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Simple Summary: As glaciers disappear, animal mummies preserved in ice for centuries are released.
Depending on the preservation method, residual soft tissues may differ in their biological information
content. Paleoradiology, including micro-computed tomography (micro-CT) and magnetic resonance
imaging (MRI), is the method of choice for the non-destructive analysis of mummies. A 350-year-old
Austrian Ardea purpurea glacier mummy from the Öztal Alps was identified with micro-CT, MRI,
histo-anatomical analyses, and DNA sequencing.

Abstract: Glaciers are dwindling archives, releasing animal mummies preserved in the ice for
centuries due to climate changes. As preservation varies, residual soft tissues may differently expand
the biological information content of such mummies. DNA studies have proven the possibility
of extracting and analyzing DNA preserved in skeletal residuals and sediments for hundreds or
thousands of years. Paleoradiology is the method of choice as a non-destructive tool for analyzing
mummies, including micro-computed tomography (micro-CT) and magnetic resonance imaging
(MRI). Together with radiocarbon dating, histo-anatomical analyses, and DNA sequencing, these
techniques were employed to identify a 350-year-old Austrian Ardea purpurea glacier mummy from
the Ötztal Alps. Combining these techniques proved to be a robust methodological concept for
collecting inaccessible information regarding the structural organization of the mummy. The variety
of methodological approaches resulted in a distinct picture of the morphological patterns of the
glacier animal mummy. The BLAST search in GenBank resulted in a 100% and 98.7% match in the
cytb gene sequence with two entries of the species Purple heron (Ardea purpurea; Accession number
KJ941160.1 and KJ190948.1) and a 98% match with the same species for the 16 s sequence (KJ190948.1),
which was confirmed by the anatomic characteristics deduced from micro-CT and MRI.

Keywords: magnetic resonance imaging; micro-computed tomography; radiocarbon dating; DNA
barcoding
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1. Introduction

Glaciers release animal mummies preserved in the ice for centuries or millennia due
to climate changes. These mummies are of inestimable value from an archaeological and bi-
ological point of view. Glacier animal mummies are relatively recent, as global temperature
evolution has shown pronounced warming over the past 150 years. The location of such
glacier animal mummies can be natural habitats, hiding places from predators, migration
paths, or transport areas through updrafts [1]. Such animal mummies provide the unique
opportunity to evaluate and compare different procedures for the analysis of glacier animal
mummies, which can then be applied to human glacier mummies. The histological analysis
of soft tissues may further expand the information content [2]. Internal organs, such as
those comprising the digestive system, are often entirely decomposed. Organs may be
shrunken and challenging to identify. The most oft-preserved soft tissues are those with a
high collagen content, such as the dermis, muscle fasciae, and tendons [3].

The presence of skin may give essential clues regarding pathology and trauma. Good
soft tissue preservation may also indicate good DNA preservation, allowing for genomic
species identification [4]. Ancient DNA studies have proven the possibility of extracting and
analyzing DNA preserved in skeletal remains and sediments for hundreds of thousands
of years [1–4]. Such discoveries assist scientists in answering questions about extinct
species and their relationships to others, including animals alive today. However, the
very presence of soft tissue, especially the skin, also makes it challenging to examine the
body in a non-destructive manner. Many studies focus on developing and applying non-
destructive methods for analyzing mummies, for which paleoradiology is the method of
choice [5]. Paleoradiologic analyses enable mummies to remain intact, protecting a valuable
archaeological resource. These analyses could disclose information on the nature of the
skeletal remains and the mummification process.

Generally speaking, computed tomography (CT) is the gold standard diagnostic
method for mummy studies [6]. In addition, magnetic resonance imaging (MRI) has
successfully been applied to ancient specimens [7]. The soft tissues that are found in mum-
mified remains display radio-anatomical characteristics that are different from those known
from clinical data. In ancient mummies, post-mortem dehydration and decomposition
often lead to skin folding, and soft tissues appear radio-opaque on CT [8]. The usual lack
of moisture in historical material makes MRI exceedingly tricky. MRI has successfully been
applied in ancient dry soft tissues after invasive, morphology-alternating rehydration [9,10]
and by using MRI settings with ultra-short echo time sequences [7,11]. However, paleo-
radiologic diagnostic accuracy and spatial tissue differentiation in historic mummies are
not satisfactory due to tissue alterations. Therefore, the desire to achieve a high degree of
diagnostic sensitivity and specificity is crucial in choosing any methodological approach in
studies on glacier animal mummies. The discovery of one of the best-preserved human
glacier mummies in the Ötztal Alps laid the foundations for scientific endeavors to diagnose
glacier-bearing objects [12–16]. Due to the rarity of these findings, there is no standardized
process for investigation. The handling and examination of glacier mummies are complex
due to their rare occurrence and the associated lack of experience.

Micro-CT is an imaging procedure that is based on the same physical and technical
bases as CT. These devices are primarily a miniaturized form of volume- or cone-beam
CT scanners and can be used for non-invasive, three-dimensional investigations in pre-
clinical research on bones, teeth, and small animals. A significant advantage of using
micro-CT compared to clinical CT is a considerably higher spatial resolution with signifi-
cantly better visualization of anatomical structures [17–19]. In vivo measurements with a
spatial resolution of 10 µm are possible [20,21]. Thus, micro- and nano-CTs comprise an
essential non-destructive tool to study internal structures in various disciplines, including
biology [22–27], paleontology [28], geology [29], thermochronology [30], hydrology [31],
soil science [32–35], materials science [36,37], and medicine [38–43].

In order to conduct a comprehensive non-destructive investigation, MRI was added.
MRI provides a non-invasive tool to investigate the internal anatomy and physiology
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of living organisms and exploits the phenomenon of nuclear magnetic resonance. With
this method, atomic nuclei exposed to a strong magnetic field absorb and reemit elec-
tromagnetic waves at characteristic frequencies, providing information on the structural
and biochemical properties of the tissue [44,45]. Therefore, micro-CT and MRI analyses
might offer a valuable and novel extension to conventional methods for glacier mummy
research. Ideal tools for the morphological and histomorphological evaluation of mummy
specimens include fixation, embedding, cutting, mounting on slides, staining, and exami-
nation using microscopic techniques such as optical, electron, and fluorescence microscopy.
These methods require substantial preparation procedures and interpretation by experts.
Micro-CT and MRI represent complementary tools, enabling the investigation with or
without sample processing before image acquisition [46]. These imaging techniques are
powerful tools, with several advantages in the structural characterization of biological
systems: nearly no damage to samples occurs, and repeated scanning of the same sample
is possible [47]. Moreover, imagery from micro-CT and MRI measurements can also be
viewed and reviewed in 2D or 3D, and objects of interest can be segmented from the images
as digital surfaces or isosurfaces to analyze complex structures [30].

A glacier mummy was found at the Gurgler Ferner on North Tyrolean territory near
Ötztal, Tyrol, Austria. This study’s primary goal was to apply paleoradiological imaging
in the form of micro-CT and MRI analyses, followed by radiocarbon dating and DNA
analyses, to this animal glacier mummy. Thus, modern methods for investigating glacier
mummies are explored for potential use in human glacier mummies.

2. Materials and Methods
2.1. Find Spot

A glacier mummy was found at 3004 m height on 3 August 2015 by Franz Scheiber
and Josef Klotz in the area of the Hochwildehaus towards Hochwilde and the Annakegele
at the Gurgler Ferner (degree of latitude: 46.785946, degree of longitude: 11.003878) on
North Tyrolean territory near Ötztal, Tyrol, Austria (see Figure 1A). The Gurgler Ferner in
Tyrol is one of the largest glaciers in the Ötztal Alps. With an area of 9.58 km2, it is now
the third-largest glacier in the Austrian province of Tyrol [48]. Due to the demarcation of
the border, which in this area is not always oriented to the ice or watershed, smaller parts
of the glacier are also located on Italian territory and are protected in the South Tyrolean
nature park Texelgruppe. The Gurgler Ferner is a typical valley glacier and flows from the
Gurgler ridge, which is part of the main alpine ridge, almost eight kilometers to the north
into the Gurgler valley [49]. The Gurgler Ferner is embedded between the Ramolkamm
with the Schalfkogel in the west and the Schwärzenkamm in the east. On the orographic
right bank of the glacier lies the Hochwildehaus. In this area, on 6 August 2015, Franz
Scheiber, Josef Klotz, Judith Unterberger, and Seraphin Unterberger collected the mummy
parts (see Figure 1B). All parts were sealed in bags and boxes. The head was separated
from the body, and the plumage was packed separately in a plastic bag with undefinable
parts when recovered (see Figure 1C,D). These boxes and bags were frozen at −18 ◦C until
the start of the investigation.
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Figure 1. (A) Location of sample collection of the glacier mummy on the Gurgler Ferner using
tirisMaps (https://maps.tirol.gv.at, accessed on 22 November 2022). This location is west of the
sample collection of Ötzi, about 11.16 km apart. (B) Presentation of the glacier mummy at first finding
with (C) focus on the corpus and the (D) detailed skull.

2.2. Micro-Computed Tomography (Micro-CT)

Micro-CT measurements were performed on a vivaCt40 and an XtremeCT II (Scan-
coMedical AG, Brüttisellen, Switzerland). Due to the geometrical dimensions, the corpus
of the mummy was scanned only in the XtremeCT II. The mummy’s skull was further
analyzed in the vivaCT40 due to its higher resolution. The settings for the XtremeCT II
experiments were a 30.5 µm isotropic voxel size with a 68 kV, 1470 µA tube setting and
650 ms exposure time. The image matrix was 4096 × 4096, with a 16-bit grey-value resolu-
tion. The settings for the micro-CT experiment were a 10.5 µm isotropic voxel size with
a 70 kV, 114 µA tube setting, 6500 ms exposure time, 1000 projections, and 2048 samples.
The image matrix was 2048 × 2048 with a 16-bit grey-value resolution. The micro-CT data
were evaluated by an experienced radiologist and summarized. The reconstructions were
carried out with Analyze 14.0 (Analyze Direct Inc., Overland Park, KS, USA) software. The
following two-dimensional display formats were used for the reconstructions:

• Planar CT slice images: reconstructed CT slice images along axial, sagittal, or coro-
nal planes.

• Multi-planar reconstruction: reconstructed CT slice images along planes of freely
selectable position and angle.

• Curved planar reconstruction: reconstructed CT slice images along planes of arbi-
trary orientation.

Various three-dimensional reconstructions were also used:

• Maximum intensity projection: the voxel with the highest intensity is displayed along
a specific projection through the volume dataset.

• Surface Rendering: according to a defined mean value, the surface is rendered along a
certain projection of the volume data set.

https://maps.tirol.gv.at
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• Volume Rendering: assignment of a color value to a voxel according to its X-ray
density. It is then possible to make certain regions transparent.

• Segmentation: semi-automatic segmentation tools such as Threshold Volume, Region
Grow, and Object Extractor were used to segment the calcifications and internal organs.
The procedure consists of selecting a pixel within an area called a seed. Neighboring
pixels of similar density are automatically added or connected. A density threshold
is chosen to capture the total volume in the pmCT layer. This process is repeated for
each layer, and the total volume is automatically added.

For the comparative morphological study, 12 individual bones (sternum, coracoid,
scapula, furcula, humerus, radius, ulna, carpometacarpus, pelvis, femur, tibiotarsus, and
tarsometatarsus) of the postcranial skeleton were used and compared with published
data [50]. The measurements were carried out as described in [50].

2.3. Magnetic Resonance Imaging (MRI) Data Acquisition and Processing

The MRI experiments were performed on a 3-T MR-Scanner (Siemens Magnetom
Skyra, Siemens Healthineers, Erlangen, Germany) using a standard 12-channel head
coil. Magnetization prepared T1 weighted ultrashort echo time imaging using PETRA
(“Pointwise Encoding Time Reduction with Radial Acquisition”) was used [51] with
TR = 3.32 ms, TE = 0.07 ms, TI = 1300 ms, flip angle: 6◦, receive bandwidth: 400 Hz/pixel,
number of radial views: 60,000, FOV: 251 mm, image matrix: 320 × 320, voxel size:
0.78 mm × 0.78 mm × 0.78 mm. In addition, a multi-slab T2-weighted turbo spin-echo se-
quence was acquired with TR = 6680 ms, TE = 103 ms, echo train length: 15, slice thickness:
2 mm, spacing between slices: 2.2 mm, acquisition matrix: 448 × 314, FOV: 140 mm, voxel
size: 0.31 mm × 0.31 mm × 2 mm, number of slabs to cover the whole bird: 4 with 25 im-
ages per slab. Data processing and analyses were performed using Syngo.Via (Siemens
Healthcare, Erlangen, Germany).

2.4. Sample Collection and Tissue Specimens

First, the animal glacier mummy was macroscopically examined. After using the
paleoradiological methods, two independent biopsies were taken from different organs. As
these did not provide conclusive results, the mummy was then sequentially sliced from
caudal to cranial at 3–5 mm intervals, fixed in formalin, and embedded in paraffin as whole-
mount sections according to the European standards of Biobanking CEN/TS and the ISO
standards ISO 20166-1:2018, ISO 20166-2:2018, and ISO 20166-3:2018 on the pre-examination
process for molecular diagnostics [52,53]. This technique assures the preservation of tissues
for future histological and biomolecular analyses. Before formalin fixation, samples were
taken for radiocarbon dating and DNA sequencing. Figure 2 presents the macroscopical
inspection and sampling for DNA sequencing and radiocarbon dating.

2.5. Radiocarbon Dating

Radiocarbon dating was routinely performed at the Ion Beam Physics, ETH Zurich
Laboratory. Two samples (20 mg and 200 mg) consisting of feather, skin, bone, and tissue
were used. Sample treatment [54,55], reporting [56,57], and reporting 14C ages [58] were
conducted according to the cited literature.
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Figure 2. Sample collection. (A) Sample for DNA sequencing; (B) 3–5 mm slice of the mummy;
(C) overview of the sequentially sliced mummy from caudal to cranial at 3–5 mm intervals;
(D) paraffin-embedded tissue blocks.

2.6. DNA Analysis

Two tissue punches (size 1.5 × 2 mm) and one bone sample from the glacier mummy
were used for the DNA analysis. The tissue punches were lysed, and DNA was extracted
using the EZ-1 and the MagAttract DNA kit (all Qiagen, Hilden, Germany) following the
manufacturer’s recommendations.

Physical and chemical cleaning of the bone surface: The mechanical and chemical
processing of the samples was performed with the necessary care required for forensically
relevant samples containing only minute amounts of DNA exposed to potential superficial
contamination [59,60]. One bone sample was taken from the unknown animal glacier
mummy and subjected to mechanical surface cleaning with sterile scalpel blades. The
sample was then bathed in sodium hypochlorite (≥4% active chlorine, Sigma Aldrich,
St. Louis, MO, USA) at room temperature for 15 min, washed twice in purified water
(DNA/RNA free), and rinsed in absolute ethanol for 5 min. Samples were dried in a closed
laminar flow cabinet overnight, UV irradiated for 10 min (λ = 254 nm), and then powdered
using a vibrating ball mill (Mixer Mill MM400, Retsch, Haan, Germany). Grinding with
the ball mill was performed in cycles of 60 s, with a grinding rate of 25 Hz, followed by
60 s cooling steps. A minimum of two grinding cycles were completed, and the abrasive
product was visually evaluated for homogeneity.

DNA extraction of the bone sample: The bone powder was subjected to lysis, and
DNA was extracted according to the modified Dabney method as described in Xavier et al.,
2021 [61].

Mitochondrial DNA typing: Both the mitochondrial (mt)DNA cytochrome b gene [62],
as well as the 16 sRNA [63], were amplified and sequenced on an ABI 3500 Sequencer, and
the sequences were aligned using Sequencher (GeneCodes, Ann Arbour, MI, USA). The
consensus sequence was BLASTed at NCBI GenBank to recover the closest neighbors for
species identification.
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3. Results
3.1. Radiocarbon Dating

Data of the radiocarbon dating of the Ardea purpurea glacier mummy are shown in
Figure 3. The sample indicates the presence of “bomb peak 14C” (post 1950 AD) 1 sigma
range BC/AC Lower 1642 Upper 1665, 2 sigma range BC/AC Lower 1529 Upper 1799.
All calibrated intervals listed below need to be taken into account. In some cases, due to
the shape of the calibration curve in the region of interest, the sample’s age falls into a
period when precise information about the true age range cannot be provided. Therefore,
radiocarbon dating defined the mummy’s age as 350 years.
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Figure 3. Radiocarbon dating of the Ardea purpurea glacier mummy. 14C age (BP)—delta C13 corrected
radiocarbon age based on concentration of 14C measured in sample. BP = before present (before 1950
AD) [56,57].

3.2. Morphological Analysis via Micro-CT and MRI

Before further destructive analyses, micro-CT and MRI were used with photographs
of anatomical sections to study anatomy. The micro-CT and MRI scans were correlated
with three photograph images of the anatomical section (see Figure 4) to identify relevant
structures along the trunk from the crop to the end of the thoracoabdominal cavity. A
localization image for micro-CT and MRI is shown in Figure 4, with the transverse planes
and corresponding anatomical sections shown in lines. Micro-CT, MRI, and anatomical
section examination revealed the presence of remains of internal organs, many of which
appeared to be lytic. Brain tissue remains were not visible on the inside of the calotte.
The remains of the lungs, heart, stomach, and other internal organs were also visible.
The lungs are collapsed, and their outlines were still recognizable. The alveolar and
bronchial structures were still clearly visible. The remains of all major muscle groups
were also preserved. Fat deposits were still visible. The examination of the remaining
structures revealed no pathological modifications, and the specific cause of death could
not be conclusively determined. There were no signs of artificial body mummification
(e.g., no puncture channels, no opening of the body cavities, no removal of organs, and no
introduction of foreign material).



Biology 2023, 12, 114 8 of 16

Biology 2023, 12, x FOR PEER REVIEW 8 of 16 
 

 

revealed no pathological modifications, and the specific cause of death could not be con-

clusively determined. There were no signs of artificial body mummification (e.g., no punc-

ture channels, no opening of the body cavities, no removal of organs, and no introduction 

of foreign material). 

Three-dimensional reconstructions of the skull and the postcranial skeleton based on 

the micro-CT data of the Ardea purpurea glacier mummy were performed for comparative 

morphological studies on single bones. All bones were in their anatomical position and 

completely preserved (see Figure 5). The skull was heavily pneumatized, and the poste-

rior skullcap was large. Prominent blood–brain conductors and the bone spur were still 

present. The beak was deformed but not bent (see Figure 5A,B). Based on the skull, no 

immediate species identification could be performed due to the severe deformations of 

the skull. The skeleton showed no fractures, which is demonstrated by the maximum in-

tensity projection (Figure 5C), volume rendering bone of the body (Figure 5D), and vol-

ume rendering soft tissue of the body (Figure 5E). 

As a result, most of the investigated bone elements fell within the size range of mod-

ern Ardea purpurea. The dimensions of the coracoid, scapula, humerus, radius, ulna, car-

pometacarpus, pelvis, femur, tibiotarsus, and tarsometatarsus showed the smallest meas-

ured value compared to modern Ardea purpurea. 

 

Figure 4. Transversal micro-CT, MRI, and anatomical section images of the trunk at different levels. 

(A) Anatomical section of the trunk at the level of the cor and lung. (B) Anatomical section of the 

trunk at the level of the hepar and lung. (C) Anatomical section of the trunk at the level of the cloaca 

and intestine. (D) Scout view of the trunk with lines representing the locations of different levels. 

Figure 4. Transversal micro-CT, MRI, and anatomical section images of the trunk at different levels.
(A) Anatomical section of the trunk at the level of the cor and lung. (B) Anatomical section of the
trunk at the level of the hepar and lung. (C) Anatomical section of the trunk at the level of the cloaca
and intestine. (D) Scout view of the trunk with lines representing the locations of different levels.

Three-dimensional reconstructions of the skull and the postcranial skeleton based on
the micro-CT data of the Ardea purpurea glacier mummy were performed for comparative
morphological studies on single bones. All bones were in their anatomical position and
completely preserved (see Figure 5). The skull was heavily pneumatized, and the posterior
skullcap was large. Prominent blood–brain conductors and the bone spur were still present.
The beak was deformed but not bent (see Figure 5A,B). Based on the skull, no immediate
species identification could be performed due to the severe deformations of the skull. The
skeleton showed no fractures, which is demonstrated by the maximum intensity projection
(Figure 5C), volume rendering bone of the body (Figure 5D), and volume rendering soft
tissue of the body (Figure 5E).

As a result, most of the investigated bone elements fell within the size range of
modern Ardea purpurea. The dimensions of the coracoid, scapula, humerus, radius, ulna,
carpometacarpus, pelvis, femur, tibiotarsus, and tarsometatarsus showed the smallest
measured value compared to modern Ardea purpurea.

The furcula, coracoid, and pelvis are described as follows in more detail.
Furcula: The characteristic of the furcula of herons is a thorn-like process on the

hypocleidium, which extends dorsally at the bifurcation point of the two furcula branches.
The hypocleidium bears a distinct suture bar on the caudodorsal side. The best way to
distinguish species is the hypocleidium. It is more general in the Ardea purpurea and ends,
tapering evenly, with two small bone serrations close to each other (see Figure 6).
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Figure 6. Three-dimensional reconstruction of the furcula of the Ardea purpurea glacier mummy.

Coracoid: Compared to other herons, Ardea purpurea has a long and slender coracoid
with a high process scapularis and a deep concave margo lateralis. The acrocoracoid, when
viewed cranially, is narrow as in Nycticorax nycticorax. All herons have a well-developed
processus scapularis that curls medially with a broad base. In the Ardea purpurea, this tip is
drawn more craniodorsally than in other herons. The processus lateralis is bent up in the
shape of a hook; together with the edge drawing from it to the apex lateralis, the margo
lateralis is an essential distinguishing feature. The edge of the small hook, viewed cranially
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or caudally, drops vertically to bend into a concave edge. Here, the arcuate notch extends
deeper into the coracoid plate. At about two-thirds of the total length, the coracoid shaft
widens towards the lateral process. The labium articulare sternale extends evenly in a slight
arc from the medial margin to the apex lateralis. The asymmetrical design of the articular
grooves at the anterior margin of the sternum causes a different form of the ventral end of
the coracoids on both sides.

For this reason, the coracoids of both sides were measured. The ventral section of the
right coracoid is slightly wider than that of the left, expressed in the measurements broad
basal (BB) and broad of the facies articularis basalis (BF). Additionally, the greatest diagonal
length (acrocoracoid–apex lateralis) and medial length (acrocoracoid–apex medialis) were
determined (see Figure 7).
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Figure 7. Three-dimensional reconstruction of the coracoid of the Ardea purpurea glacier mummy.

BB; broad basal = 20.67 mm.
BF; broad of the facies articularis basalis = 14.23 mm.
GL; greatest diagonal length (acrocoracoid–apex lateralis) = 54.10 mm.
LM; length medial (acrocoracoid–apex medialis) = 51.90 mm.

Pelvis: In herons, the praeacetabular portion of the pelvis is about as long as the
postacetabular portion. The pelvis of Ardea purpurea is small and narrow. The muscle lines
further caudally than in Ardea cinerea and ends on a small scale of bone. The cranial tip of
the crista spinalis protrudes cranially beyond the pars glutaea ossis ilium. The foramina
intertransversaria medialia are less numerous and smaller. The 3D reconstruction of the
pelvis in Figure 8 clearly shows taphonomic bone loss.

The sternum could not be reconstructed three-dimensionally and therefore could not
be measured correctly. The comparative description of the bones and the differentiation
criteria published by Kellner [50] could be confirmed using the 3D reconstructions of the
bones. Based on the anatomic characteristics published by Kellner [50], the glacier mummy
was determined to be an adult male Ardea purpurea.
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KB: smallest width of the partes glutaeae = 12.45 mm; DA: diameter of the acetabulum (greatest
distance) = 7.10 mm.

3.3. DNA Analysis

The bone sample was successfully examined in the cytb gene region (358 bp (13,733–14,090)
and 16 s region (604 bp, 1943–2545—primer sequences included, positions according to
reference sequence KJ190948.1). The BLAST search in GenBank resulted in a 100% and
98.7% match of the cytb gene sequence with two entries of the species Purple heron
(Ardea purpurea; Accession number KJ941160.1 and KJ190948.1) and a 98% match with the
same species for the 16 s sequence (KJ190948.1). The two tissue samples did not result in
usable sequences.

4. Discussion

This workup of a serendipitously found glacier mummy from the Gurgler Ferner on
the North Tyrolean territory near Ötztal (Tyrol, Austria) allowed for the identification of a
male Ardea purpurea. This identification was confirmed by DNA analyses and anatomical
observations with high matches of the cytb gene sequence and the 16 s sequence using a
BLAST search in GenBank. Radiocarbon dating defined the mummy’s age as 350 years.
Then, paleoradiological techniques, including micro-CT and MRI, allowed for a 3D recon-
struction showing the mummy’s skull and body for further comparison with previously
described anatomical structures [50].

Since mummies are potentially precious relics of past times, non-invasive techniques
are preferred, and CT imaging is currently the most common method. The multiple planes
with optimized settings for different tissues in micro-CT and MRI images have allowed
species identification based on osteoanatomical observations for about 40 years [64]. Micro-
CT and MRI images allowed for the three-dimensional reconstruction, especially of the
skull and pelvis for sex-specific features and of the sternum, coracoid, scapula, furcula,
humerus, radius, ulna, carpometacarpus, pelvis, femur, tibiotarsus, and tarsometatarsus
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for bone identification, as previously shown for Ardea purpurea [50]. Only the sternum
and parts of the pelvis were severely degraded in the glacier mummy (e.g., leaching of
calcium from the bones) and could not be fully morphologically assessed. As a result of
the microenvironment, demineralization may not be uniform within the skeletal system or
bone. The bone may appear patchy despite being morphologically intact.

Moreover, other tissues seem to become more radio-dense (i.e., the attenuation of
X-ray beams increases). In particular, this affects ligaments, fasciae, and the subcutis [3].
This may be due to the deposition of mineral salts (containing metals such as iron) in
collagenous tissues. Organs may require manual segmentation in several slices due to
the changes caused by water loss. Therefore, the images need to be post-processed by
segmenting, delineating, and extracting specific anatomical structures.

Complementing CT images with MRI data is desirable due to the lack of contrast
in soft tissues found in CT images. Mummified tissues are invisible to standard MRI
techniques due to their dehydration, short T2 relaxation times, and special acquisition,
and thus strategies such as ultrashort echo time sequences (UTE) have to be used [65].
The magnetic resonance effect is observed for any atomic nucleus with special magnetic
properties (magnetic moment), but hydrogen nuclei (protons) in particular have very
advantageous properties. Therefore, protons (i.e., hydrogen) are usually most relevant
for MRI, and images show the tissue’s water content or the properties of water within
the tissue. Water content is higher in living tissues than in bone and enamel, which are
highly mineralized, with little water content. In addition to the short T2 relaxation times
already mentioned, this also explains the reduced value of MRI in mummies. However, in
the glacier mummy studied in this work, the water content was high enough to allow for
MRI (Figure 5).

As a limitation of the imaging methods, there is a certain degree of subjectivity in the
segmentation process. Detailed anatomical knowledge is necessary. Overall, CT and MR
scanning images and 3D renderings of internal structures and tissues should not be viewed
as objective and “true” representations. Visualizing the skeleton results in many points
of reference, allowing for a more accessible assessment of the remains of internal organs
and structures. Pathological processes can be falsely attributed to diagenetic processes
and vice versa [64]. In mummy MRIs, the greatest challenge is the extensive dehydration
of the tissues, since dehydrated tissues lack the hydrogen (H) in mobile water required
for standard MRI signals [65]. MRI imaging is less informative than micro-CT imaging
in mummies without sufficient water content. This can be circumvented by rehydrating
tissues and organs [10] (but this is an invasive procedure and may not always be possible)
or by applying the technique to mummies that are not entirely dehydrated, such as this
glacier mummy [66]. Accordingly, reasonable images using MRI have been reported for
Ötzi the Tyrolean Iceman, Lindow Man from a bog, and a corpse from a sealed medieval
Korean tomb [65].

Several confounding factors, including taphonomic processes and preservation al-
ways limit the study of mummies. We estimate that over a hundred mummies have been
CT-scanned and reported at this point [64]. None of these data have been synthesized
into meaningful work beyond a single individual scan. Often, insufficient imaging data
on ancient tissues prevents conclusions from being drawn. Future research is needed
to determine the difference between antemortem and postmortem findings in micro-CT
and MRI images in long-term observations to eventually produce the most accurate re-
sults with optimized segmentation procedures. Comparisons between image-based and
specimen-based information are necessary. Mummified tissue biobanks with asservation of
tissue specimens have already been proposed [3]. Thus, new trends in mummy research
emphasize establishing guidelines and ensuring proper scientific methodology regarding
analytic methods.
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5. Conclusions

Applying the methodological concept of micro-CT and MRI imaging in combination
with invasive but established techniques such as radiocarbon dating and DNA analyses
can support the identification of animal species, as in the case of this glacier mummy.
Three-dimensional digitization and interactive visualization of micro-CT and MRI allowed
us to conduct digital autopsies and to provide a highly detailed 3D reconstruction of the
Ardea purpura mummy.
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