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Simple Summary: Atopic dermatitis (AD) is a skin disease associated with changes in the gut micro-
biome early in life. We conducted a comprehensive study to investigate the gut microbiome of Thai
children with AD compared to their healthy counterparts. Our study involved both longitudinal analysis,
starting from 9 months of age until 30 months, and cross-sectional analysis, comparing patients in the
same age group to explore temporal variation. Accordingly, differences were found in bacteria that
are potentially identified to produce short-chain fatty acids, which are important for gut health. These
children with AD also showed differences in certain metabolic activities related to vitamin production
and host immune response. This study is the first challenge to track these gut bacteria and metabolic
changes over time in Thai children with allergies. Understanding these differences can help us develop
better treatments for AD and similar conditions, benefiting children’s health worldwide.

Abstract: Atopic dermatitis (AD) is a prevalent inflammatory skin disease that has been associated
with changes in gut microbial composition in early life. However, there are limited longitudinal stud-
ies examining the gut microbiome in AD. This study aimed to explore taxonomy and metabolic func-
tions across longitudinal gut microbiomes associated with AD in early childhood from 9 to 30 months
of age using integrative data analysis within the Thai population. Our analysis revealed that gut
microbiome diversity was not different between healthy and AD groups; however, significant taxo-
nomic differences were observed. Key gut bacteria with short-chain fatty acids (SCFAs) production
potentials, such as Anaerostipes, Butyricicoccus, Ruminococcus, and Lactobacillus species, showed a
higher abundance in the AD group. In addition, metabolic alterations between the healthy and
AD groups associated with vitamin production and host immune response, such as biosynthesis of
menaquinol, succinate, and (Kdo)2-lipid A, were observed. This study serves as the first framework
for monitoring longitudinal microbial imbalances and metabolic functions associated with allergic
diseases in Thai children during early childhood.
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1. Introduction

Atopic dermatitis (AD) is the most common chronic inflammatory skin disorder that
affects up to 20% of children worldwide [1,2]. The prevalence of AD in children is also
on the rise worldwide, which develops from a complex interplay between environmental,
genetic, immunologic, and biochemical factors [3–5]. AD is a multifaceted disease affecting
patients with epidermal barrier dysfunction and dry and sensitive skin. AD frequently
presents with monotonous eczematous lesions on the face, neck, and skin folds, and it may
also present with other features [6–8]. The clinical trials involving targeted therapies, such
as Dupilumab [9,10] and Upadacitinib [11–13], have previously demonstrated an alleviation
of AD symptoms. Over the last decade, numerous studies reported that gut microbiome
perturbation during infancy potentially contributes to allergic diseases [2,14–17]. Recent
investigations have observed longitudinal changes in gut microbiome in children with AD
compared to healthy groups [18–21]. Common findings among those studies include gut
microbiome alterations related to host immune development and short-chain fatty acids
(SCFAs) production-related bacteria, such as Bifidobacterium, Bacteroides, Ruminococcaceae,
and Lachnospiraceae. In addition, many studies reported an association between SCFAs level
and AD [18,22–24]. Ta et al. (2020) identified that allergen-sensitized AD is associated with
a decreased level of SCFAs, e.g., acetate, butyrate, and propionate, along with a depletion of
gene expression related to glycolysis, butyrate, and propionate biosynthesis pathways [22].
Cait et al. (2019) reported a significant depletion of CAZymes and butyrate-producing
genes of the children who had atopic disease [23].

A comprehensive understanding of the dynamics and features of the human gut
microbiome across the longitudinal gut microbiome towards metabolic functional changes
has become an essential area of research for alternative therapeutic avenues of relevant
co-morbidities. So far, 16S rRNA gene sequencing and shotgun metagenomics have become
increasingly feasible, allowing not only for the retrieval of taxonomic information, but
also metabolic functions of the gut microbiome. Moreover, bioinformatics tools, such as
the MetGEMs toolbox [25] and PICRUSt2 [26], allow for the prediction of the metabolic
functional abundance of a microbial community based on 16S rRNA gene sequencing
profiles. Furthermore, metaproteomics has also emerged as a powerful tool for identifying
and quantifying all expressed proteins from microbial communities, which gives insight
into the activities of microbial communities at the molecular level [27].

Our study aimed to explore taxonomy and metabolic functions across longitudinal
gut microbiomes associated with AD in early childhood using integrative data analysis
within the Thai population. Initially, 16S rRNA gene sequencing was used to study lon-
gitudinal gut microbiome of the early childhood population (<3 years old) from a Thai
population-based allergy birth cohort study. Integrative analysis of metagenomic and
metaproteomic data was then performed for identification of key bacteria, metabolic func-
tions, and pathways related to AD pathogenesis. This pilot study marks one of the early
efforts for monitoring the longitudinal gut microbial community and their metabolic func-
tions in relation to AD. This study contributes to a better understanding of AD pathogenesis
and offers insights for potential therapeutic strategies, as well as an avenue for preventing
allergic disease development within the Thai population.

2. Materials and Methods
2.1. Study Design and Fecal Sample Collection

This study used the fecal samples from the population-based birth cohort study,
conducted at King Chulalongkorn Memorial Hospital, the Thai Red Cross Society, Bangkok,
Thailand. The study was approved by the Ethics Committee of the Faculty of Medicine,
Chulalongkorn University, Bangkok, Thailand, under the approval reference number
358/58. Parents of subjects agreed to participate in the study. Written informed consent
was obtained from the parents or guardians of the participants before collecting clinical
data and fecal samples. This research was performed according to the Helsinki Guidelines.
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To be eligible for inclusion in this study, healthy full-term infants born to healthy
pregnant women were selected. Exclusion criteria encompassed the factors that may
influence gut microbiome, including administration of antibiotics to the infants within
1 month prior to the collection of the fecal sample; presence of other medical conditions
except allergies in the mothers, such as hypertension, diabetes, liver disease, thyroid disease,
or mental problems deemed inappropriate by physicians. For the infants, the exclusion
criteria included those with serious medical conditions and congenital anomalies.

For fecal sample collection, fecal samples from 62 enrolled participants from 9 to
30 months of age were collected, of which 39 participants were healthy (control) and
23 participants were diagnosed with AD. In total, 139 fecal samples were collected, which
included 9–12 months (n = 31 control, n = 19 AD), 18–21 months (n = 36 control, n = 17 AD),
and 24–30 months (n = 25 control, n = 11 AD) (Supplementary Table S1).

2.2. Clinical Data Collection

Clinical data during the perinatal and postnatal periods were collected through in-
terviews by physicians and study nurses. These include family history of atopic diseases
(atopic dermatitis, allergic rhinitis, or asthma in a parent or siblings), family income, deliv-
ery mode, sex, duration of breastfeeding, exposure to pets, history of illnesses, and antibiotic
use. To diagnose AD, allergy specialists performed a detailed history taking and physical
examination, following the criteria set by the American Academy of Dermatology [28].

2.3. Fecal Sample Preparation

Fecal samples were collected from enrolled participants in this study. A 20 g fecal
sample was collected from the diaper and placed into a sterile container (30 × 117 mm) and
immediately placed on ice for transferring to storage at −80 ◦C. Fecal samples were pre-
pared following the protocol established by Kisuse et al. [29]. The fecal samples were diluted
ten-fold with phosphate-buffered saline (pH 8.0) using a stomacher blender (Stomacher®

80 Biomaster, Seward, Worthing, UK) for 5 min. In following, 1 mL of fecal slurry was
placed into a 1.5 mL centrifuge tube and then stored at −80 ◦C until further analysis.

2.4. Microbial DNA Extraction and 16S rRNA Gene Sequencing

The microbial DNA was extracted using a combined bead meter method and a QIAamp®

DNA stool mini kit (Qiagen GmbH, Hilden, Germany), following the protocol described by
Kisuse et al. [29]. After the extraction, the DNA was quantified and evaluated for quality
using a Nanodrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) and
was immediately stored at −20 ◦C. The fecal microbiome was analyzed using 16S rRNA
gene sequencing based on the method described by Sathikowitchai et al. Briefly, the V3-V4
variable region of the 16S rRNA gene was amplified using the forward primer Imina V3-V4-F
(5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3′) and
the reverse primer Imina-V3-V4-R (5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGA
CAGGACTACTACHVGGGTATCTAATCC-3′). The cycling conditions consisted of an ini-
tial denaturation at 94 ◦C for 2 min, followed by 25 cycles of denaturation at 94 ◦C for 20 s,
annealing at 57 ◦C for 30 s, and extension at 72 ◦C for 30 s, and a final extension at 72 ◦C
for 10 min. The PCR products were purified using NucleoSpin® Gel and PCR Clean-up
(MACHEREY-NAGEL Inc., Allentown, PA, USA) according to the manufacturer’s protocol.
The 16S rRNA amplicon sequencing was performed using the Illumina MiSeq platform
(Illumina, San Diego, CA, USA).

2.5. Microbiome Data Processing

The 16S amplicon paired-end sequence data were processed by fastp [30] to remove
low-quality reads and reads with ambiguous nucleotides. The paired-end sequence data
were trimmed for the last 10 nucleotides, and the primers at the 5′ of reads were also
trimmed as a quality control measure. The remaining high-quality pair reads were then
denoised and merged into amplicon sequence variants (ASVs) using the DADA2 pipeline
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(v.1.10) [31] with default parameters. ASV taxonomic assignment was performed using
QIIME2’s naïve bayes classifier (v.2021.8) [32] with the SILVA 99% OTU database v.138 [33]
using 70% cut-off. Microbial taxa abundance was preprocessed and filtered by the removal
of ASVs with no phylum classification or relative low prevalence (<10 samples). In addition,
a removal of singleton ASVs was performed to reduce a potential artifact from sequencing
errors.

2.6. Microbial Taxonomy, Functional Composition, and Integrative Meta-Omics Analysis

Microbiome data were analyzed for microbial diversity, taxonomic, and functional
analysis for both healthy (control) and AD groups across three time points i.e., 9–12 months,
18–21 months, and 24–30 months. The alpha diversity was calculated using Chao index,
Shannon’s index, and Simpson’s index. The beta diversity was calculated as a Bray–
Curtis, UniFrac, and Jaccard distance. Associations between diversity values and sample
conditions (control or AD) were calculated using linear regression for alpha diversity and
ADONIS for beta diversity.

Significant differences in microbial taxonomy abundance between control and AD
groups were identified using ANCOM-BC (v.1.40) [34]. For longitudinal analysis, con-
founding factors, such as time point, family income, sequencing batch, or exposure to pet
were included as covariates. For cross-sectional analysis, fecal samples at each time point
were compared between control and AD groups using ANCOM-BC upon covariates of
family income, sequencing batch, or exposure to pet.

Concerning functional compositions, PICRUSt2 [26] and MetGEMs [25] were initially
utilized to predict KO IDs and metabolic pathways abundance in each sample. Subse-
quently, the significant abundance differences of KO IDs and metabolic pathways between
the control and AD groups were identified using ANCOM-BC. Notably, the same covariates
as earlier descriptions were used for longitudinal and cross-sectional analysis, respectively.

To further identify the potential metabolic routes, significant metabolic pathway
results from PICRUSt2 were selected and then mapped with metaproteomic datasets from
Kingkaw et al. (2020) [27] by EC number. The top functional contribution was ranked and
visualized by predominant microbial groups with related KO IDs and EC numbers.

3. Results and Discussion
3.1. Assessment of Participant Characteristics

As noticed in Table 1, 39 participants were healthy (control) and 23 participants
were diagnosed with AD. Within the AD group, 19 individuals had mild AD (SCORAD
index < 25), while 4 individuals had moderate AD (SCORAD index between 25 and 50).
Across the AD group, 15 individuals experienced remission before reaching 30 months,
while 8 individuals had persistent AD beyond 30 months of age. It is noted that there are
no other co-morbidities, such as food allergy or asthma, which were observed in the AD
group. Furthermore, there were no significant differences in demographic characteristics
between the two groups (Table 1) and no significant changes over time, as determined by
Fisher’s exact test (Supplementary Table S1). However, we observed that participants in
the control group had greater exposure to pets (i.e., dogs and cats) than those in the AD
group (p-value < 0.05), which aligns with previous reports linking pet exposure to a lower
risk of development of atopic disease [35–37].
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Table 1. Demographic characteristics of study participants.

Control (n = 39) AD (n = 23) p-Value &

Sex 0.60
Male 23 (59%) 15 (65%)
Female 16 (41%) 8 (35%)

Delivery method 1.00
Caesarean 14 (36%) 8 (35%)
Vaginal 25 (64%) 15 (65%)

Family income
(monthly, THB *) 0.11

≤50,000 33 (85%) 15 (65%)
≥50,000 6 (15%) 8 (35%)

Birth weight 0.52
mean ± sd 3228 ± 412 3135 ± 621

Exposure to pet 0.04
Yes 15 (38%) 6 (26%)
No 24 (62%) 17 (74%)

Mother history of AD 1.00
Yes 6 (15%) 3 (13%)
No 33 (85%) 20 (87%)

Note: Significant difference was considered under p-value < 0.01. * 50,000 THB = 1467.14 USD (as of 14 April
2023). & Fisher’s exact test was used to assess the difference between control and AD groups, except for birth
weight, where the Welch two-sample t-test was applied.

3.2. Differential Shifts in Gut Microbial Diversity Trajectories over Time between Healthy and AD
Participants

To determine gut microbial diversity of each sample, alpha diversity indices (Chao1,
Shannon, and Simpson) were calculated using 16S rRNA genes data and compared be-
tween control and AD groups using linear modelling (Figure 1a, Supplementary Table
S2). Chao1, Shannon, and Simpson indices did not display any statistically significant
shifts in microbial diversity across all time points (9–30 months) in both control and AD
groups (Supplementary Table S2). Previous studies, such as Lee et al. (2022) and Ismail
et al. (2012) [18,38], reported a decrease of bacterial diversity among AD infants in their
respective studies. Notably, our findings did not show those observations (Figure 1a).

Furthermore, the beta diversity using Bray distance was analyzed using ADONIS
(Figure 1b, Supplementary Table S3). The analysis showed that the patterns of microbiome
gradually shifted over time among participants (age, R2 = 0.043; p-value < 0.05). The
result from ADONIS also suggested that relevant factors, such as income and exposure
to pets, impact the microbiome’s structure. Overall, these results support the notion of
time-dependent gut microbial diversity of healthy and AD Thai children during early
childhood.
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Figure 1. Alpha and beta diversity of gut microbiome between control and AD groups across
9–30 months. (a) Boxplot shows the median and interquartile range (IQR) of diversity values between
control and AD groups. (b) Bray NMDS plots across 9–12 months, 18–21 months, and 24–30 months
are illustrated. The statistically significant data under p-value < 0.05 are considered and available in
Supplementary Tables S4 and S5.

3.3. Comparison of Bacteria Abundances in Healthy and AD Participants

Taxonomic compositions of all participants in the control and AD groups were clas-
sified into 8 phyla, 70 families, and 199 genera, as shown in Figure 2. The three major
prevalent phyla, based on their relative abundance, were Firmicutes (56%), Actinobacteri-
ota (28%), and Proteobacteria (5%). Interestingly, these phyla were dominated by single
families, namely Lachnospiraceae (32%), Bifidobacteriaceae (27%), and Enterobacteriaceae (5%),
respectively. These taxonomic abundances are similar to the gut microbiome composition
among Asian children [29,39]. As shown in the relative abundance over the time (Figure 2),
Firmicutes increased, while Actinobacteriota and Proteobacteria decreased in both control
and AD groups, which is in agreement with typical gut microbiome progression in healthy
children [39,40].
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Considering gut microbiome changes between the control and AD groups, ANCOM-
BC analysis revealed that two bacterial families and three bacterial genera were signif-
icantly associated with AD (Table 2 and Supplementary Table S4). At the family level,
Lachnospiraceae and Butyricicoccaceae were significantly enriched in the AD group. At the
genus level, Ruminococcus, Anaerostipes, and Butyricicoccus were also found to be signifi-
cantly in higher abundance with the AD group. Interestingly, prior studies have associated
the bacteria, i.e., Anaerostripes hadrus and Ruminococcus gnavus, with inflammatory dis-
eases [41–44] and being enriched in AD [18,45]. Similarly, Butyricicoccus has also been
found to be enriched in AD condition [46]. Our result supports their associations by further
identifying specific species of bacteria or functional genes.

Cross-sectional analysis between control and AD groups is shown in Figure 3, which
displays the significantly different bacterial communities at the family and genus levels
between the control and AD groups at different time points (Figure 3a,b). At ages of
9–12 months, Anaerostipes and Lachnoclostridium were over-represented in the AD group. At
ages of 18–21 months, Butyricicoccaceae, Eggerthellaceae, Lachnospiraceae, and Butyricicoccus
were more abundant in the AD group. At the age of 24–30 months, Lactobacillus was
shown to be higher in the AD group, while Eisenbergiella, Oscillibacter, Lachnoclostridium,
or UBA1819 were found to be enriched in the control group. As shown in Table 3 and
Supplementary Table S5, the increasing abundance of Oscillibacter was notably found
at 24–30 months, indicating a cross-sectional variation occurrence as described in other
studies, of which Oscillibacter was enriched in non-AD in early childhood [18,47], although
its purpose was unclear. In our study, Lachnoclostridium also exhibited an interesting pattern
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upon cross-sectional variation (Figure 3 and Table 3), where it was significantly enriched
in the control group at 24–30 months. Lachnoclostridium were characterized with lipid
metabolism and influence on SCFAs level [48], but its effects on AD pathogenesis have yet
been described.

Table 2. List of significantly different taxa across longitudinal gut microbiome between control and AD.

Taxonomic Level Taxonomic Name q-Value Log2FC *

Order Lachnospirales 0.0006 1.03
Family Butyricicoccaceae 0.0036 1.56
Family Lachnospiraceae 0.0133 0.87
Genus Anaerostipes 0.0077 2.11
Genus Ruminococcus 0.0292 0.99
Genus Butyricicoccus 0.0386 1.39

Note: The adjusted p-value (q-value) was calculated under the Holm–Bonferroni correction method. A list of
significantly different taxa was considered under q-value < 0.05. * Positive values represent a higher abundance in
the AD group.
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Figure 3. The taxonomic abundances of the gut microbiome between control and AD groups at
(a) family and (b) genus levels. The log2 observed abundance was corrected by ANCOM-BC. The
boxplot shows the median abundances and interquartile range (IQR) of bacterial taxa. NS indicates no
significance (q-value > 0.05), whereas * indicates a cross-sectional significant difference in abundance
between the control and AD groups. The cross-sectional analysis was performed by ANCOM-BC
(see Section 2.6).
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Table 3. List of significantly different taxa across gut microbiome between control and AD in cross-
sectional samples.

Age Taxonomic
Level

Taxonomic
Name q-Value Log2FC *

9–12 months
Genus Anaerostipes 0.0118 3.18
Genus Lachnoclostridium 0.0292 2.56

18–21 months

Family Butyricicoccaceae 0.0001 2.60
Family Lachnospiraceae 0.0163 1.02
Family Eggerthellaceae 0.0382 1.12
Genus Butyricicoccus 0.0000 2.66

24–30 months

Family Lactobacillaceae 0.0054 3.49
Genus Oscillibacter 0.0003 −1.62
Genus UBA1819 0.0018 −3.84
Genus Eisenbergiella 0.0043 −2.26
Genus Lactobacillus 0.0059 3.70
Genus Lachnoclostridium 0.0059 −2.52

Note: The adjusted p-value (q-value) was calculated under Holm–Bonferroni correction method. A list of
significantly different taxa was considered under q-value < 0.05. * A positive sign indicates higher abundance in
the AD group while a negative sign indicates higher abundance in the control.

3.4. Metabolic Functional Compositions of Longitudinal Gut Microbiome

The microbial functional compositions were predicted by PICRUSt2, followed by
longitudinal analysis using ANCOM-BC. As listed in Table 4, the identified eight signif-
icant metabolic pathways that were enriched in the AD group are the superpathway of
menaquinol-9 biosynthesis (PWY-5845), superpathway of menaquinol-6 biosynthesis I
(PWY-5850), superpathway of menaquinol-10 biosynthesis (PWY-5896), superpathway of
demethylmenaquinol-6 biosynthesis I (PWY-5860), superpathway of demethylmenaquinol-
9 biosynthesis (PWY-5862), superpathway of (Kdo)2-lipid A biosynthesis (KDO-NAGLIPAS
YN-PWY), superpathway of histidine, purine, and pyrimidine biosynthesis (PRPP-PWY),
and TCA cycle IV (2-oxoglutarate decarboxylase) (P105-PWY). Additionally, MetGEMs
analysis showed several pathways were enriched in the control group, mainly glycolysis
III (from glucose) (ANAGLYCOLYSIS-PWY), 5-aminoimidazole ribonucleotide biosyn-
thesis I (PWY-6121), L-arginine biosynthesis II (acetyl cycle) (ARGSYNBSUB-PWY), and
superpathway of L-aspartate and L-asparagine biosynthesis (ASPASN-PWY). For other
metabolic pathways prediction, MetGEMs prediction, followed by longitudinal analysis
with ANCOM-BC, was performed. However, significant difference in pathways or KO
IDs between the groups was not observed. Supplementary Tables S6–S11 show full results
of longitudinal and cross-sectional analysis of metabolic functional compositions in gut
microbiome.

As shown in Table 4, we identified that many pathways related to biosynthesis of
menaquinol and demethylmenaquinol were significantly higher in abundance in the AD
groups. This finding is consistent with our earlier study [27], where demethylmenaquinone
methyltransferase (DMM, EC: 2.1.1.163) was uniquely expressed in samples from the
AD group where DMM was involved in the conversion of demethylmenaquinol (e.g.,
demethylmenaquinol-6 or demethylmenaquinol-9) to menaquinol (e.g., menaquinol-6 or
menaquinol-9), respectively. Taken together, the results suggest that gut bacteria could
produce menaquinol in the long run, which may be an alternative source of vitamins
in patients.
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Table 4. List of significantly different metabolic pathways in longitudinal gut microbiome between
control and AD.

Metabolic Pathways-Based MetaCyc q-Value Log2FC *

superpathway of menaquinol-9 biosynthesis (PWY-5845) 0.0033 0.49

superpathway of menaquinol-6 biosynthesis I (PWY-5850) 0.0033 0.49

superpathway of menaquinol-10 biosynthesis (PWY-5896) 0.0033 0.49

superpathway of demethylmenaquinol-6 biosynthesis I
(PWY-5860) 0.0166 0.50

superpathway of demethylmenaquinol-9 biosynthesis
(PWY-5862) 0.0166 0.50

superpathway of (Kdo)2-lipid A biosynthesis
(KDO-NAGLIPASYN-PWY) 0.0225 0.69

superpathway of histidine, purine, and pyrimidine biosynthesis
(PRPP-PWY) 0.0287 0.38

TCA cycle IV (2-oxoglutarate decarboxylase) (P105-PWY) 0.0390 0.65
Note: The adjusted p-value (q-value) and Log2FC were calculated using ANCOM-BC. A list of significantly
different taxa was considered under q-value < 0.05. * A positive sign indicates higher abundance in the AD group
while a negative sign indicates higher abundance in the control.

Moreover, the result indicated that the biosynthesis of (Kdo)2-lipid A was enriched in
the AD group. (Kdo)2-lipid A (3-deoxy-d-manno-octulosonic acid-lipid A) is the essential
component of lipopolysaccharide in most Gram-negative bacteria, such as E. coli K12 and
related Proteobacteria, which are pathogenic bacteria [49] that serve as a strategy to modu-
late bacterial virulence as well as to avoid recognition by the mammalian innate immune
systems. Furthermore, the biosynthesis of histidine, purine, and pyrimidine and TCA cycle
IV (2-oxoglutarate dehydrogenase) were also majorly enriched in the AD group. Regarding
histidine, purine, and pyrimidine biosynthesis, it requires phosphoribosylpyrophosphate
(PRPP), thus PRPP is regarded as a precursor for the synthesis of nucleic acids, proteins,
and for the NAD(P) coenzymes. Upon integrative metaproteomic data of higher protein
expression of PRPP synthetase being observed in AD [27], this suggests that the formation
of PRPP might be associated with metabolic control of AD patients. For TCA cycle IV, the
absence of 2-oxoglutarate dehydrogenase complex (EC: 1.2.1.105) was found, which could
notionally result in incomplete oxidative or reductive TCA cycles that supply biosynthetic
intermediates, e.g., succinate in response to AD condition. This enzyme complex is essential
for succinate formation, which is a key precursor and plays an important role in either
propionate or acetyl-CoA formation, which can then be converted to acetate or butyrate
formation [50–53].

In addition to metabolic pathways related to longitudinal gut microbiome, other
metabolic pathways have also been identified to vary temporally. As shown in Table 5, the
ANCOM-BC cross-sectional analysis on PICRUSt2’s prediction identified the superpathway
of histidine, purine, and pyrimidine biosynthesis (PRPP-PWY) and allantoin degradation
IV (anaerobic) (PWY0-41) to be more abundant in the AD groups (18–21 months and 24–30
months). Notably, the enrichment of histidine, purine, and pyrimidine biosynthesis (PRPP-
PWY) in the AD group supports that the formation of PRPP might be needed for metabolic
control of AD patients. Additionally, the AD group exhibited an enriched presence of
alpha-galactosidase (K07406) and allantoin degradation IV (anaerobic) (PWY0-41).
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Table 5. List of significantly different metabolic pathways across gut microbiome between control
and AD in cross-sectional samples.

Age Metabolic Pathways-Based MetaCyc/
KO IDs q-Value Log2FC *

PICRUSt2

18–21 months superpathway of histidine, purine, and pyrimidine biosynthesis
(PRPP-PWY) 0.0461 0.53

24–30 months

allantoin degradation IV (anaerobic) (PWY0-41) 0.0027 2.01

alpha-galactosidase (K07406) 0.0195 1.20

uncharacterized protein (K07033) 0.0468 1.28

MetGEMs

18–21 months

purine ribonucleosides degradation (PWY0-1296) 0.0275 −0.58

superpathway of pyrimidine deoxyribonucleoside salvage (PWY-7200) 0.0303 0.48

adenine and adenosine salvage III (PWY-6609) 0.0390 −0.63

undecaprenyl diphosphate synthase (K00806) 0.0132 0.74

24–30 months

hydroxymethylpyrimidine kinase/phosphomethylpyrimidine
kinase/thiamine-phosphate diphosphorylase(K14153) 0.0023 0.32

hydroxymethylpyrimidine/phosphomethylpyrimidine
kinase/thiaminase (K00877) 0.0179 0.38

hydroxymethylpyrimidine/phosphomethylpyrimidine kinase
(K00941) 0.0179 0.38

succinate dehydrogenase flavoprotein subunit (K00239) 0.0270 0.46

succinate dehydrogenase iron-sulfur subunit (K00240) 0.0270 0.46

succinate dehydrogenase cytochrome b subunit (K00241) 0.0270 0.46

succinate dehydrogenase membrane anchor subunit (K00242) 0.0270 0.46

fumarate reductase flavoprotein subunit (K00244) 0.0270 0.46

fumarate reductase iron-sulfur subunit (K00245) 0.0270 0.46

fumarate reductase subunit C (K00246) 0.0270 0.46

fumarate reductase subunit D (K00247) 0.0270 0.46

Note: Significant metabolic pathways are under q-value < 0.05. * A positive sign indicates higher abundance in
the AD group while a negative sign indicates higher abundance in the control.

Furthermore, ANCOM-BC cross-sectional analysis on MetGEMs’s prediction revealed
significant differences between control and AD groups in the other 3 pathways and 12
KO IDs. At 18–21 months, pathways of purine ribonucleosides degradation (PWY0-1296)
and superpathways of pyrimidine deoxyribonucleoside salvage (PWY-7200) and adenine
and adenosine salvage III (PWY-6609) were significantly enriched in control, AD, and
control groups, respectively. Undecaprenyl diphosphate synthase (K00806) was also found
to be enriched in the AD group at this time point. At 24–30 months, the AD group
had enriched in hydroxymethylpyrimidine/phosphomethylpyrimidine kinases (K14153,
K00877, K00941), succinate dehydrogenase subunits (K00239, K00240, K00241, K00242),
and fumarate reductase subunits (K00244, K00245, K00246, and K00247).

3.5. Identification of Potential Metabolic Routes and Associated Bacteria Genera in AD Using
Integrated Metagenomic and Metaproteomic Approaches

Considering the longitudinal results, the menaquinol biosynthesis pathway showed
a significant difference between control and AD groups, as shown in Figure 4. This
pathway involves nine enzymes, with eight of them (EC: 5.4.4.2, EC: 2.2.1.9, EC: 4.2.99.20,
EC: 4.2.1.113, EC: 6.2.1.26, EC: 4.1.3.36, EC: 2.5.1.74, and EC: 2.1.1.163) being more abundant
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in the AD group, though each enzyme was not significant under statistical test. From
the PICRUSt2 analysis, eight genera, i.e., Akkermansia, Bifidobactrium, Escherichia-Shigella,
Veillonella, Eggerthella, Klebsiella, Paraeggerthella, and [Ruminococus] gnavus group, were
observed to be the biggest contributors to this pathway. Of these, four predominant
genera, i.e., Akkermansia, Bifidobactrium, Escherichia-Shigella, and Veilonella, were found to
contribute most enzymes. Notably, these genera are known for association with health and
immune system of host [51,54–57]. Conversely, two enzymes, EC: 3.1.1.28 (1,4-dihydroxy-2-
naphthoyl-CoA hydrolase) and EC. 2.1.1.163 (demethylmenaquinone methyltransferase,
DMM), were mostly contributed by Eggerthella, Klebsiella, Paraeggerthella, and [Ruminococus]
gnavus group.

Biology 2023, 12, x FOR PEER REVIEW 12 of 16 
 

 

step of menaquinone biosynthesis by catalyzing the methylation of demethylmenaqui-
none using S-adenosylmethionine, resulting in the formation of menaquinone [58]. It can 
be inferred that the relationship between menaquinone and the gut microbiome might 
play important roles in the mechanism of AD [59]. 

 
Figure 4. Longitudinal difference in abundance between control and AD groups in menaquinol bi-
osynthesis using PICRUSt2. Log2 (fold change) of predicted gene abundance is visualized. The pre-
dominant microbial groups with relevant KO IDs and EC numbers were predicted by PICRUSt2. 
An asterisk (*) indicates a statistically significant difference in abundance based on reported metap-
roteomic data (Kingkaw et al., 2020 [27]). 

4. Conclusions 
Our finding demonstrated the variations in both taxonomy and metabolic functions 

within the longitudinal Thai gut microbiome during early childhood. Key gut bacteria 
implicated in SCFAs production potentials, e.g., Anaerostipes, Butyricicoccus, Ruminococcus, 
and Lactobacillus, were identified. Additionally, we highlighted metabolic pathways asso-
ciated with AD, including menaquinol biosynthesis, demethylmenaquinol biosynthesis, 
and (Kdo)2-lipid A biosynthesis; histidine, purine, and pyrimidine biosynthesis; and TCA 
cycle IV (2-oxoglutarate decarboxylase). These microbial imbalances may play a role in 
the pathogenesis of AD, emphasizing the need for further research on cutting-edge tech-
nologies for meta-omics and advanced bioinformatics tools and databases for the intricate 

Figure 4. Longitudinal difference in abundance between control and AD groups in menaquinol
biosynthesis using PICRUSt2. Log2 (fold change) of predicted gene abundance is visualized. The
predominant microbial groups with relevant KO IDs and EC numbers were predicted by PICRUSt2.
An asterisk (*) indicates a statistically significant difference in abundance based on reported metapro-
teomic data (Kingkaw et al., 2020 [27]).

After mapping the result of metaproteomic datasets, it was observed that the AD
group also exhibited a significant increase in DMM. This enzyme is involved in the last
step of menaquinone biosynthesis by catalyzing the methylation of demethylmenaquinone
using S-adenosylmethionine, resulting in the formation of menaquinone [58]. It can be
inferred that the relationship between menaquinone and the gut microbiome might play
important roles in the mechanism of AD [59].
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4. Conclusions

Our finding demonstrated the variations in both taxonomy and metabolic functions
within the longitudinal Thai gut microbiome during early childhood. Key gut bacteria
implicated in SCFAs production potentials, e.g., Anaerostipes, Butyricicoccus, Ruminococcus,
and Lactobacillus, were identified. Additionally, we highlighted metabolic pathways associ-
ated with AD, including menaquinol biosynthesis, demethylmenaquinol biosynthesis, and
(Kdo)2-lipid A biosynthesis; histidine, purine, and pyrimidine biosynthesis; and TCA cycle
IV (2-oxoglutarate decarboxylase). These microbial imbalances may play a role in the patho-
genesis of AD, emphasizing the need for further research on cutting-edge technologies for
meta-omics and advanced bioinformatics tools and databases for the intricate relationships
between the gut microbiome and AD. This study serves as the first framework for the
monitoring of longitudinal gut microbial community-wide metabolic functions associated
with allergic diseases in a Thai population-based allergy birth cohort.
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