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Simple Summary: Priapulida form a small relict group of marine invertebrates characterized by a
vermiform shape, an annulated trunk, and an eversible anterior part. Worms with a comparable
body plan were diverse and abundant throughout the Cambrian Era, although uncertainties remain
concerning their relation to modern priapulids. The problem lies in the lack of morphological detail
(ornament, symmetry) available from Cambrian worms and the fact that a comprehensive phylogeny
of Cambrian worms with a robust homology framework is not available to define priapulids. The
exceptionally preserved worm Ercaivermis sparios, described here from the early Cambrian of China,
displays an unusual octagonal symmetry, suggesting that different symmetry types may have co-
existed in the early history of Priapulida, before five-fold symmetry was naturally selected to become
overwhelmingly dominant.

Abstract: The vast majority of early Paleozoic ecdysozoan worms are often resolved as stem-group
Priapulida based on resemblances with the rare modern representatives of the group, such as the
structure of the introvert and the number and distribution of scalids (a spiny cuticular outgrowth)
and pharyngeal teeth. In Priapulida, both scalids and teeth create symmetry patterns, and three
major diagnostic features are generally used to define the group: 25 longitudinal rows of scalids
(five-fold symmetry), 8 scalids around the first introvert circle and the pentagonal arrangement of
pharyngeal teeth. Here we describe Ercaivermis sparios gen. et sp. nov., a new priapulid from the
early Cambrian Chengjiang Lagerstätte, characterized by an annulated trunk lacking a sclerotized
ornament, four pairs of anal hooks and 16 longitudinal rows of scalids along its introvert and eight
scalids around each introvert circle, giving the animal an unusual octoradial symmetry. Cladistic
analyses resolve Ercaivermis as a stem-group priapulid. Ercaivermis also suggests that several biradial
symmetry patterns (e.g., pentagonal, octagonal) expressed in the cuticular ornament, may have co-
existed among early Cambrian priapulids and that the pentaradial mode may have become rapidly
dominant during the course of evolution, possibly via the standardization of patterning, i.e., the
natural selection of one symmetry type over others.

Keywords: Priapulida; body plan; symmetry pattern; Chengjiang biota; early Cambrian

1. Introduction

Scalidophorans morphologically form a clade of ecdysozoan worms, with a relatively
small number of extant species (ca. 260 species) distributed into three distinct phyla, the
Kinorhyncha, Loricifera and Priapulida [1,2]. The relation of early Paleozoic scalidophorans
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to extant lineages of the group is not strongly established [3–5]. The majority of them fall
into the Paleoscolecida, an extinct group of strongly ornamented worms [4,6,7], whereas
others are considered as more or less closely related to Priapulida [8–11], Loricifera [12,13],
Kinorhyncha [14,15] and possibly Nematomorpha [16]. These scalidophorans share key
morphological traits such as an annulated trunk and more importantly an eversible in-
trovert divided into three parts, each bearing specific and regularly distributed cuticular
ornaments [8,10,11]. Caudal appendages also occur in some species [17,18]. Superficial re-
semblances with extant priapulids [8,17–20] and phylogenetic analyses [4,5,21,22] have led
authors to assign these ancient worms to stem- or crown-group Priapulida. Most authors
define Priapulida by the following characters: (1) 25 longitudinal rows of scalids, (2) eight
scalids around the first introvert circle, and (3) pharynx armed with teeth in a pentagonal
arrangement [8,23–26]. However, a crown-group Priapulida is defined by phylogenetic
relationships [4,5,22] and not by a suite of morphological characteristics.

Compression and loss of characters are both responsible for an important lack of
information on the detailed anatomy (e.g., the exact number and arrangement of scalids
and pharyngeal teeth) of these Cambrian worms [16,27]. In this context, it is particularly
difficult to check whether they had 25 longitudinal rows of scalids or not, and how these
scalids distributed in circles (e.g., (8 + 8 + 9) in 1st-to-3rd circles [26]; the pattern (8 + 8 + 9)
is repeated in all following circles).

Untypical morphologies are also worth being noted. For example, Sicyophorus a Cam-
brian worm with a loricate trunk, is resolved as stem-group Priapulida [4,5,21], even though
it bears 25 longitudinal rows of scalids and 8 scalids around the first circle [28]. Even more
problematic is Priapulites that bears only 20 longitudinal rows of scalids, but despite this
was confidently assigned to the crown-group Priapulida [4,5,29,30]. This placement seems
to have been influenced by the presence of caudal appendages and a five-fold symmetry
arrangement of scalid rows closely resembling those of extant priapulids [8,21]. There are
numerous other inconsistencies in the diagnosis of crown-group Priapulida. For example,
the assumption that “8 scalids around the first introvert circle” is a symplesiomorphy
of the ground pattern of the Priapulida (see larval stages, [26]), is clearly at odds with
fossil data. This characteristic is also found in Markuelia, a Cambrian worm represented
by late embryonic stages and currently assigned to the stem-group Scalidophora [3,21]
or stem-group Priapulida [31]. More importantly, eight scalids around the first introvert
circle are found in other scalidophoran groups such as Loricifera [32], which means that
this character is not specific to Priapulida. The structure of the eversible pharynx and
especially the pentagonal distribution of pharyngeal teeth into successive circles is another
key diagnostic feature of crown-group Priapulida [8,23]. However, as for that of scalids, it
is often strongly affected by post-mortem compression and pharynx inversion [16].

We used here micro-CT to study Ercaivermis sparios gen. et. sp. nov., a new worm from
the Chengjiang Lagerstätte, that bears an unusual pattern of 16 longitudinal rows of scalids
(i.e., eight-fold symmetry) and 8 scalids around the first introvert circle. This new species
questions the morphological disparity of early Cambrian priapulids and more specifically,
the diversity of symmetry modes in the group in the early stages of their evolution. We
also discuss the validity of the diagnostic features usually used to define Priapulida.

2. Materials and Methods
2.1. Materials and Preservation

The fossil material comes from the Ercaicun section of the Chengjiang Lagerstätte, Yun-
nan Province, South China (Yu’anshan Formation, equivalent to the Cambrian
Series 2, Stage 3). The Chengjiang localities have yielded a wealth of exceptionally pre-
served fossils and key information on early Cambrian animal life, since their discovery in
the 1980s [8,9,33]. Although largely dominated by panarthropods, the Chengjiang fauna
contains abundant and diverse scalidophoran worms [17–19,21] that resemble modern
priapulid worms in their general morphology. A single specimen is described here and
consists of its part (ELIEC-00312A) and counterpart (ELIEC-00312B). It lies almost parallel
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to the bedding plane, except for the posterior part of the trunk (see counterpart), which
exhibits a slightly tilted position as revealed by micro-CT images (Figures 1 and 2). ELIEC-
00312 is strongly pyritized (Figure 1A,I). The darkest areas of the fossil correspond to an
enriched concentration of iron, cobalt and chromium (Figure 3D–F). Phosphorus and sulfur
are present in the remaining areas (Figure 2G,H). Pyritization has successfully replicated
the overall 3D-shape of the worm and fine details of its external cuticular ornaments
(e.g., distribution of scalids). The upper side of the specimen preserves the details of
the scalids, including their shape, number, and spacing (Figure 1B–D and Figure 2A,B).
In contrast, the opposite side appears more compressed along the anteroposterior axis,
resulting in poorly preserved and more sparsely distributed scalids (Figures 1G and 2C).
The cuticle of the introvert is locally slightly folded (e.g., left edge of the upper side;
Figures 1E and 2C).
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Figure 1. External morphology of Ercaivermis sparios gen. et sp. nov. from the early Cambrian of the 
Chengjiang Lagerstätte. (A) ELIEC-312A, part of holotype, general view showing body subdivision. 
(B–G) micro-CT images showing details of the introvert. (B–D) upper side showing the number of 
longitudinal rows and circles of scalids in Zone I, unarmed Zone II with imprints of pharyngeal 
teeth. (E,F) lateral views showing the edge of the compressed introvert. (G) underside of the speci-
men showing the incomplete distribution of scalids and the pharynx with teeth (Zone III). (H) dia-
gram to show the octagonal distribution of scalids. (I) ELIEC-312B, counterpart of holotype. (J) cir-
cumanal region as revealed by micro-CT in (I). (K) close-up view of the four pairs of hooks around 
the anus; note their bilateral arrangement. Abbreviations: al, annulations; An, anterior; ch, caudal 
hook; gu, gut; in, introvert; Le, left; ph, pharynx; Po, posterior; Ri, right; sc, scalid; tr, trunk; C1~C9, 
1st to 9th circle of scalids; L1~L16, 1st to 16th longitudinal row of scalids. Scale bars represent: 2 mm 
(A,I), 1 mm (B,C,J); 300 µm (K); 250 µm (D–G). 

Figure 1. External morphology of Ercaivermis sparios gen. et sp. nov. from the early Cambrian of the
Chengjiang Lagerstätte. (A) ELIEC-312A, part of holotype, general view showing body subdivision.
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(B–G) micro-CT images showing details of the introvert. (B–D) upper side showing the number of
longitudinal rows and circles of scalids in Zone I, unarmed Zone II with imprints of pharyngeal teeth.
(E,F) lateral views showing the edge of the compressed introvert. (G) underside of the specimen
showing the incomplete distribution of scalids and the pharynx with teeth (Zone III). (H) diagram to
show the octagonal distribution of scalids. (I) ELIEC-312B, counterpart of holotype. (J) circumanal
region as revealed by micro-CT in (I). (K) close-up view of the four pairs of hooks around the anus;
note their bilateral arrangement. Abbreviations: al, annulations; An, anterior; ch, caudal hook; gu,
gut; in, introvert; Le, left; ph, pharynx; Po, posterior; Ri, right; sc, scalid; tr, trunk; C1~C9, 1st to 9th
circle of scalids; L1~L16, 1st to 16th longitudinal row of scalids. Scale bars represent: 2 mm (A,I),
1 mm (B,C,J); 300 µm (K); 250 µm (D–G).
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Cambrian of the Chengjiang Lagerstätte, ELIEC-312A, part of the holotype. (A–D) front part (upper 
side), right-lateral view, back view (underside), and left-lateral view. Dashed lines in white and 
black indicate L8 in (A,B), L10 in (C) and L9 in (B,C), respectively. (E,H) same as (A–D) to show the 
scalids in L7 and L10 in (E–G) and upper side in (H). Same scale between (E-H) and(A–D). Scale bar 
represents 250 µm (A–D). 

 

Figure 2. Scalid arrangement along the introvert of Ercaivermis sparios gen. et sp. nov. from the
early Cambrian of the Chengjiang Lagerstätte, ELIEC-312A, part of the holotype. (A–D) front part
(upper side), right-lateral view, back view (underside), and left-lateral view. Dashed lines in white
and black indicate L8 in (A,B), L10 in (C) and L9 in (B,C), respectively. (E,H) same as (A–D) to show
the scalids in L7 and L10 in (E–G) and upper side in (H). Same scale between (E–H) and (A–D). Scale
bar represents 250 µm (A–D).

2.2. Imaging

Light photographs of the specimen were captured using a Canon EOS 5DS R (North-
west University, Xi’an, China). Microscopy computed tomography (micro-CT, Zeiss X
radia 520, same institution) was performed with a pixel size of 6.5 µm for ELI-00312A and
5.8 µm for ELI-00312B (tiff-images). The imaging process utilized an accelerating voltage of
80 kV and a current of 88 µA. The micro-CT data (see Supplementary Materials, computed
tomography data) were processed using ‘Dragonfly 4.0’ software. All figures were prepared
with Photoshop CS9.

2.3. Element Mapping

The specimen was analyzed using an M4 Tornado micro X-ray fluorescence spectrom-
eter (µ-XRF; Northwest University, Xi’an, China).

2.4. Measurement

We measured the size of the scalids and the distance between adjacent scalids using
the tpsDig v.23 software from the SEM images.
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Figure 3. Internal anatomy and elemental mapping (XRF) of Ercaivermis sparios gen. et sp. nov. from
the early Cambrian of the Chengjiang Lagerstätte, ELIEC-312A, part of the holotype. (A–C) micro-CT
images. (A) longitudinal section showing the pharynx (pink dotted lines) and teeth. (B,C) transverse
sections showing the gut with wrinkles (yellow arrowheads). See location of transverse virtual
sections in (D). (D–H) elemental maps for Co, Cr, and Fe; note Fe-enrichment in cuticular remains;
in contrast, P and S are enriched in the internal parts of the trunk. Abbreviations: ph, pharynx; pt,
pharyngeal teeth; wr, wrinkle. Scale bars represent: 2 mm (D–H), 250 µm (A); 200 µm (B,C).

2.5. Phylogenetic Analysis

We used the dataset of Shi et al. (ref. [31]) (96 taxa and 180 characters) and slightly
modified the matrix (see Supplementary Materials). A new character was added (number
180= “eight elements encircling the circumoral ring (the first circle) in Zone I”: (0) absent,
(1) present), and new coding to character 40 “Number of elements comprising the first three
rings and, hence, defining the number of longitudinal rows of elements in Zone I (assuming
there are more than three”: (3) = 30) and character 147 “Number of terminally posterior
spines, hooks”: (5) = 4 pairs). Parsimonious analyses were performed with TNT v.1.5 using
New Technology Search (Driven Search with Sectorial Search, Ratchet, Drift, and Tree
fusing options activated) in standard settings under equal and implied weights [34,35]. The
analysis was set to find the minimum tree length 100 times and to collapse trees after each
search, and all characters were treated as unordered. Repetitions with variable concavity
values (k) were used to explore the effect of different degrees of homoplasy penalization
to test the robustness of the dataset [36]. Probabilistic tree searches used the MK model
for discrete morphological character data [37]. The maximum likelihood implementation
was conducted in IQ-Tree [38], with nodal support assessed by 1000 Ultrafastbootstrap
(UFBoot) replicates [39,40]. Bayesian searches (MrBayes v.3.2.6) used an Mkv+Γ model [37]
with 4 runs each with 4 chains for 6,000,000 generations and burn-in at 25%, which was
enough to reach convergence in each case. The convergence of chains was checked by
effective sample size (ESS) values over 1000 in Tracer v.1.7 [41] and 1.0 for potential scale
reduction factor (PSRF) [42].
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2.6. Terminology

We used that of (ref. [8]) to describe the introvert of Ercaivermis (Zones I to III). Zone I
represents the region where scalids distribute in longitudinal rows parallel to the antero-
posterior body axis and circles perpendicular to it. Zone III corresponds to the pharynx that
bears teeth. Zone II is situated between Zone I and Zone III and generally lacks cuticular
ornament.

3. Results
Systematic Paleontology

Phylum PRIAPULIDA Delage et Hérouard, 1897
Genus Ercaivermis nov.
LSID: urn:lsid:zoobank.org:act:FB42B18B-24EC-4A4A-AA36-A490A6199DD8
Type species. Ercaivermis sparios sp. nov.
Diagnosis. Vermiform body subdivided into introvert and annulated trunk. Introvert

armed with scalids in longitudinal rows and circles. Each circle contains eight scalids.
Quincunx pattern of scalids appears on the second to ninth circles resulting in sixteen
longitudinal rows in Zone I. The eight scalids around the first circle deviate from the
alignment of the 16 longitudinal rows. Zone II unarmed and tapering anteriorly. Inverted
pharynx with densely distributed tiny teeth decreasing in size posteriorly (exact number
unclear). Four pairs of bilaterally arranged bicaudal hooks around the posterior end. Gut
straight, running from middle trunk to anus.

Etymology. From Ercaicun, the locality where the specimen was found and vermis
(Latin) meaning worm.

Remarks. Ercaivermis resembles Xiaoheiqingella, Yunnanpriapulus, and Paratubiluchus
in gross morphology [17,19]. The introvert of Ercaivermis is tapering anteriorly, whereas
that of the latter three is swollen. Papillae distributed in rings, seen in Xiaoheiqingella
and Yunnanpriapulus are not found in Ercaivermis. Ercaivermis bears four pairs of caudal
hooks around the anal region, thus contrasting with the bursa, short projection or caudal
appendages of Eximipriapulus, Yunnanpriapulus, and Xiaoheiqingella, respectively. A new
genus, Ercaivermis is erected based on these major features.

Ercaivermis sparios sp. nov.
(Figures 1–4)
LSID: urn:lsid:zoobank.org:act:87FE7750-5073-4FF4-BABB-FBD57996D1C3
Type material. Holotype ELI-00312, part and counterpart.
Locality and horizon. Yu’anshan Formation (equivalent of Cambrian Series 2 Stage 3),

Eoredlichia-Wudingaspis zone, Chengjiang Lagerstätte, Yunnan Province, China.
Etymology. From σπάνιoς (sparios; rare), alluding to the relative rarity of the species.
Diagnosis as for the genus.
Descriptions and comparisons. The worm is about 17 mm long (13 mm lying parallel

to bedding, the remaining 4 mm being tilted and buried in the matrix (Figure 1A,I)). The
body consists of an introvert and a trunk. The introvert displays three distinct zones
(Zone I, II, III) from the posterior to anterior end (Figure 1A–I,G), respectively. Zone I
is about 0.8 mm in longitudinal length and 2 mm in maximal width and bears spinose
scalids arranged in 16 discrete longitudinal rows and 9 circles (Figure 1B–H and Figure 2).
Scalids show an octagonal distribution along planes perpendicular to the anteroposterior
axis of the animal (see polar-coordinate diagram, Figure 1H). Scalids of the second to ninth
circles show a quincunx pattern (see white and black dots in Figure 1D,G,H and Figure 2).
Notably, the eight scalids of the first introvert circle deviate from the alignment of the
16 longitudinal rows (see blue and pink dots in Figure 1D,G,H). The size of the scalids on
the upper side of the specimen shows a slight increase towards the posterior end. Fewer
scalids are present on the opposite site of the compressed specimen due to less favorable
preservation (Figures 1G and 2C).
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Figure 4. Ercaivermis sparios gen. et sp. nov. Artistic reconstruction showing body shape and
circumanal area with hooks. Abbreviations: al, annulations; ch, caudal hook; gu, gut; pt, pharyngeal
teeth; sc, scalid.

Zone II, ca. 0.5 mm long and 1.3 mm wide, is unarmed and tapers anteriorly
(Figures 1 and 2). A cluster of tiny teeth is observed in the central area of Zone II
(Figure 1B,D). They do not belong to the external ornament of Zone II and more likely
result from the imprints of pharyngeal teeth during compression. Zone III is cylindrical
and corresponds to the pharynx. It is armed with densely distributed teeth arranged in
quincunx (Figure 1C,D,G and Figure 3A).

The trunk is about 15.7 mm long and has seven annulations per mm (Figure 1A–C). Its
width ranges from ca. 3 mm anteriorly to 1.2 mm near the posterior end. The circumanal
region is characterized by four pairs of bilaterally arranged hooks (Figure 1J,K). The gut is
straight, has a central position and an evenly tubular shape. Its wall is strongly wrinkled
(Figure 3B,C and Figure 4).

4. Discussion
4.1. Phylogenetic Position of Ercaivermis among Priapulids

Ercaivermis has an unusual distribution of scalids (16 longitudinal rows along its
trunk; octoradial symmetry) that stands out from the prevailing pentaradial symmetry of
most extinct and extant priapulids (typically 20 and 25 longitudinal rows of scalids [8,26]).
Ercaivermis also has a total of 24 scalids in the first three circles (8 + 8 + 8 patten) instead of
25 (8 + 9 + 8 patten) in extant priapulids. These morphological and symmetry differences
are consistent with the resolution of Ercaivermis as a stem-group priapulid relatively close to
the crown-group (see Figures 5A and A3; maximum likelihood analysis with high bootstrap
support values (over 50) of key nodes).

Similar topologies are obtained via the parsimony analysis, when implied weight (k)
is greater than five (see phylogenetic analyses, implied weight (k ≥ 5); Figures 5B and A2B).
However, when implied weight (k) is lower or equal to three and under equal weight
(Figures A1 and A2A), Ercaivermis is resolved as a crown-group Priapulida. The dataset
used here and largely inherited from Shi et al. (2021) [31] was reanalyzed by Smith and
Dhungana (2022). The authors noted that handling inapplicable characters (parsimony
analysis [43]) resulted in polychotomy and therefore a lack of phylogenetic resolution
(i.e., precision) [36]. Result obtained here via the Bayesian method (Figure A4) also show
the drawbacks exemplified by very low values of posterior possibilities at key nodes
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(e.g., crown-group Priapulida (0.16), Nematoida + Panarthropoda (0.22), and many Cam-
brian worms such as stem-group Nematoida + Panarthropoda (below 0.1).
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Figure 5. The phylogenetic position of Ercaivermis, scalid distribution and symmetry pattern indicated
for some taxa. (A,B) simplified topologies recovered from maximum likelihood (IQ-TREE) (A) and
implied weight (k ≥ 5) parsimony (TNT) (B) phylogenetic analyses. Numbers in (A) are bootstrap
support values. See complete set of topologies in Figures A1–A4. Taxa in bold indicates the extant
priapulid species.

4.2. Eight Scalids around the First Circles: Morphological and Evolutionary Significance

The position of Ercaivermis close to the crown-group Priapulida seems to be largely
influenced by the presence of eight scalids around the first circle [24–26], a character
considered as symplesiomorphy for priapulids and well expressed in larval stages [26].
However, this feature is also present in other scalidophoran groups such as extant Loricifera
and Markuelia (Cambrian–Ordovician). These scalids are not simple cuticular outgrowths
but are innervated by eight nerve clusters, as seen in extant loriciferans [44]. A comparable
relationship with the nervous system occurs in priapulids such as Tubiluchus troglodytes [45]
although its eight scalids are innervated by 25 clusters [23]. In Kinorhyncha, ten scalids
are present around the first introvert circle and are innervated by ten clusters of nerves
originating from the circumoral brain [46,47].

These examples clearly show that the scalids present around the top circle of the
introvert are more than such an external ornament but also have a sensory function.
Their innervation, although variable in its wiring network, occurs in the three extant
scalidophoran lineages (Priapulida, Loricifera, Kinorhyncha) [26,44,46,47] and is likely to
have been present in their common ancestor. We hypothesize that the first scalid circle
(whether the scalid number is 8 or 10) is a homologous sensory complex for the three groups
and has therefore a potential evolutionary significance. “Eight scalids” can no longer be
considered as a diagnostic feature of Priapulida since Loricifera also possesses this character.
The presence of eight scalids in Markuelia (assumed stem-group Scalidophora [3,21]) may
suggest that this character was inherited from an ancestral scalidophoran stock.

4.3. How Can We Recognize a Crown-Group Priapulida?

There is actually very little difference between early priapulids and the modern
representatives of the group in terms of overall morphology (e.g., introvert, pharynx,
cuticular ornament) and associated functional aspects [5,8,20]. All of them, including early
Cambrian species, seem to have moved through their environment via muscle contractions
and introvert eversion/inversion, and ingested food via a pharyngeal complex lined
with teeth [48,49]. The basic morpho-functional features seem to have been remarkably
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stable over more than 500 million years. The apparent conservatism of the body plan
of Priapulida might be linked to the environment occupied by these worms and their
burrowing lifestyle [50,51], that both may have remained virtually unchanged since the
Cambrian [52,53]. The apparent lack of post-Cambrian major innovations of the body plan
within the group makes it difficult to define crown-group priapulids and to determine
when it arose.

However, attempts have been made by authors to define a series of possible mor-
phological diagnostic features such as: (1) introvert with external scalids (eight scalids
around the first circle, 25 longitudinal rows of scalids); (2) well-developed pharynx with
multidentate chitinous teeth (pentagonal symmetry); (3) neck between the introvert and
annulated trunk; and (4) unpaired or paired caudal appendages (although not present in
all taxa) [24–26]. Features (1) and (2) occur in the first and second loricate larvae in the
first and second loricate larvae of Priapulus caudatus, respectively [54], and in meiofaunal
priapulids such as Tubiluchus [24]. This set of characteristics raises a number of questions.
As we have seen before, “eight scalids around the first circle” also occurs in loriciferans.
Moreover, the neck is not unique to priapulids [17,23] and also occur in kinorhynchs [44]
and loriciferans [32]. More importantly, three exceptions can be found in priapulids (see
below) and make it difficult to identify a crown-group priapulid based on morphologi-
cal features alone. For example, both larval and adult stages of Meiopriapulus [55,56], a
meiofaunal species with a direct development [57], does have eight scalids in the first
circle but a total of 150 longitudinal rows of scalids (from the fourth to twenty-second
circles [55]). Moreover, the radial symmetry of its pharyngeal teeth is octoradial [25,56],
thus contrasting with the overwhelmingly pentagonal symmetry of other extant priapulids.
Maccabeus, a tubicolous priapulid from meiofaunal environments has 8, 25 and 16 scalids in
the first, second and third circle, respectively and 25 in the remaining posterior circles [58].
The remarkably high number of scalids in the second and third circles may result from
the merging of two adjacent circles [23,25].Despite these exceptions, the vast majority of
crown-group Priapulida may share the following characters: (1) “25 longitudinal rows
of scalids”; (2) “(8 + 9 + 8) scalid pattern for the first three circles”, and (3) “pentagonal
arrangement of pharyngeal teeth”.

4.4. Symmetry in Fossil Priapulids

Although absent in some groups such as sponges and placozoans, radial and bilateral
symmetry occurs in most present-day animal groups and is variously expressed both exter-
nally (e.g., overall shape, ornament) and internally (e.g., organs) [2,59]. Extant priapulids
are by definition biradial animals, i.e., their adult body plan results from the combination of
bilateral (e.g., nervous system, gonads, other aspects of their early development [24,25]) and
radially symmetrical features (e.g., cuticular outgrowths such as scalids and pharyngeal
teeth [23,59]). Developmental studies clearly indicate that these radial features superimpose
a basically bilateral body plan [24,25,54]. Pentaradial symmetry largely prevails among
modern priapulids and can be clearly seen in the arrangement of their pharyngeal teeth
(fontal view showing pentagonal pattern) and the distribution of their external scalids that
typically align in 20, 25, or 30 longitudinal rows [24–26]. Comparable symmetry patterns
are known in numerous Cambrian stem-group or assumed crown-group priapulid worms
such as Yunnanpriapulus [17], Xiaoheiqingella [17,18] and Priapulites [60], and stem-group
priapulids such as Selkirkia sinica and Sicyophorus [21]. Different symmetry types co-existed
in the Cambrian. For example, stem-group priapulids such Eopriapulites [29], Shanscolex [61],
and Mafangscolex cf. yunnanensis [62] display hexaradial features (scalid rows). The discov-
ery of octoradial symmetry (16 longitudinal rows of scalids) in Ercaivermis reinforces the
hypothesis that symmetry patterns were more diverse in the early evolution of priapulids
than they are today (see also [5,63]).

This is not an isolated case, and we also note that early cnidarians (e.g., Kuanchuanpu
Formation; ca. 535 Ma; [64]) similarly developed more symmetry types (3, 4, 5) than can
be found in nature today. For example, pentaradial symmetry is frequent among early



Biology 2023, 12, 1242 10 of 16

Cambrian cnidarians whereas it is unknown in extant representatives of the group. This
would suggest that the symmetry types that prevail today and characterize animal phyla
may have resulted from natural selection through their evolution. McMenamin (2016) [65]
hypothesized that morphogenetic evolution might be governed by nine laws, among them
standardization or simplification. The decline of symmetry diversity that the evolution-
ary history of Cambrian priapulids suggests, i.e., the natural selection of one symmetry
(e.g., pentaradial) type over others associated dynamically with the extinction of stem
groups and rise of novel descendants, may indeed result from such a standardization
process. However, uncertainties remain concerning the biological mechanisms and external
drivers (e.g., extinction, see [63]) that would have controlled this hypothetical natural
selection of symmetry patterns. Moreover, the impact of external symmetry patterns
(e.g., distribution of scalid rows on introvert) on vital aspects of the function of these worms
is particularly difficult to assess and would require experiments with extant species.

5. Conclusions

Ercaivermis sparios with 16 longitudinal rows of scalids (i.e., octoradial symmetry)
differs markedly from most extant and extinct priapulid worms in which pentaradial sym-
metry prevails (e.g., 25 longitudinal scalid rows). Cladistic analyses resolve Ercaivermis as a
stem-group priapulid. The first row of eight scalids that runs around the introvert of pria-
pulids and loriciferans is linked to the nervous system and may be a character of particular
importance in the phylogeny of scalidophorans, possibly present in their common ancestor.
Ercaivermis do possess this character. Various symmetry types in external cuticular features
(e.g., scalid rows) co-existed among Cambrian priapulid (penta-, hexa-, and octoradial)
whereas a single type (pentaradial) prevails in the modern representatives of the group.
This fossil evidence supports current evolutionary models in which standardization of
symmetry patterns may occur as priapulid lineages evolve. The importance of symmetry
of scalid rows must be interpreted with caution since its real impact on the animal’s vital
functions remain to be clarified. Difficulties remain in determining the diagnostic characters
of crown-group priapulids that may have appeared very early in the evolution of the group.
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Figure A1. Main topologies recovered by parsimony (TNT). Strict consensus tree generated by the 
parsimony analyses using equal weight and implied weight with concavity constant k = 1. 
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52. Vannier, J.; Calandra, I.; Gaillard, C.; Żylińska, A. Priapulid worms: Pioneer horizontal burrowers at the Precambrian-Cambrian
boundary. Geology 2010, 38, 711–714. [CrossRef]

53. Kesidis, G.; Slater, B.J.; Jensen, S.; Budd, G.E. Caught in the act: Priapulid burrowers in early Cambrian substrates. Proc. R. Soc. B
2019, 286, 20182505. [CrossRef] [PubMed]

54. Wennberg, S.A.; Janssen, R.; Budd, G.E. Hatching and earliest larval stages of the priapulid worm Priapulus caudatus. Invertebr.
Biol. 2009, 128, 157–171. [CrossRef]

55. Sørensen, M.V.; Rho, H.S.; Min, W.-G.; Kim, D. A new recording of the rare priapulid Meiopriapulus fijiensis, with comparative
notes on juvenile and adult morphology. Zool. Anz.—J. Comp. Zool. 2012, 251, 364–371. [CrossRef]

56. Storch, V.; Higgins, R.P. Scanning and transmission electron microscopic observations on the larva of Halicryptus spinulosus
(priapulida). J. Morphol. 1991, 210, 175–194. [CrossRef]

57. Higgins, R.P.; Stroch, V. Evidence for direct development in Meiopriapulus fijiensis (Priapulida). Trans. Am. Microsc. Soc. 1991, 110,
37–46. [CrossRef]

58. Por, F.D.; Bromley, H.J. Morphology and anatomy of Maccabeus tentaculatus (Priapulida: Seticoronaria). J. Zool. 1974, 173, 173–197.
[CrossRef]

59. Schmidt-Rhaesa, A. The Evolution of Organ Systems; Oxford University Press: Oxford, UK, 2007; pp. 54–73.
60. Schram, F.R. Pseudocoelomates and a Nemertine from the Illinois Pennsylvanian. J. Paleontol. 1973, 47, 985–989.
61. Liu, Y.H.; Qin, J.C.; Wang, Q.; Maas, A.; Duan, B.C.; Zhang, Y.N.; Zhang, H.; Shao, T.Q.; Zhang, H.Q.; Zhang, X.G. New armoured

scalidophorans (Ecdysozoa, Cycloneuralia) from the Cambrian Fortunian Zhangjiagou Lagerstätte, South China. Pap. Palaeontol.
2018, 5, 241–260. [CrossRef]

62. Yang, J.; Smith, M.R.; Zhang, X.-G.; Yang, X.-Y. Introvert and pharynx of Mafangscolex, a Cambrian palaeoscolecid. Geol. Mag.
2020, 157, 2044–2050. [CrossRef]

63. Budd, G.E.; Mann, R.P. The dynamics of stem and crown groups. Sci. Adv. 2020, 6, eaaz1626. [CrossRef] [PubMed]
64. Han, J.; Kubota, S.; Li, G.; Ou, Q.; Wang, X.; Yao, X.; Shu, D.; Li, Y.; Uesugi, K.; Hoshino, M.; et al. Divergent evolution of

medusozoan symmetric patterns: Evidence from the microanatomy of Cambrian tetramerous cubozoans from South China.
Gondwana Res. 2016, 31, 150–163. [CrossRef]

65. McMenamin, M.A.S. Dynamic Paleontology: Using Quantification and Other Tools to Decipher the History of Life; Springer: Cham,
Switzerland, 2016.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/molbev/mst024
https://www.ncbi.nlm.nih.gov/pubmed/23418397
https://doi.org/10.1093/sysbio/syy032
https://www.ncbi.nlm.nih.gov/pubmed/29718447
https://doi.org/10.1214/ss/1177011136
https://doi.org/10.1144/jgs2021-111
https://doi.org/10.1111/j.1744-7410.2010.00185.x
https://doi.org/10.1002/jmor.20089
https://doi.org/10.1371/journal.pone.0052200
https://doi.org/10.1007/s00435-023-00617-4
https://doi.org/10.1016/j.palaeo.2013.11.004
https://doi.org/10.1017/S0016756806002445
https://doi.org/10.1130/G30829.1
https://doi.org/10.1098/rspb.2018.2505
https://www.ncbi.nlm.nih.gov/pubmed/30963879
https://doi.org/10.1111/j.1744-7410.2008.00162.x
https://doi.org/10.1016/j.jcz.2011.10.001
https://doi.org/10.1002/jmor.1052100207
https://doi.org/10.2307/3226738
https://doi.org/10.1111/j.1469-7998.1974.tb03125.x
https://doi.org/10.1002/spp2.1239
https://doi.org/10.1017/S0016756820000308
https://doi.org/10.1126/sciadv.aaz1626
https://www.ncbi.nlm.nih.gov/pubmed/32128421
https://doi.org/10.1016/j.gr.2015.01.003

	Introduction 
	Materials and Methods 
	Materials and Preservation 
	Imaging 
	Element Mapping 
	Measurement 
	Phylogenetic Analysis 
	Terminology 

	Results 
	Discussion 
	Phylogenetic Position of Ercaivermis among Priapulids 
	Eight Scalids around the First Circles: Morphological and Evolutionary Significance 
	How Can We Recognize a Crown-Group Priapulida? 
	Symmetry in Fossil Priapulids 

	Conclusions 
	Appendix A
	References

