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Simple Summary: Viral outbreaks continue to be an obstacle to human health, with the Severe
Acute Respiratory Syndrome-related Coronavirus (SARS-CoV-2) pandemic shedding light on the
current vulnerabilities of our healthcare system. Understanding viral pathology is paramount in
developing methods to combat infection. The study of microRNAs (miRNAs) is relatively new to the
world of virology research. These small strands of nucleotides are a versatile tool in the regulation of
gene expression. Various miRNAs have roles in immune development, immune and inflammatory
responses, and viral infections. Changes in miRNA expression can be a double-edged sword, used
to alter cell activities to help the host fight infections or taken advantage of by viruses to enhance
infection. Uncovering these interactions and their implications can provide direction for therapeutic
and diagnostic advancement. Further, miRNAs may have the potential to predict the severity of
viral infection and possible health outcomes, as well as track disease progression to inform treatment
options. miRNA technology is also anticipated to be highly marketable and has already entered the
realm of commercial biopharmaceuticals. Continuing to elucidate the functions of miRNA during
infection and the therapeutic potential of these molecules will contribute to new strategies in the
battle against current and future viral pathogens.

Abstract: Since the discovery of microRNAs (miRNAs) in C. elegans in 1993, the field of miRNA
research has grown steeply. These single-stranded non-coding RNA molecules canonically work at
the post-transcriptional phase to regulate protein expression. miRNAs are known to regulate viral
infection and the ensuing host immune response. Evolving research suggests miRNAs are assets
in the discovery and investigation of therapeutics and diagnostics. In this review, we succinctly
summarize the latest findings in (i) mechanisms underpinning miRNA regulation of viral infection,
(ii) miRNA regulation of host immune response to viral pathogens, (iii) miRNA-based diagnostics
and therapeutics targeting viral pathogens and challenges, and (iv) miRNA patents and the market
landscape. Our findings show the differential expression of miRNA may serve as a prognostic
biomarker for viral infections in regard to predicting the severity or adverse health effects associated
with viral diseases. While there is huge market potential for miRNA technology, the novel approach
of using miRNA mimics to enhance antiviral activity or antagonists to inhibit pro-viral miRNAs
has been an ongoing research endeavor. Significant hurdles remain in terms of miRNA delivery,
stability, efficacy, safety/tolerability, and specificity. Addressing these challenges may pave a path for
harnessing the full potential of miRNAs in modern medicine.
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1. Introduction

The central dogma of biology posits a deceivingly straightforward process. It describes
how DNA is transcribed into RNA, which is then translated into protein, or not. In fact,
only 1–2% of the transcribed genome encodes proteins in mammals [1]. Most of the DNA
in eukaryotic cells is non-coding.

MicroRNA (miRNA) is one of the many types of non-coding RNA found in eukary-
otes [2]. Despite their average length of a mere ~22 base pairs, these small strands of
nucleotides are predicted to regulate more than 60% of all human protein-coding genes [3].
They typically work at the post-transcriptional level to enhance or repress the translation
of mRNA, though some evidence suggests they may also have regulatory functions at the
transcriptional level [4]. But how does something so small make such a big impact? The
minute size of miRNA contributes to its ability as a strong regulatory element. Functionally,
the short sequence may allow room for multiple miRNAs to bind to a single messenger
RNA (mRNA) and synergistically repress translation [5]. On the other hand, the target
sequence in mRNA is also short and may be common between different groups of mR-
NAs [6]. Thus, a single miRNA has the potential to bind to many types of mRNAs. The
regulatory effect of miRNA is further amplified by its ability to be released for reuse after
its target has been degraded [4]. These traits allow miRNAs to act alone or in combination
to rapidly suppress gene expression and protein production.

Because of its key role in regulation, the miRNA biogenesis pathway is highly con-
served between species [7]. It begins in the nucleus, where the corresponding gene is
transcribed into primary miRNA (pri-miRNA) [7]. This pri-miRNA is then modified, and
the resulting precursor miRNA (pre-miRNA) is transported to the cytoplasm via nuclear
pores [6,7]. Once in the cytosol, precursor miRNA is processed, and the mature miRNA
duplex binds to the RNA-induced silencing complex (RISC) [6]. The Argonaute (AGO)
protein family within RISC, along with various cofactors, unwind the miRNA duplex and
select one of the strands [6]. The AGO protein is largely responsible for transporting the
complex to a mRNA with a short complimentary sequence [7]. In animals, this sequence
is often in the 3′ untranslated region (UTR) of the mRNA with a perfect or near-perfect
~7-nucleotide base pairing with the seed sequence in miRNA [8]. This interaction typically
triggers the mRNA degradation pathway to downregulate protein production [9]. In some
instances, miRNA can alternatively interact with the 5′ UTR or coding sequence (CDS) of
mRNA to affect stability or translation [10–14].

Translation may be directly repressed by miRNA through decreased ribosomal inter-
action with the mRNA [9]. More often, the target mRNA is destabilized, accelerating the
standard degradation process [9]. In rare cases where the base pairing is much more exten-
sive, AGO may directly cleave mRNA, making it susceptible to rapid degradation [4,9]. In
contrast, miRNA has been shown to upregulate translation in some cases [15,16]. It may
also directly regulate transcription via promotor interactions or indirectly by targeting the
mRNA of transcriptional regulators [4,17]. Additionally, miRNA can bind to non-coding
RNAs, including long non-coding RNA (lnc-RNA), circular RNA (circ-RNA), and other
miRNAs [18].

The role of miRNAs in human health continues to be an area of active research. Since
the discovery of miRNA in C. elegans in 1993 and mammalian miRNA in 2000, the field
of miRNA research has grown dramatically [7]. In 2017 alone, there were ~11,000 studies
on miRNA, with more than 6000 of these studies on miRNA diagnostics and therapeutics
combined [19]. There is evidence of miRNA involvement in many medical conditions,
including cardiovascular disease [20], various cancers [18,21–25], and infections [10,21–25].
This review is aimed at succinctly summarizing the latest findings in (i) mechanisms
underpinning miRNA regulation of viral infection and (ii) the host immune response to
viral pathogens, (iii) miRNA diagnostics and therapeutics targeting viral pathogens, and
(iv) the miRNA market landscape.
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2. Modes of miRNA-Mediated Gene Regulation

Gene regulation by miRNA-RISC may occur through one of the following mechanisms:
(i) site-specific cleavage, (ii) mRNA degradation, and (iii) translation inhibition [26,27].
Site-specific cleavage occurs when there is a near-perfect match of miRNA to the target
RNA. This process is called RNA interference (RNAi). In contrast, miRNA-directed mRNA
degradation and translation inhibition are the non-cleavage modes of miRNA regulation.
As early as 2004, it was demonstrated by the Bartel lab that miR-196 can effectively regulate
gene expression by directed cleavage of HOXB8 mRNA [28]. Such miRNA cleavage activity
utilizes AGO proteins [29]. miRNA-directed endonucleolytic cleavage of target mRNAs is
more common in plants than animals but has a critical function [30,31]. In animals, cleavage
of miRNA targets is a poorly understood concept, partly due to a lack of effort to investigate
this phenomenon. Recent studies have demonstrated several animal miRNAs to target
mRNA by cleavage, and a few examples of such miRNAs are Let-7 (targeting TUSC2) [32],
miR-92 (targeting SERBP1) [33], miR-127 and miR-136 (targeting Rtl1/Peg11) [34].

Multiple mechanisms are in place to regulate the miRNA-directed non-cleavage mode
of regulating mRNA expression. The key event for all these activities is interactions between
the scaffold protein, GW182, and any of the AGO proteins. The most common pathway
is GW182-mediated deadenylation, followed by de-capping and mRNA degradation via
NOT/CCR4/CAF1 complexes [35]. Other pathways include GW182 competing with eIF4G
in association with poly-A binding protein (PABP) to prevent the circularization required
for efficient translation of target mRNA [36,37]; GW182 preventing the formation of a
functional 80S ribosome crucial to the translational process of the target transcript [27,38];
or GW182/AGO complex-induced ribosomal stalling that induces a translation elongation
block [39]. Such diversity in miRNA-mediated silencing mechanisms provides life with en-
hanced capacity for gene regulation but also poses challenges to a complete understanding
of the biology of miRNAs.

Apart from plant and animal miRNAs, there are also miRNAs encoded by viruses
(v-miRs). More than 250 v-miRs have been reported to play crucial roles in virus pathogen-
esis [40]. Once again, perfect complementarity results in mRNA site-specific cleavage, as
observed in simian virus 40 (SV40) encoded miR-S1-5p and miR-S1-3p, which target the
mRNA coding for a protein known as Large T antigen [41]. In contrast, imperfect/partial
complementarity with the target mRNA leads to translational repression via non-cleavage
mode, as reported for EBV-encoded miR-BART-1p, miR-BART16, and miR-BART17-5p,
which target latency-associated membrane protein LMP-1 [42]. Viral miRNAs, perhaps,
have evolved cleavage or non-cleavage modes of regulating mRNA expressions based
on necessity. For example, if only one miRNA is required to regulate a key mRNA for
viral replication, it may follow the cleavage mode as in the case of SV40 miR-S1-5p [41].
If there are multiple v-miRs regulating one viral mRNA, as in the case of EBV-encoded
miR-BART-1p, miR-BART16, and miR-BART17-5p, it may follow a non-cleavage mode [42].
Recent studies have also determined the ability of v-miRs to regulate cellular genes critical
to their survival [14,43].

3. Host Response to Viral Pathogens

The ability to defend against harmful agents is an evolutionary necessity [44]. Even
bacteria have developed a method to protect themselves against viral infection, using the
clustered regularly interspaced palindromic repeat (CRISPR)/Cas system [45]. Humans,
however, have a more complex strategy with many components. Elements of the immune
system are distinguished historically as innate or adaptive [46]. Though classically defined
as separate, recent research indicates crosstalk between these two branches [46]. In addition,
it suggests communication between the immune system, nervous system, endocrine system,
and microbiome [46].
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Innate immunity is often referred to as the first line of defense and recognizes con-
served antigens, including common motifs in pathogens [47]. It includes physical barriers,
such as skin and the mucosal lining of the respiratory and digestive tracts [46]. At birth,
infants are exposed to the external environment for the first time and must be able to
survive interactions with other organisms, including viruses [48]. Human breast milk helps
strengthen a newborn’s immune system and delivers ~1400 miRNAs, including many
linked to immune system maturation and viral defenses [49].

When a novel pathogen breaches the physical barrier of the skin or mucous mem-
branes, the innate immune response is non-specific and quick, mounting a defense in
just minutes to hours [44]. The activation of adaptive immune cells occurs during the
first exposure to a pathogen. When the body reencounters the same virus, its memory
bank of immune cells developed during the first exposure quickly identifies the markers
and responds efficiently [44]. While the innate immune response still occurs, the resident
adaptive immune cells assemble more rapidly from memory to provide a strong wave of
protection [44].

4. miRNA and Immunity

The impact of miRNAs on the immune system is observed before birth and has
dynamic effects throughout the human lifetime [50,51]. For example, miR-181a has many
targets involved in immune cell processes [51–54]. It is involved in T cell development,
homeostasis, activation, and proliferation [51]. In addition, miR-181a-5p may play a role
in B cell development from precursors in bone marrow, and miR-181 in Natural Killer
(NK) cells promotes development from Hematopoietic Progenitor Cells (HPCs) [52,53].
miR-181a has been implicated in inhibiting the production of IL-1a and other inflammatory
factors in macrophages and monocytes [54]. It also regulates monocyte-derived dendritic
cell activation and the release of inflammatory cytokines [55]. This one type of miRNA
has many roles in immune cell development, differentiation, expansion, activation, and
effector functions.

Several other miRNAs influence similar processes [50,56–61]. For example, the
differential expression of miR-126, miR-146a, miR-150, and miR-17-92 is involved in the
regulation of T cell development in the thymus [60]. During myelopoiesis, expression
levels of miR-125b and miR-10a decrease with differentiation, and the corresponding
increased expression levels of their target proteins may explain how key physiological
differences develop between immune cells [59]. For example, miR-125b has many targets,
including several transcription factors involved in B cell and T cell differentiation [59].
On the other hand, miR-10a targets transcription factors required for monocytopoeisis
and megakaryocyte differentiation [59]. In mice, miR-142 has a role in maintaining
cell levels of type 1 Innate Lymphoid Cells (ILCs), NK cell survival, and response to
cytokines [61]. This may contribute to the greater susceptibility of miR-142-deficient mice
to Murine Cytomegalovirus (MCMV) infection compared to wild-type counterparts [61].
An overview of the roles of miRNA in general immunity is provided in Figure 1. The
roles of miRNA in immune cell responses to viral pathogens will be explored in-depth
in the following sections.

miRNAs add a new layer to the complexity of the immune system. The immune system
is constantly in a dynamic yet delicate balance. miRNAs may provide insight into diseases
of the immune system and possible treatments. This includes autoimmune diseases such as
multiple sclerosis (MS) and Rheumatoid Arthritis (RA) [62], as well as allergic reactions [63]
and cancers such as leukemia [57]. Population differences in miRNA expression may also
inform differences in immunity [64]. With roles in both development and function, miRNAs
help moderate immune responses and maintain immune cell homeostasis.
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5. Pro-Viral miRNA Regulation of Viral Infection

The host response to a viral pathogen is triggered at the point of virus binding and
interaction with the cell. The viral entry process involves intricate interactions with host
cell-specific receptor molecules. Interactions with these appropriate receptors trigger entry
of the viral pathogen. For example, SARS-CoV-2 (RNA virus) and Kaposi’s sarcoma-
associated herpesvirus (KSHV; DNA virus) interact with ACE2 and integrins expressed on
the host cell surface, respectively [65,66]. Such interactions allow SARS and KSHV to be
internalized, or in other words, establish infection. This can activate cell signaling pathways
to induce cellular miRNA production and create an antiviral or pro-viral environment [67].

Viruses may also encode their own miRNA, known as v-miRs. The site of viral
genome replication influences the method of v-miR biogenesis. Some viral genomes, such
as SARS, end up in cytoplasm, while others, like KSHV, end up in the nucleus for replication.
Viruses that replicate in the cytoplasm cannot access host miRNA biogenesis machinery
in the nucleus [40]. However, cytoplasmic translocation of Drosha can occur during
viral infection, allowing for the processing of miRNA encoded in the viral genome [68].
Retroviruses such as Human Immunodeficiency Virus (HIV) integrate their genomes into
host chromosomes via reverse transcription [68]. Since their replication occurs in the
nucleus, miRNA production can occur following canonical host pathways [68]. Similarly,
DNA viruses that replicate in the nucleus have access to host miRNA biogenesis machinery
for v-miR production [40].

Viral pathogens use miRNAs to their advantage in several ways. v-miRs can target
host (cellular) or viral mRNA directly, binding to the 3′ or 5′ UTR (Figure 2) [13]. When
canonically binding to the 3′UTR, they typically destabilize the transcript and trigger the
degradation pathway of cellular mRNAs [69]. v-miRs have also been shown to bind to the
5′UTR, preventing translation without altering mRNA levels in the cell [70,71]. Alterna-
tively, v-miRs binding to the 5′UTR can increase mRNA stability, preventing degradation
and upregulating gene expression [14,72]. Likewise, binding to the 5′ non-translated region
(NTR) can increase RNA viral genome stability [67]. v-miRs can target unique binding sites
or act as functional mimics of host miRNAs by binding to the same site as corresponding
endogenous miRNAs [73].

Viruses take advantage of pre-existing machinery within infected cells to promote viral
processes. Some viruses, such as Hepatitis C Virus (HCV), do not encode viral miRNA but
can regulate endogenous miRNA levels [74–76]. Viruses may induce the synthesis of host
miRNAs when they are recognized upon entry [77]. They encode proteins that degrade
a host miRNA or upregulate it [78–80]. Under certain circumstances, viruses exploit
differential miRNA profiles between host cells to have tissue-specific effects depending on
local expression levels [14,43]. This is especially important for viruses that target specific
tissues, like hepatitis viruses in the liver, as well as viruses with latency phases in specific
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tissues, like herpesviruses in neurons [14,81,82]. Viruses can also utilize host secretory
pathways and the exosomal release of miRNAs for uptake by other cells [71,81,83,84].

Viruses further manipulate cellular functions through v-miRs or modulation of host
miRNA levels by regulating the transcription of specific genes. This includes targeting
a transcription factor [85], enhancer [13,43], repressor [69], chromatin modifier [86], or
another regulator within the cell [87]. In some cases, miRNAs may regulate signaling
pathways within the cell to increase or decrease transcription of stimulated genes [71,88,89].
miRNAs can also be used by the virus to regulate viral gene expression and transcription of
the viral genome [10,90]. v-miRs or host miRs may be utilized to promote viral replication
but may alternatively downregulate it to maintain chronicity or latency [71,82,86]. The
use of miRNA gives viruses the ability to control gene expression and manipulate host
cell activities to their benefit. miRNAs have been implicated in many processes during
infection, including viral entry, viral replication, latency and reactivation, immune evasion,
immune suppression or overactivation, inflammation, host cell survival, tumorigenesis,
and more [10,13,14,43,69–71,77,80–82,85–98]. See Tables 1 and 2 for recent research devel-
opments in miRNA regulation of viral infection.

Table 1. Pro-viral miRNAs involved in infection by RNA viruses IAV, SARS-CoV-2, HIV-1, and HCV.
The hsa-miRs are encoded by the human host and may be manipulated by viruses. The miRs without
hsa notation are virally encoded.

Virus Name miRNA Target(s) Viral Effect Viral Significance Ref.

Influenza A Virus
(IAV)

hsa-miR-132-3p IRF1 Upregulates miR-132-3p to inhibit Type I
IFN production and downregulates ISGs

Immune evasion, host cell
survival, and viral

replication
[94]

put-hsa-miR-34 STAT3
Downregulates STAT3/IL-6-mediated
antiviral response and upregulates the

NF-κB pathway

Viral replication;
prevention of immune and

inflammatory responses
[87]

Severe Acute
Respiratory

Syndrome-related Coronavirus
(SARS-CoV-2)

MR-147-3p EXOC7; RAD9A;
TFE3

Downregulates exocytosis; cell death and
apoptosis; lipid and glucose metabolism,

and TGF-β-induced transcription

Exocytosis; host cell
survival; metabolism and
transcription of host genes

[13]

MR359-5p FOXO3; GCPR1

Downregulates autophagy and
dysregulates oxidative damage responses;

binds 5′UTR to upregulate GPCR1 and
viral propagation

Host cell survival;
viral pathogenesis [13]

hsa-miR-148a;
hsa-miR-590

USP33;
IRF9

Higher exosomal loading of miR-148a and
miR-590 in infected cells; downregulate

USP33 and IRF9 in macrophages to
upregulate NF-kB, TNFα, and

IFNβ pathways

Hyperinflammation [95]

hsa-miR-150-5p Viral nsp10 gene Downregulates miR-150-5p to prevent
decreased viral gene expression

Translational efficiency,
viral replication,

and immune evasion
[10]

Human
Immunodeficiency

Virus 1
(HIV-1)

hsa-miR-144 Nrf2
Upregulates miR-144 to downregulate

antioxidant response and impair
alveolar macrophage phagocytosis

Immune evasion [85]

hsa-miR-210-5p TGIF2
Induces miR-210-5p production to

downregulate TGIF2 and promote G2 cell
cycle arrest

Cell cycle arrest [80]

Hepatitis C Virus
(HCV)

hsa-miR-122 TLR7

Induces host miRNA and exosomal
transport to macrophages to activate TLR7,

inducing the
NF-κB pathway and upregulating B cell

activating factor (BAFF)

Autoimmune response [81]

hsa-miR-122 HCV
genome

Liver-specific miRNA increases the
stability of the viral genome and promotes

viral translation

Viral replication and
gene expression [14]

It is important to note that miRNAs predicted to be encoded by RNA viruses have
been somewhat controversial [99]. There is concern that the excision of miRNA or miRNA-
like fragments could result in cleavage of the viral genome and hinder viral replica-
tion [99]. It has been suggested that the HIV encodes a transactivating response (TAR)
motif that includes miRNA precursors that can be produced without cleavage of the viral
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genome [100,101]. However, the exact mechanism of this non-canonical pathway of miRNA
production is still under investigation [100,101]. That said, v-miR-TAR has been detected
in the sera of HIV-infected patients along with HIV-encoded v-miR-88 and v-miR-199 [102].
Dengue virus, Ebola virus, H5N1 Influenza virus, and SARS-CoV-2 have also been reported
to encode functional miRNA-like small RNAs [13,99].

The discovery of virally encoded miRNA and the ability of viruses to manipulate
host miRNA has the potential to elucidate new viral functions and host-virus interactions.
However, some of the viral miRNA characterized in publications and their putative targets
are only computer-predicted [13,98]. The production of these miRNAs and their interactions
with the targets need to be verified through in vitro and in vivo studies. In addition, the
outcome of these interactions should be confirmed at the cellar and organismal level. For
example, miR-mRNA interactions predicted to decrease gene expression by degradation of
mRNA should reflect this in both attenuated mRNA transcript levels and reduced protein
output [70]. Furthermore, researchers may consider expanding on the local or systemic
effects of viral miRNA packaged into exosomes and virus-induced changes in exosomal
host miRNA levels [10,83,103]. They should also critically evaluate if changes in host
miRNA levels are due to viral manipulation or if they are a potential defensive response
to infection.

Table 2. Pro-viral miRNAs involved in infection by DNA viruses EBV, HSV-1, HCMV, and HBV. The
hsa-miRs are encoded by the human host and may be manipulated by viruses. The miRs without hsa
notation are virally encoded.

Virus Name miRNA Target(s) Viral Effect Viral Significance Ref.

Epstein–Barr
Virus
(EBV)

miR-BART3,
miR-BART19 RIG-1 Downregulate PRR and Type I

IFN production in B cells
Innate immune

evasion [89]

miR-BART1;
miR-BART3 IRF-9; JAK1 Downregulate JAK/STAT pathway

response to Type I IFN and ISGs
Innate immune

evasion [89]

miR-BART11;
miR-BART17-3p FOXP1; PBRM1

Downregulate repressors of PD-L1
transcription to prevent T cell

cytotoxic activity against infected cells
Immune evasion [69]

miR-BHRF1-1 p53 gene
Downregulate p53 to decrease cell
cycle arrest, prevent apoptosis, and

induce proliferation

Cell survival,
proliferation,

tumorigenesis
[91]

Herpes Simplex
Virus

(HSV-1)

hsa-miR-138 HSV-1 ICP0, Oct-1,
Foxc1

High expression of miR-138 in neurons
allows cell-specific repression of viral gene
expression, transcription, and replication

Latency [82]

hsa-miR-24 STING
Induces the production of miR-24 to

downregulate the STING pathway and
decrease IFN production

Immune evasion [77]

Human
Cytomegalovirus

(HCMV)

miR-US33as-5p IFNAR1 Downregulates IFN activation of the Jak/STAT
pathway and the transcription of ISGs Immune evasion [88]

miR-US5-2;
miR-UL22A NAB1; SMAD3

Upregulate TGF-β production to
decrease CD34+ HPC proliferation and

myelopoiesis; downregulate
TGF-β-stimulated genes

Myelosuppression;
latency and
reactivation

[92]

miR-UL148D ERN1 Downregulates the JNK signaling pathway and
ER stress-induced apoptosis Host cell survival [70]

miR-UL59,
UL70-3p, US4-5p, US5-1,

US22-5p, US25-2-5p,
US29-5p, US33-5p

ERAP1
Viral miRNAs preferentially bind different
genetic variants of ERAP1 to downregulate

MHC class I antigen processing
Immune evasion [93]

Hepatitis B Virus
(HBV)

hsa-miRNA-548ah HDAC4
Promotes miRNA-548ah expression,

downregulating HDAC4 to reduce histone
interactions with viral cccDNA

Viral replication; viral
transcription [86]

HBV-miR-3 SOCS5

Upregulates the JAK/STAT pathway and ISGs in
hepatocytes; exosomal HBV-miR-3 triggers

macrophage polarization to M1 and promotes
EGFR to increase IL-6 secretion.

Innate immune
activation;

maintenance of chronic
infection

[71]

hsa-miR-192-3p ZNF143
Upregulates miR-192-3p in hepatocytes to

downregulate ZNF143/Akt/mTOR signaling,
enhancing viral replication

Viral transcription;
viral replication [43]
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Figure 2. Biogenesis of miRNA during viral infection and possible effects. miRNA may be encoded
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the viral genome, mRNA, or be packaged in an exosome for export to other cells. The binding site of
miRNA at the 3′ or 5′ UTR of its mRNA target may alter stability of mRNA or inhibit translation.

6. miRNA Regulation of the Antiviral Host Response

Viral pathogens manipulate host miRNA for a reason: they are master regulators of
immunity. Host miRNA may target viral gene expression directly or indirectly to prevent
viral replication [72,104]. Binding to the 3′ NTR of an RNA viral genome can inhibit
translation and, thus, replication in some cases [67]. They are involved in the intracellular
antiviral response upon infection, including the regulation of pathways for interferon
production or transcription of interferon-stimulated genes (ISGs) [105]. miRNAs play a role
in immune cell activation, effector functions, and memory development, as well as antigen
presentation of infected cells [106–109]. They may mediate the susceptibility of host cells
to infection through the regulation of endocytic or secretory pathways [106,110,111]. In
addition, host cells have defenses against viral miRNAs [112]. Table 3 provides a summary
of antiviral miRNAs, their targets, and their role in viral infection.

6.1. miRNA in the Intracellular Antiviral Response

Cells have many mechanisms in place to guard against viral pathogens. When in-
fection occurs, cells display different miRNA profiles compared to healthy or resistant
cells [113,114]. While some miRNAs may be manipulated by the virus for pro-viral func-
tions, others have antiviral effects [43,72,115].

Host miRNAs may target viral genes directly to downregulate expression. For instance,
hsa-miR-3145 has been shown to silence the viral PB1 gene in H5N1, H1N1, and H3N2
subtypes of Influenza A Virus (IAV) [72]. The miRNA-mediated downregulation of the PB1
protein prevents effective viral transcription and replication in A549 cells [72]. Type I IFN
can upregulate hsa-miR-1307 during H1N1 infection of A549 cells to inhibit the expression
of its target, the viral NS1 gene [72]. NS1 protein has been implicated in creating a favorable
environment for viral replication through G0/G1 cell cycle arrest of infected cells [72]. By
downregulating NS1, miR-1307-3p is reported to be an effective inhibitor of IAV replica-
tion [72]. Similarly, hsa-miR-150-5p targets the nsp10-coding strand in the SARS-CoV-2
genome [10]. The nsp10 gene product is important in facilitating viral replication and im-
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mune evasion [10]. As seen in Table 1, hsa-miR-150-5p downregulation in moderate–severe
patients during SARS-CoV-2 infection may have pro-viral consequences [10].

Host miRNA may impair viral infection by interfering with viral entry. For example,
during KSHV infection of human endothelial cells (HMVEC-d), hsa-miR-36 is upregulated
shortly after infection and targets IFITM1, an interferon-induced transmembrane protein
upregulated by KSHV that helps facilitate viral entry [25]. In this case, cells directly combat
manipulation by the virus. During SARS-CoV-2 infection, resistant cell lines have higher
expression of several miRNAs that target host cell receptor proteins involved in viral entry
when compared to susceptible cell lines [113]. This includes ACE2, predicted to be targeted
by miR-9-5p and miR-218-5p, as well as TMPRSS2 targeted by let-7d-5p, miR-494-3p,
miR-382-3p, let-7e-5p, miR-181c-5p, and miR-452-5p [113]. During SARS-CoV-2 infection,
hsa-miR-1827 and hsa-miR-1277-5p are predicted to target proteins involved in viral entry
and antigen presentation of the viral spike protein in host cells [106]. A miRNA implicated
in HCV viral entry is miR-182, which targets a tight junction protein CLDN1 that aids in
the internalization of the virus [116]. mir-182 expression in infected Huh7 cells decreased
viral load compared to mir-155, a known inhibitor of CLDN1 that contrastingly increased
viral load [116].

Host cells also have methods to contend with virally encoded miRNA. Recent evidence
suggests that some host circular RNAs act as sponges or decoys to prevent the binding of
viral miRNAs to their targets [112,117]. For instance, hsa_circ_0001400 is induced during
KSHV infection of HUVEC cells [112]. This circ-RNA is predicted to have a binding
site for KSHV-encoded miR-K12-10b and was shown to decrease the expression of viral
RTA and LANA genes [112]. However, this effect may be due to interactions between
the circ-RNA and human mRNA encoding transcription factors involved in chromatin
modification instead [112]. Host cells can alternatively regulate their own miRNA to further
antiviral cellular functions. During IAV infection of A549 cells, the intronic circ-RNA AIVR
is upregulated and functions as a miRNA sponge in the cytoplasm that sequesters mir-
330-3p [117]. mir-330-3p downregulates CREBBP, a protein involved in enhancing IFN-β
production [117]. The circ-RNA AIVR downregulates mir-330-3p activity to increase the
expression of this antiviral factor [117].

miRNAs can be released via exocytosis and exert antiviral effects in other cells. Dur-
ing HIV infection, intestinal epithelial cell TLR3 activation can induce the production of
miRNAs that can restrict HIV [111]. This includes miR-17 and miR-20, which downregulate
the expression of p300/CBP-associated factor (PCAF), an HIV protein cofactor [111]. In
addition, miR-28 targets the HIV transcript, and miR-29 family members interfere with
HIV replication [111]. The uptake of these exosomal miRNAs, along with other antiviral
elements were able to induce the production of HIV restriction factors in macrophages [111].

6.2. miRNA in Cellular Signaling Pathways during Viral Infection

Cellular signaling pathways involved in the antiviral response can also be regulated
by host miRNA. The Wnt, IFN, MAPK, and NF-κB pathways have all been implicated in
antiviral responses [118]. The Wnt pathway is associated with cell survival and prolifera-
tion and is activated during Rotavirus infection (RV) [119]. hsa-miR-192 and hsa-miR-215
target the frizzled receptors, while hsa-miR-181a directly targets β-catenin (CTNNB1) in
this pathway [119]. These host miRNAs are downregulated during RV infection to promote
Wnt/β-catenin signaling and survival of infected cells [119]. However, combined overex-
pression of miR-192 and miR-215 in RV-infected Caco2 cells inhibited RV replication [119].
The Wnt pathway is also targeted and downregulated by the miR-34 family, which has
been shown to repress flavivirus replication and enhance the interferon response in infected
cells [115].

The interferon pathway is a key player in intercellular signaling and production of
antiviral effector proteins. The miR-183 cluster, consisting of miR-96, miR-182, and miR-183,
promotes IFN signaling and production, and was shown to decrease vesicular stomatitis
virus production in infected HepG2 cells [105]. Type I and III IFNs typically activate the
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JAK/STAT pathway with downstream activation of STAT1, a transcription factor regulating
ISGs, but miR-183 can upregulate STAT1 mRNA without immune stimulation [105]. miR-
183 also downregulates PP2A and TRIM27, two repressors of IRF3 activation, to increase
Type I and III IFN production [105]. Influenza A virus has been shown to downregulate
the miR-30 family due to its antiviral effects [120]. miR-30 family members downregulate
SOCS1 and SOCS3, inhibitors of the IFN/JAK/STAT pathway [120].

The p38 MAPK pathway can be activated by many stimuli, including signaling via
cytokines or viral recognition [104]. This pathway is upregulated in IAV infection, but
suppression of p38 MAPK or the downstream MK2 protein can inhibit viral replication
of IAV and Respiratory Syncytial Virus (RSV) [104]. miR-124a, miR-744, and miR-24
have broad antiviral effects against IAV and RSV, including downregulation of MK2 and
decreased activation of p38 MAPK [104]. During coxsackievirus (CVB3) infection of HeLa
cells, miR-21 was shown to be upregulated, resulting in downregulation of its target
MAP2K3 and suppression of the p38 MAPK signaling pathway [110]. This inhibited viral
progeny release and decreased apoptosis [110].

The NF-κB pathway has many roles in innate and adaptive immunity [118]. During
Human Cytomegalovirus (HCMV) infection of neural precursor cells (NPCs), mir-221 is
upregulated [121]. mir-221 directly targets and downregulates SOCS1, an inhibitor of
cytokine signaling [121]. This promotes the phosphorylation and activation of NF-κB as
well as the Type I IFN signaling pathway to increase inflammation and decrease HCMV
replication [121].

6.3. miRNA in Immune Cell Response to Viral Pathogens

The signaling molecules released by infected cells can be regulated by miRNA and
may recruit immune cells. miRNA may, in turn, regulate immune cell effector functions
to fight viral infection. In pNK cells, miR-362-5p is upregulated and targets CYLD, an
inhibitor of NF-κB signaling [122]. miR-362-5p upregulation of the NF-κB pathway resulted
in enhanced effector functions of NK cells [122]. In MCMV infection of mice, cytokines can
upregulate miR-155 in NK cells and are required for effective NK cell expansion [107]. miR-
155 targeted Noxa and SOCS1 in these infected NK cells [107]. In CD8+ T cells, miR-155 is
expressed highly in effector cells and is upregulated to a lesser extent in memory cells when
compared to naïve counterparts [108]. Like NK cells, miR-155 targeted SOCS1 and was
needed for robust expansion and cytokine signaling of CD8+ T cells during Lymphocytic
Choriomeningitis (LCMV) infection of mice [108]. During Vesicular Stomatitis Virus (VSV)
infection of mice, miR-155 was needed for activation and proliferation of CD4+ T helper
cells as well as IL-2 and IFN-γ production [109]. miR-155 activity in CD4+ cells was also
needed for activation of B cells for antibody production [109].

During HIV infection, IL-1β-induced miR-103/107 expression in macrophages down-
regulates CCR5 and prevents viral entry in these cells [114]. miR-103 is upregulated in CD4+
T cells in elite controllers of HIV, which may help to explain how these individuals maintain
undetectable viral load during infection [114]. Other miRNAs have been implicated in
effector functions of immune cells, but have not yet been characterized in the context of
viral infection [60,123–128].

6.4. Considerations

Antiviral responses are not limited to immune cells. Most cells have internal defenses
such as those described above that assist in the immune response. Understanding the role
of miRNA in these processes and signaling pathways is complicated by the cell-specific
expression and effects of miRNA. Variations between cell types can make it difficult to
determine the practical applicability of in vitro research to the human body. In addition,
some miRNAs can be released via exocytosis, but not all. miRNAs are not randomly
incorporated into exosomes, though the sorting process is still under investigation [129–131].
Determining which miRNAs can be released via exocytosis is crucial for ascertaining
potential effects. Furthermore, the same miRNA may exert antiviral effects against one
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virus but serve as pro-viral for another. For example, the IFITM1 protein can enhance the
viral replication of KSHV, Epstein–Barr Virus (EBV), and Herpes Simplex Virus 2 (HSV-2)
but is critical in preventing the viral entry of many RNA viruses [25].

Table 3. Summary of antiviral miRNAs involved in infection by viruses IAV, SARS-CoV-2, HIV-1,
HCV, HCMV, KSHV, RSV, VSV, and CVB3. The hsa-miRs are encoded by the human host. Targets are
cellular protein transcripts unless otherwise stated.

Virus Name miRNA Target(s) Antiviral Effect Viral Significance Ref.

Influenza A Virus (IAV)

hsa-miR-3145 Viral PB1 gene Downregulates viral PB1 protein
expression Inhibits viral replication [72]

hsa-miR-1307 Viral NS1 gene Prevents the induction of cell
cycle arrest

Prevents a favorable
environment for the virus [72]

hsa-miR-24,
hsa-miR-124a;
hsa-miR-744

MAPK14; Myc Suppress downstream p38 MAPK
expression and activation Inhibit viral replication [104]

Severe Acute
Respiratory

Syndrome-related
Coronavirus

(SARS-CoV-2)

hsa-miR-150-5p Viral nsp10 gene
Downregulates the activation of

downstream elements
nsp14 and nsp16

Decreases translation
efficiency, immune

evasion, and viral replication
[10]

hsa-miR-9-5p and
hsa-miR-218-5p ACE2 Downregulate the host cell

receptor for the virus Prevent viral entry [113]

hsa-let-7d-5p,
hsa-miR-494-3p,
hsa-miR-382-3p,

hsa-let-7e-5p,
hsa-miR-181c-5p, and

hsa-miR-452-5p

TMPRSS2 Downregulate the host cell
receptor for the virus Prevent viral entry [113]

hsa-miR-1827 CTSV Downregulates the host protein that
regulates virus entry Prevents viral entry [106]

hsa-miR-1277-5p CANX Downregulates the host protein that
stabilizes S protein for folding Antigen presentation [106]

Human
Immunodeficiency Virus 1

(HIV-1)

hsa-miR-17,
hsa-miR-20

PCAF Downregulate cellular cofactor of the
HIV Tat protein

Prevent viral gene
expression [111]

hsa-miR-28,
hsa-miR-29a

HIV
mRNA

Downregulate viral protein
production Prevent viral replication [111]

Hepatitis C Virus (HCV) hsa-miR-182 CLDN1
Downregulates the host protein

involved in the internalization of the
virus

Prevents viral entry [116]

Human
Cytomegalovirus (HCMV) hsa-mir-221 SOCS1 Downregulates the inhibitor of NF-κB

phosphorylation and activation
Promotes cytokine

signaling [121]

Kaposi’s
sarcoma-associated

herpesvirus
(KSHV)

hsa-miR-36 IFITM1 Downregulates cellular
transmembrane protein Prevents viral entry [25]

Respiratory
Syncytial Virus

(RSV)

hsa-miR-24,
hsa-miR-124a;
hsa-miR-744

MAPK14; Myc Suppress downstream p38 MAPK
expression and activation Inhibit viral replication [104]

Vesicular
Stomatitis Virus (VSV) hsa-miR-183 cluster PP2A, TRIM27;

STAT1

Downregulate negative regulators of
IRF3 phosphorylation;

upregulate STAT1

Promotes interferon
production [105]

Coxsackievirus (CVB3) hsa-miR-21 MAP2K3 Suppresses the P38 MAPK
signaling pathway Inhibits viral release [110]

As previously discussed, hsa-miR-36 targets IFITM1 and was demonstrated to be
upregulated during KSHV infection and have antiviral effects against KSHV, EBV, and
HSV-2 [25]. Yet, there are no publications available on PubMed to date indicating modified
expression of miR-36 during IAV, HIV, HCV, West Nile Virus, or Dengue Virus infection.
miRNA regulation of viral processes is well studied, but knowledge of the mechanisms by
which cells regulate antiviral miRNA in response to specific viruses is limited. The antiviral
functions of miRNAs during infection are depicted in Figure 3.
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7. miRNA Diagnostics and Therapeutics Targeting Viral Pathogens
7.1. miRNA Diagnostics

Many studies have investigated the modulation of miRNA profiles during viral infec-
tions and have indicated possible biomarkers for diagnostics [132–135]. The principle of
using miRNAs as diagnostics is based on the circulating levels of miRNAs in biological
fluids. Current studies suggest that the expression of circulating miRNA can indicate
the severity of viral infections such as SARS-CoV-2 [10,136]. In addition, miRNA profiles
have the potential to predict health consequences related to viral infection. For example,
levels of circulatory EBV miRNAs may predict nasopharyngeal carcinoma and a plasma
miRNA panel could be utilized to screen for Hepatitis B Virus (HBV)-related hepatocellular
carcinoma [137,138]. miRNAs may also be used to track disease progression and predict
treatment outcomes using agents that do not target miRNA directly [139–142].

7.2. miRNA-Based Therapeutics

Because of its important role in the regulation of viral infection, miRNA has remarkable
potential for antiviral therapeutics. Therapies could function by mimicking antiviral
miRNA or antagonizing pro-viral miRNA [19,25,143,144]. The HCV drug miravirsen was
the first antimiR-based agent administered to patients and is currently undergoing phase
2 clinical trials [19,145]. It is an antisense oligonucleotide (ASO) that targets miR-122 and
has been shown to reduce HCV RNA levels in a dose-dependent and prolonged manner in
a phase 2 clinical trial [145]. There was also no evidence of dose-limiting toxicity, and no
patients in the trial discontinued treatment due to adverse events [145]. A different study
indicates that miravirsen can effectively be used alone against HCV in vitro, including
variants resistant to direct-acting antivirals, and has additive antiviral effects when used
in combination with current NS3, NS5B, and NS5A inhibitors [146]. RG-101 was another
antimiR targeting miR-122 shown to decrease HCV RNA levels [147,148]. However, this
clinical trial was stopped due to elevated bilirubin levels in the blood [147,148].

There are current studies investigating the antiviral potential of other miRNAs related
to HCV infection, as well as HSV, SARS-CoV-2, IAV, HIV, and other viruses that have not
yet reached clinical trials [10,25,94,143,149–155]. Future antiviral miRNA-based therapies
may include miRNA mimics, which have been used successfully in clinical trials against
cancer but have not reached clinical trials in antiviral therapy [148]. Furthermore, artificial
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miRNA sponges and miRNA masking ASOs have been proposed as possible methods to
sequester miRNA or mask the binding site of miRNA on its target, respectively [148].

In addition to therapies based on human miRNA, there are some studies investigating
the use of plant miRNA for antiviral therapeutics. Treatment with honeysuckle extract
has been shown to increase miRNA let-7a levels during Enterovirus infection leading to
a decrease viral replication in vitro and in mice [156]. The honeysuckle-encoded atypical
microRNA2911 has been studied in the context of IAV and SARS-CoV-2 infection and
has predicted binding sites in both viral genomes [157–159]. It was shown to decrease
viral replication against IAV H1N1, H5N1, and H7N9 in mice [158]. SARS-CoV-2 patients
taking routine antiviral therapy given a honeysuckle decoction daily had absorbed miR2911
detected in serum, decreased viral replication, and were more likely to test negative seven
days after diagnosis compared to infected individuals given routine antiviral therapy and a
Traditional Chinese Medicine (TCM) mixture without miR2911 [157]. However, the authors
do not disclose the ingredients of the TCM mixture, nor do they include a patient group
given antiviral therapy without honeysuckle decoction or TCM [157]. A later study found
that patients with a SIDT1 polymorphism had decreased absorption of miR-2911, and
the honeysuckle decoction failed to inhibit SARS-CoV-2 replication [159]. This does not
contradict the previous findings concerning the antiviral effects of miR-2911. Instead, it
underscores an important consideration when evaluating oral treatments and absorption
of dietary miRNAs.

Chimeric Antigen Receptor (CAR)-T cell therapy has shown promise in treating
cancers and has recently been studied as a potential therapy for autoimmune diseases
and viral infections [160]. This form of immunotherapy uses human T cells engineered
to produce CARs with the ability to bind to specific proteins and target cancerous or
diseased cells [161]. The application of CAR-T cells in infectious diseases is currently
under investigation, with promising results in treating HBV, HCV, HCMV, HIV, and SARS-
CoV-2 [160]. In addition, the chimeric autoantibody receptor (CAAR) T cells have been
used to treat autoimmune diseases by targeting B cells with specificity for autoantigen
receptors [160]. Since miRNAs regulate cellular activities without complete gene knock-out,
they can be used to fine-tune the design of CAR-T cells and help mitigate their limitations.
For example, miR-155 upregulation in CAR-T cells has been shown to promote T cell
function, survival, and infiltration [161–163]. Similarly, the upregulation of miR-H18
in CAR-T cells has been shown to enhance cytotoxic activity [164]; miR-17-19 has been
used to promote the persistence of effector T cells [161]; and the overexpression of miR-
27a-5p may enhance the infiltration of tissues [163]. Furthermore, the overexpression of
miR-143 promotes memory T cell formation for enhanced specificity and reduced toxicity
in CAR-T therapy [161]. This research reveals miRNA as a crucial tool for improving
current therapeutics.

7.3. Challenges and Future Considerations

Several miRNAs have been implicated in the regulation of viral infection. However,
in many cases, their exact mechanisms have yet to be elucidated [96,98]. Computational ap-
proaches may be used to predict miRNA targets but can have high false-positive rates [165].
Novel algorithms continue to be developed in efforts to improve these predictions [165–171].
Predicting miRNA binding sites can cut down on research costs by narrowing potential tar-
gets, but they need to be experimentally validated using in vitro and in vivo models [165].

Different strains of viruses can cause similar changes in miRNA levels, with some
variations partly due to minor changes to their antigenicity and replication. For example,
the Mayinga, Makona, and Reston strains of the Ebola virus share 82% early-phase miRNAs
and 90% late-phase miRNAs, and only seemed to selectively modulate one out of five
miRNAs [172]. Another study found that only 5 out of 25 differentially expressed miRNAs
were similarly modulated across four Lyssavirus strains [173]. A viral protein from Epstein–
Barr Virus (EBV) has also been shown to distinctly modulate the expression of 3 miRNAs
between M81 and B95.8 strains [174]. An in silico study on SARS-CoV-2 found redundancy
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in predicted pre-miRNAs encoded in the viral genomes of different strains, with six unique
pre-miRNAs between the Reference (Wuhan), Delta, and Omicron strains [175]. These
subtle variations could be used to explain differences in the pathology of different strains
or to identify individual strains for diagnostic purposes. Alternatively, targeting miRNAs
shared across multiple strains could be beneficial when developing therapeutics with
broad applications.

miRNA-based diagnostics rely on characteristic miRNA profiles for given diseases [19].
However, miRNA profiles naturally show variation between individuals, and not every
virus causes a characteristic upregulation of a tissue-specific miRNA such as miR-122 in
HCV [14,64]. Diagnostic tools scanning for multiple dysregulated miRNAs are currently
being developed for non-viral diseases, but similar panels could be used for viral infec-
tions [19]. Testing for virally encoded miRNAs may be even more effective in diagnosing
viral infections than running an endogenous miRNA panel in some cases [137]. However,
not all viruses are known to encode miRNAs, and some predicted v-miRs are still under
investigation [13,68].

miRNA-based therapeutics have the capacity to combat viral infections. However, they
face three main challenges: delivery, specificity, and tolerance [148]. For miRNA therapeu-
tics to exert any effect, they must remain stable and be delivered efficiently to the desired
cell type [148]. Extracellular miRNAs have a relatively short half-life in mouse serum
ranging from ~1.5 h to more than 13 h depending on the sequence [176]. Because miRNA is
naturally occurring in cells, there are degradation mechanisms already in place [148]. This
can be beneficial when considering toxicity, but chemical modifications may be needed to
extend the half-life of miRNA-based therapeutics [148,176]. RNA is negatively charged and
does not passively diffuse across cell membranes, so delivery methods must facilitate cell
entry [148]. Exosomes, liposomes, antibody conjugates, viral vectors, and various nanopar-
ticles have been studied as delivery vehicles for RNA-based therapeutics [177]. Exosomes
are particularly enticing as delivery vehicles of miRNA because they are natural, can protect
the contents from enzymatic degradation, fuse directly with the cell membrane, are unlikely
to evoke an immune response, can contain multiple compounds for combined therapeutic
effects, and could be modified to have enhanced uptake by targeted cell types [148].

Some miRNAs can bind to multiple targets with similar seed sequences [148]. There-
fore, specificity is essential in preventing off-target effects. Targeting genes unique to the
virus using miRNA-like sequences may allow for direct and specific inhibition of viral
gene expression. Furthermore, researchers may consider adding an element to control
for tissue specificity. For example, the injection of artificial pri-miRNA transcripts based
on human pri-miR-31 with liver-specific promotors targeted the X gene sequence in HBV
circular DNA and was shown to decrease viral replication in mice [178]. Virus-specific
considerations also need to be accounted for. For example, treatment of HBV infection is
made difficult by the persistence of viral covalently closed circular DNA (cccDNA), which
was combated by targeting the open reading frame (ORF) encoding the HBx protein that
maintains the cccDNA [178,179]. On the other hand, some miRNA-based therapies may be
enhanced by less specificity, such as a miRNA sponge that could sequester multiple types
of pro-viral miRNA [117,180].

For miRNA-based therapies to be safe and effective, they must be tolerated well by
the body [148]. This includes using safe delivery vehicles that do not mount an immune
response as well as limiting off-target toxicity [148]. In addition, the miRNA therapeutic
itself should not have cytotoxic effects or induce immune-related adverse events [148].
Immunogenicity can be reduced by avoiding GU-rich sequences which are recognized by
TLRs, using dsRNA rather than ssRNA to reduce the likelihood of an immune response,
using sequences less than 21 bp for ssRNA to minimize activation of TLRs, and adding mod-
ifications to prevent interactions with proteins such as TLRs or degrading enzymes [148].
Any chemical modifications added to enhance miRNA-based therapeutics should emulate
natural RNA to prevent increased risk of off-target effects [177].
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In miRNA-based therapeutics, researchers must be wary of varying effects in different
cell types, particularly when manipulating levels of miRNA with multiple targets [148].
This is highly relevant when considering possible side effects. For example, miravirsen
targets miR-122 in HCV patients and lowers HCV replication but can also lower cholesterol
levels [145]. However, less specificity may not be a disadvantage in some cases and may
lead to miRNA-based therapies with broad antiviral effects that have the potential to treat
multiple viruses [25,104]. Further advances in miRNA therapeutics should aim to improve
delivery, stability, tolerability, and specificity for appropriately targeted and prolonged
effects that minimize toxicity and do not evoke an immunogenic response [148,155]. Nu-
tritional uptake of miRNAs provides another avenue for immune modulation and may
be of interest to researchers investigating therapeutics or possible active ingredients in
homeopathic remedies [158,181]. In addition, diagnostic and therapeutic research should
consider population differences in miRNA expression related to immunity and the immune
response to viral infections [64]. This may provide insight into how to make therapeutics
based on resistant populations or avoid sampling biases in diagnostic devices [182,183].

8. The miRNA Market Landscape

With several potential applications of miRNAs, the global miRNA market size has
been increasing at a rapid pace. In 2022, it was valued at around 1230.3 million USD and
is expected to grow at a CAGR (compound annual growth rate) of 19.9% from 2022 to
2032 [184]. Among the various subspecialties, oncology has the largest market share at
33%, followed by infectious diseases [185]. In terms of applications, the disease diagnostics
segment accounted for the largest market share of 54% in 2019. miRNAs are among the
most promising biopharmaceutical candidates making their way into the commercial world
for the development of future medications [186]. Examples of a few companies that hold the
market share for miRNA applications are Qiagen, Thermo Fisher Scientific, PerkinElmer,
Illumina, Takara Bio, Mirna Therapeutics, miRagen Therapeutics, Regulus Therapeutics,
and Santaris Pharma [155].

9. Conclusions

This review offered an overview of miRNA involvement in immune processes related
to viral infection as well as significant advancements and potential applications of miRNA
in the field of viral diagnostics and therapeutics. The differential expression of miRNA
profiles can act as potential biomarkers for future diagnostic purposes, to predict the
severity of viral infections, or to assess adverse health effects associated with viral diseases.
miRNA-based diagnostic tools are useful in detecting and measuring specific miRNAs
indicative of viral infections. The novel approach of using miRNA mimics to enhance
antiviral activity or antagonists to inhibit pro-viral miRNAs is still under investigation but
is showing promise. Plant miRNA has also been studied for use in viral treatments but
requires further clinical experiments.

Several challenges, as outlined above, need to be addressed to fully harness the
potential of miRNA in medicine. Delivery methods must be optimized to ensure efficient
and well-targeted delivery of miRNA to the cells of interest. Specificity is key for avoiding
off-target effects, and methods for enhancing tissue specificity and targeting viral genes
are still being explored. The cell-specific nature of miRNA expression adds complexity to
this process as well. Additionally, miRNA-based therapeutics should be well tolerated by
the body, and efforts must be made to overcome cytotoxicity and possible immune-related
adverse effects. Treatment methods should consider the pros and cons of the administration
route and absorption of miRNA. Researchers need to be conscious of miRNA’s ability to
act as an antiviral or pro-viral element when considering therapeutic uses. Population
variations in miRNA expression levels warrant further study as they may shed light on
differences in immunity and treatment viability.

miRNA technology offers an exciting new approach for future diagnostics and ther-
apeutics against viral infections. Further investigations should attempt to decipher the
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potential effects of virally encoded miRNAs on the host system. Endogenous miRNAs with
antiviral properties should continue to be evaluated for their therapeutic potential. The
journey toward refining recently discovered techniques to address existing challenges and
ensure their safety, efficacy, and clinical applicability is a long one. Continued advance-
ments in this field show great promise for the future of miRNA-based medicine.
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