 9.683% 15.921

3.3. Habitat Selection

The elevation of 532 occurrences (8-2515 m a.s.l.) in N. chinensis was used to analyze
the habitat bias. In those habitats over 1200 m a.s.l., both the number of habitats and
their suitability values were gradually decreasing, while the higher suitability values
mainly occurred between 500 and 1200 m a.s.l., suggesting a weak mid-domain effect for
N. chinensis (R2 = 0.0397) (the maximum suitability values was around 0.9) (Figure 4A).
When the ecosystem type was considered, potential habitats presented relatively high
suitability values (>0.6) in forest ecosystems and moderate suitability values (0.4~0.6) in
disturbed environments, such as farmland ecosystems, wetland ecosystems, and even
settlement ecosystems (Figure 4B).

3.4. Future Changes in Suitable Habitat Area

Future climate scenarios (the 2100s) showed that the highly suitable habitats of N. chi-
nensis were on the coast of south China, central and southern Vietnam, northern Laos,
eastern Myanmar, Luzon Island of the Philippines, southwest India, Bangladesh, Bhutan,
Nepal, and parts of the foothills of the Himalayas, and showed a tendency to expand to
the north (Figure 5A–D). Future warming tends to extend high suitable habitats, including
core distribution areas (Table 1). The modeling results showed that all habitat areas of
N. chinensis under different levels of greenhouse gas emission scenario, amounting to ca.
4.20 × 106 km2 (SSP1-2.6), ca. 4.43 × 106 km2 (SSP2-4.5), ca. 4.62 × 106 km2 (SSP3-7.0),
and ca. 4.21 × 106 km2 (SSP5-8.5), respectively (Table 2).
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Figure 3. Response curves of three environmental variables greatly explain the spatial distribu-
tion of N. chinensis. (A), annual precipitation; (B), mean temperature of the driest quarter; (C),
precipitation seasonality.
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Figure 4. Effects of elevation (A) and ecosystem type (B) on habitat suitability of N. chinensis. Small
letters indicated significant differences among five ecosystem types (farmland ecosystem, forest
ecosystem, grassland ecosystem, wetland ecosystem, and settlement ecosystem) at p < 0.05 according
to one-way ANOVA.
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3.5. The Core Distribution Shifts

In the LGM, two core distributions were revealed: (i) the border area of northeast
India, Bangladesh, Nepal, and Bhutan (Core 1), and (ii) south-central Vietnam (Core 2).
The historical cores together cover ca. 2.37 × 104 km2 (Figure 6A). One core distribution
was detected under the current climate, which was mainly located in south-central Vietnam
and covering ca. 1.67 × 104 km2 (Figure 6B, Table 2). The core distribution area shifted
north to the whole of Vietnam and even northward to more areas along the southeast
coast of China under the four levels of greenhouse gas emission scenario (Figure 6C–F).
Under the medium-high SSP3-7.0 scenario, the area of the core habitats of N. chinensis was
maximized, about 6.22 × 105 km2 (Table 2).
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4. Discussion

All Neurobasis species are tropical that reside in hot and humid environments of eastern
Asia [2]. Our results revealed that annual precipitation, mean temperature of the driest
quarter, and precipitation seasonality contribute most to the distribution of N. chinensis. It
prefers streams in forest ecosystems at mid-elevations (mainly distributed below 1200 m
above sea level, preferring 500 to 1200 m), but it also tolerates habitats disturbed by human
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activities, such as farmland ecosystems and settlement ecosystems. In the current climate,
the habitats of N. chinensis are located along a surface area of ca. 3.59 × 106 km2. The core
habitat area in historical climate was concentrated in two regions: (i) the border area of
northeast India, Bangladesh, Nepal, and Bhutan (Core 1); (ii) south-central Vietnam (Core
2). However, the current core distribution remains only in south-central Vietnam. Under the
four levels of carbon emission scenarios by 2100, the future distribution area of N. chinensis
has a trend of active expansion. Under the low to moderate-high greenhouse gas emission
scenario (SSP1-2.6 to SSP3-7.0 scenario), the trend showed an enhanced phenomenon, but
under the high emission scenario, the expansion slowed down slightly. It seems that future
warming will extend northward the suitable habitats of Neurobasis (including the core
distribution area). The current southern habitats will be transformed into high potential
suitable habitats under future warming scenarios.

4.1. Current and Future Potential Distribution

Northward (the Northern Hemisphere) and high-latitude expansion has been reported
in many species of plants and insects [11,12]. Orr and Hämäläinen pointed out that Fujian,
China, is the northernmost habitat of N. chinensis [2]; however, the modeling predicts that
Shanghai, located in the north of Fujian, could also contain suitable habitats where species
could occur under current climate conditions (Figure 2), which need to be confirmed by
further fieldwork. The IUCN records that N. chinensis is widely distributed in South Asia
(mainly the Indian peninsula) and Southeast Asia [3]. The occurrences of our collection
and the predicted suitable habitats in South Asia are limited in the southwest (the southern
foot of the Western Ghats) and northeast (the eastern Ghats near the Ganges Delta) of
India. The southwest monsoon from the Indian Ocean makes landfall at the southern foot
of the Western Ghats, while the northeast monsoon from the Asian continent bypass the
Himalayas to reach the Ganges Delta, providing N. chinensis with favorable environment
conditions (i.e., suitable temperature and abundant precipitation) [4]. In addition, the Thar
Desert in the northwest, the Himalayas in the north, and the Deccan Plateau in the central
region block the monsoons, indicating that the species is only suitable for the foothills of
the southwest of the Indian peninsula and the Ganges Delta in the northeast of South Asia.

Future warming is inevitable, and indigenous geographical properties are changing,
which may affect the natural distribution of many species [6,27–31]. In the present study, we
predicted the potential habitats will expand under four levels of greenhouse gas emissions
scenario by 2100. The high potential habitats for this tropical species moved northward
under four scenarios. Moreover, in Nepal, Bhutan, and East India, high potential habitats
expanded to high elevations as greenhouse gas emissions increased. Under the medium-
high SSP3-7.0 scenario, the high potential habitats will expand to the largest area, and the
total potential distribution for N. chinensis in the future will reach the maximum. However,
under the high emission scenario (SSP5-8.5), the expansion slowed. These indicated that
under the future warming, habitat loss for N. chinensis will not occur and even help them
colonize north or higher elevation habitats. However, moving north or to high-elevation
habitats is not necessarily a good thing for species native to northern or high altitudes and
may lead to a series of potential problems that threaten the stability of northern ecosystems.
Overall, the N. chinensis does not appear to be under major threat for the next century, but
N. anderssoni, a rare Chinese endemic species of the genus Neurobasis, has not been seen for
decades, which deserves our attention.

4.2. Habitat Selection and Critical Climate Factors

Our study detected a weak mid-domain effect (i.e., favoring mid-elevation) and had
relatively high suitability in forest ecosystems. Some researchers suggested that N. chinensis
inhabited woodland streams at 500–1200 m a.s.l. [4], while others believed that it lived in
mountainous areas at 1300–2000 m a.s.l. [2]. Empirically, it is distributed in a wider range
(0–2500 m a.s.l.) of elevation in the Oriental region. In contrast, our studies showed that the
distribution with high suitability was at the low and mid-altitude forest below 1200 m a.s.l.,
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with a preference for habitats between 500 and 1200 m a.s.l. Related studies also stated
that N. chinensis prefers forest and woodland streams with grassy borders but also breeds
in disturbed environments [2] (i.e., farmland and settlement ecosystems counted in this
study). Some authors hold that it flies throughout the year in much of its range [1] but
seasonally in the north and at higher elevations [2], which may be related to the combined
hydrothermal conditions in the north or at higher elevations.

Damselflies cannot access resources, grow, and reproduce without water bodies. They
usually lay their eggs in forest streams, wetlands, or shallow lakes and spend their larva
stage underwater. N. chinensis perches in the mountains of the tropics, and the female lays
eggs on submerged decaying logs in streams during the southwest monsoon [4]. Tropical
forest streams are fed by precipitation; therefore, variation in precipitation is probably
the main factor determining the potential habitats. We confirmed this conjecture in our
model analysis, and the Jackknife test showed that annual precipitation and precipitation
seasonality (the contribution together account for about 60%) were crucial factors in the
distribution of N. chinensis. The temperature during the dry season (or winter) in the tropics
is often an important driver of their life history (i.e., early larva of dragonflies) [32]. We also
detected a high explanation of temperature in the driest quarter as an important factor for
the potential distribution of N. chinensis. Published research demonstrated a link between
temperature changes and insect outbreaks using 51 years of empirical data on the tea tortrix
Adoxophyes honmai (Lepidoptera: Tortricidae) [33]. They suggested that temperature change
is associated with changes in ecosystem stability [6,33]. The effect of future temperature
change on the system stability in tropical regions is lower than that in temperate regions.
Although N. chinensis was not predicted to be threatened by global warming, their tendency
to invade northward or to higher altitudes could be detrimental to the survival of native
northern or mountaintop species.

4.3. Historical Core Distribution and Its Future Shift

It is highly possible, yet not all of the time, that the historical core distribution was
also a refugium for species with higher diversity and a focus on conservation biology [34].
Nevertheless, understanding its location and shift has important implications for the
dispersal of populations and long-term conservation [34]. In this study, we revealed two
historical cores of N. chinensis and predicted how it will shift in a warming future. Between
the two cores, historical Core 1 was in the inland region of the Bay of Bengal (the border
area of northeast India, Bangladesh, Nepal, and Bhutan), and Core 2 was in south-central
Vietnam on the coast of the Beibu Gulf, and they may be associated with the Indian
Ocean monsoon (southwest monsoon), northeast monsoon (Figure 7A) and the Sundaland
disappearance after the LGM (Figure 7B).
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The emergence of Core 1 seems to coincide with two monsoon paths and its climate
history in the Bay of Bengal region. Ding and Fang (2006) revealed that at the LGM,
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the northeastern monsoon was strong in intensity with the active upwelling, then cut off by
the Deccan Plateau and the Eastern Ghats, producing rainfall in the north of Bay of Bengal
in the oxygen isotope stage 2 (MIS 2) [35]. The southwestern monsoon from the northern
Indian Ocean was strong in early and late oxygen isotope stage 3 (MIS 3), and monsoonal
rains increased in the north of the Bay of Bengal [35]. These changes may be associated
with our identified Core 1 in the inland region of the Bay of Bengal (Figure 7A).

However, only one core distribution was identified under the current climate, i.e.,
the Core 2, which may be linked to the disappearance of the Sundaland in Southeast Asia
during the LGM (Figure 7B). Based on the prediction of the future climate warming under
the four shared socioeconomic pathway (SSP) greenhouse gas concentrations, the historical
Core 2 of N. chinensis will expand from south-central Vietnam to northern Vietnam and
even southern China (Figure 6). Recent marine palynological evidence indicated that at
the LGM, Sundaland was covered with rainforests [36,37]. Rainforests tend to have high
biodiversity and provide a refugium for many species. For example, studies speculated
that rainforest refugia for termites and murine rodents may exist on the Sundaland [38,39].
Using the stable carbon isotope composition of ancient cave guano profiles, researchers
found that a substantial forest contraction occurred during the LGM in both peninsular
Malaysia and Palawan [40], while rainforest was maintained in northern Borneo. After
the LGM, however, the Sunda continental shelf was gradually submerged. Therefore,
the edge of Sundaland, south-central Vietnam, retains a high level of diversity that might
be associated with our prediction of core distribution (Core 2). This further supports south-
central Vietnam (the north of the Sundaland) as a historical core distribution of N. chinensis.
Moreover, much of Vietnam is affected by the East Asian monsoon. From the last glacial
maximum to the mid-Holocene, the East Asian monsoon rain belt migrated to the northwest
due to warming [41]. Typically, the East Asian summer monsoon plays a crucial role in
interhemispheric heat and moisture transport and serves as the main moisture supply for
East Asia [42]. The historical core distribution of N. chinensis seems to benefit from the East
Asian monsoon, and the core habitats after the last glacial maximum may be linked to the
warming-induced northwestward migration of the East Asian monsoon rain belt [41].

5. Conclusions

Currently, N. chinensis mainly inhabits forest ecosystems below 1200 m a.s.l. prefer
habitats between 500 and 1200 m a.s.l., and has a potential distribution of ca. 3.59 × 106 km2.
There were two core distributions at the LGM, but only one remains currently and was
concentrated in south-central Vietnam. The potential distribution was predicted to increase
in the warming future and have the largest area under medium-high scenario SSP3-7.0.
The core distribution area, high suitability habitats, and even the whole species’ range
will shift northward. Our studies provide useful information for the conservation and
management of N. chinensis.
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