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Simple Summary: A phospholipid membrane covers all living cells, forming an impenetrable barrier
circumvented by solute transporters in the cell membrane. These proteins comprise energy-requiring
systems, called active transporters, and those not requiring energy, called passive transporters. The
major facilitator superfamily harbors thousands of transport proteins found in all living organisms,
from bacteria to humans. Alignments of multiple amino acid sequences uncovered highly conserved
sequence motifs are known to play important functional roles. One of these conserved sequences,
the antiporter sequence motif or motif C, participates in the molecular mechanism of antimicrobial
efflux in cancer cells and bacterial pathogens. The biological implications of the antiporter motif’s
functional roles and usefulness are considered here.

Abstract: The biological membrane surrounding all living cells forms a hydrophobic barrier to
the passage of biologically important molecules. Integral membrane proteins called transporters
circumvent the cellular barrier and transport molecules across the cell membrane. These molecular
transporters enable the uptake and exit of molecules for cell growth and homeostasis. One important
collection of related transporters is the major facilitator superfamily (MFS). This large group of
proteins harbors passive and secondary active transporters. The transporters of the MFS consist of
uniporters, symporters, and antiporters, which share similarities in structures, predicted mechanism
of transport, and highly conserved amino acid sequence motifs. In particular, the antiporter motif,
called motif C, is found primarily in antiporters of the MFS. The antiporter motif’s molecular elements
mediate conformational changes and other molecular physiological roles during substrate transport
across the membrane. This review article traces the history of the antiporter motif. It summarizes the
physiological evidence reported that supports these biological roles.

Keywords: antiporter motif; motif C; major facilitator superfamily; transporter; antimicrobial
resistance; multidrug efflux; bacteria; cancer; drug resistance

1. Introduction

Bacterial physiology requires the availability of macromolecules and ions, as well as
their precise balance concerning the external environment. The cell wall peptidoglycan pro-
vides the necessary stability to the cellular structure. In contrast, the cell membrane and its
constituent proteins are critical in transporting solutes in and out of the cell in a coordinated
manner. Although the transport process involves handling solutes as a major function, the
implications of this function are more than the mere movements of substrates, as these
processes are necessary for various other activities of bacteria involving metabolism, colo-
nization, communication, virulence, and community living [1,2]. Transporter proteins are a
large group of proteins that play critical roles in the physiology of bacteria by transporting
essential macromolecules into the cell and extruding toxic metabolites, chemicals, and
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xenobiotics, maintaining cell homeostasis and helping bacteria survive in a wide range of
environmental conditions. These proteins are embedded in the outer membrane of bacteria.
They are a transportation conduit and an important means of communication with the
external environment.

Nearly 5–10% of prokaryotic genomes encode membrane proteins, most of which
transport water-soluble substrates for cell growth and mediate the expulsion of growth-
inhibitory molecules [3]. The transporter proteins differ widely regarding their energization
mechanisms, substrate specificity, and structure. For example, passive transporters facilitate
the simple diffusion of substances, such as simple carbohydrates and amino acids, down a
substrate gradient (downhill).

In contrast, active transporters transport the substrates against the concentration
gradient by an energy-driven process [3,4]. The active transportation process creates an
ionic gradient, resulting in a potential difference across the membrane (electro-motive force),
which energizes several other cellular operations across the membrane. The path-breaking
discovery that homologous transporter proteins of common evolutionary origin transport
sugars in prokaryotes and eukaryotes led to the discovery of numerous homologous
proteins across domains and the study of their structure–function relationships [5,6]. These
proteins were subsequently grouped into several categories based on the substrate profiles,
predicted topology, and energy coupling mechanisms [7–9]. Whole-genome sequencing
projects have enabled the identification and functional elucidation of novel transporter
proteins. The advances in in silico predictive modeling have immensely boosted the efforts
toward understanding the structure–function relationships of transporter proteins and
the identification of novel substrates as well as inhibitors for potential applications in
human therapeutics.

2. Transporter Biology

The transport proteins in living cells employ several different mechanisms to perform
the activity and vary widely concerning their structures, types, and range of substrates,
as well as the sources of energy that drive the transport process across the biological
membrane [8,10]. The bacterial outer cell membrane functions as a protective barrier that
selectively allows the movement of solutes across it into the periplasmic area. Since most
solutes cannot cross the membrane barrier, specific transporters move substrates into and
out of the bacterial cell. The simplest type of solute movement across the cell membrane
occurs by passive diffusion of molecules such as certain gases (CO2 and O2) and water from
a higher concentration to a lower concentration (downhill) without the involvement of
transporter proteins. On the other hand, facilitated diffusion is enabled by carrier proteins
that bind solutes and move them across the membrane through conformational changes. In
contrast, channel proteins facilitate the movement of specific molecules through open pores
formed by them [11]. As in passive diffusion, facilitated diffusion is not energy-coupled,
although the concentration and the electrochemical gradient determine the direction of the
movement of the substrate, and is always downhill (Figure 1).

Unlike passive and facilitated diffusion, active transporters, by their ability to transport
substrates against concentration (uphill), create solute gradients across the membrane,
and this activity is coupled with diverse cellular energy sources. Two types of active
transporters are based on the energy sources that drive the transport process. First, primary
active transporters, known as ATP-Binding Cassette (ABC) transporter proteins, bind and
hydrolyze ATP to drive the active transport of diverse substrates, mostly hydrophilic, such
as sugars, amino acids, peptides, lipids, ions, xenobiotics, and drugs into or out of the
cell, and also play important roles in the virulence of many pathogenic bacteria [12,13].
Examples of ABC transporters include the vitamin B12 transporter, BtuCD, and the maltose
transporter (MalFGK2) from E. coli [14,15], the molybdate/tungstate transporter, ModBC
from Archaeoglobus fulgidus, and the zinc transporter, ZnuABC, of Bacillus subtilis [16]. On
the other hand, efflux pumps of ABC-type transport drugs and toxic substances out of
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the cell. Examples include the multidrug transporter Sav1866 from S. aureus, BmrA of
B. subtilis, LmrP of Lactococcus lactis, and MacB from Acinetobacter baumannii [17–19].

The ABC transporters that pump ions across the cell membrane create an ionic gradient
that the secondary active transporters utilize to energize their uphill transport activities.
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Figure 1. Types of membrane transporters that enable the movement of ions and solutes across the
membrane into the cytoplasmic area and vice versa. Simple diffusion of gases and ions across the
membrane facilitated diffusion and movement through ion channels (ungated or gated) that occur
down the concentration gradient and are not coupled with energy sources. Both primary active
and secondary active transporters move the solutes against the concentration gradient. They are
energized either by the hydrolysis of ATP (primary active) or by the movement of ions, such as
protons or sodium, driven by the electrochemical gradient across the membrane (secondary active).
In the case of secondary active transport, the energetic driving force of one solute moving down its
electrochemical gradient is coupled to the movement of the other solute moving up its concentration
gradient. Created with BioRender.com.

3. Superfamilies of Transporters

Many transport proteins have been identified over the years. These solute trans-
porters have diverse structures and functions. However, significant degrees of sequence
identities and homologies are shared. Thus, a need for classifying these proteins akin to
the Enzyme Commission (EC) system for enzymes, based on certain characteristics that
distinguish them into distinct groups, was realized. This effort led to the creation of the
transporter classification (TC) system (http://www.tcdb.org/ accessed on 24 September
2023), a curated database in which transporter proteins are systematically grouped based
on specific characteristics, including the mode of transport, energy coupling mechanisms,
sequence homology/protein phylogeny, topology, and substrate specificity [20–23]. The TC
system follows the International Union of Biochemistry and Molecular Biology (IUBMB),
an approved method of classification and nomenclature for transport proteins. Proteins
originating from a common ancestor are homologous, share similar structures and func-
tions, and are grouped into families or subfamilies. Accordingly, the database has over
1800 families of transport proteins grouped under distinct transporter classes, namely
channels/pores, electrochemical potential-driven transporters, primary active transporters,
group translocators, transmembrane electron carriers, auxiliary transport proteins, and
transport protein families of unknown classification [23,24].

The secondary active transport proteins, i.e., symporters and antiporters, are grouped
under the Electrochemical Potential-driven Transporters category and are distinct from the
uniporters, which move solutes across the membrane down their gradients. The antiporter

http://www.tcdb.org/
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proteins transport two molecules simultaneously in opposite directions, energized by
the proton-motive force gradient of H+ or Na+ across the plasma membrane, and are
grouped under four superfamilies: (i) the major facilitator superfamily (MFS), (ii) the
resistance-nodulation-cell division (RND) superfamily, (iii) the drug/metabolite transporter
(DMT) superfamily, and (iv) the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP)
superfamily [25] (Figure 2).

The RND transporters are tripartite structures, forming multi-component complexes
with an outer membrane channel and a periplasmic adaptor protein [26]. The multidrug and
toxin extrusion (MATE) family of antimicrobial efflux pumps, which use both H+ and Na+

as energy sources, belong to the MOP superfamily [27,28]. Some of the well-characterized
drug/Na+ antiporters include YdhE of Escherichia coli, NorM of Vibrio parahaemolyticus [29],
NorM and VcmA of Vibrio cholerae [29,30], AbeM of Acinetobacter baumannii [31], and BexA
of Bacteroides thetaiotaomicron [32]. The drug/H+ antiporters, such as the QacE and AbeS of
Acinetobacter baumannii; QacC and SepA of S. aureus; EmrE, YnfA and MdtJ of E. coli and
KpnEF of Klebsiella pneumoniae, belonging to the small multidrug resistance (SMR) family,
are placed under the DMT superfamily [33–35].
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Figure 2. Bacterial efflux pumps of antiport type are grouped under four secondary active transporter
superfamilies. The transport of substrates is coupled with H+ or Na+ ions. The representative MFS
protein shown is the crystal structure of MdfA, a multidrug efflux pump (PBD code, 4ZOW) from
E. coli [36]. The MOP protein shown is a high-resolution crystal structure using cryogenic electron
microscopy analysis of NorM, a MATE transporter bound to a Fab molecule (PBD, 7PHP) from
V. cholerae [37]. The RND transport system shown is the AcrAB-TolC crystal structure (PBD, 5V5S),
a multipartite complex from E. coli that spans the inner (AcrB) and outer (TolC) membrane and
periplasm (AcrA) [38]. The DMT crystal structure is the YddG transporter (PBD, 5I20) from the
bacterium Starkeya novella [39].

The major facilitator superfamily (MFS) is the largest group of transport proteins
widely distributed in Gram-positive and -negative bacteria, which work as secondary
active transporters of the symport and antiport type, and passive transport, like uniporters,
which undergo facilitated diffusion [40,41]. MFS proteins are typically 400–600 amino
acids long and fold into 12–14 transmembrane helices, forming two domains known as
N-terminal and C-terminal domains, each composed of six helices and joined by a flexible
cytoplasmic loop [42]. The two domains of the MFS pumps are separated by a central cavity
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involved in substrate binding. Conformation changes induced by substrate binding and
the protonation state are engaged in substrate transport using a rocker-switch alternating-
access model [36,43,44]. Some of the well-characterized drug/H+ MFS efflux pumps are
EmrD, YajR, MdfA, and SotB from E. coli; QacA [36,43–45]; and TetA(K), NorC, and LmrS
from S. aureus [46–48]. Previous cellular and molecular physiological evidence attributes
various critical roles to the MFS efflux pumps in antimicrobial resistance, host colonization,
toxin secretion, biofilm formation, and cell–cell communication involving quorum sensing
in pathogenic bacteria [49–51].

4. Conservation of Amino Acid Sequence Motifs

Early studies of the MFS’s deduced primary amino acid sequences revealed a large
degree of shared sequence-relatedness between its members [5]. These reports further
demonstrated shared homology between transporters belonging to the MFS [52], suggest-
ing that the MFS proteins have similarities in structure, ancestral origin, and transport
mechanisms [53]. Multiple amino acid sequence alignments performed on proteins of the
MFS revealed the evolutionary conservation of several signature sequence motifs [54–56].
Some of these conserved sequence motifs were shared among most MFS members or
functionally related transporter subsets [9].

Motif A, characterized by the conserved sequence “Gly-(X)3-Asp-Arg/Lys-X-Gly-Arg-
Arg/Lys”, is found in the cytoplasmically located loop between transmembrane helices
2 and 3 of virtually all transporters of the MFS [6,54], as shown in Table 1 and Figure 3.
The functional importance of this conserved loop structure has been studied extensively
in a variety of transporters, such as the LacY lactose symporter of Escherichia coli [57],
the TetA(B) tetracycline efflux pump from E. coli [58], and the LmrP multidrug efflux
pump from Lactococcus lactis [59]. Residues of motif A have been shown to participate in
forming the gating structure, stabilizing the transporter structure, mediating and regulating
conformational changes during transport, fashioning the interface between two bundles,
sensing ion gradients, and forming a conformational switching system [60].
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Figure 3. Conserved amino acid sequence motifs of the MFS. Motif C, the antiporter motif, in an MFS
transporter’s fifth membrane-spanning domain. The highly conserved signature sequence is found in
MFS proteins that confer ion-substrate antiport, including proteins with 12- and 14-TM segments. The
antiporter motif is characterized by a high glycine content and a highly conserved proline residue, a
known helix-breaker. Other sequence motifs are indicated in the locations reported [9].
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Table 1. Amino acid sequence motifs in transporters of the MFS.

Motifs
Consensus Sequences * Locations Functions References

Motif A
G X3 D R/K X G R R/K

Loop between TM2 and
TM3 (Loop2–3)

Gating, transporter stability, conformation
change regulator, bundle interface stability, ion

gradient sensor, conformational switching
[6,53,60]

Motif B
L X3 R X2 q G X3 a

R X2 Q G
TM4 of sub-family 3 Proton binding and transport, energization,

conformational changes [61–63]

Motif C
G X8 G X3 G P X2 G G TM5 of antiporters

Antiport, conformational changes, permeability
barrier, ion leakage prevention, substrate

binding and specificity, molecular hinge, bundle
interface forming, substrate-binding pocket
stability, target for efflux pump inhibition,

conformational switch regulator

[60,64–66]

Motif D1
L d X t v l n v a l p

C-terminal end of TM1 in
MFS proteins with 14-TMS

Unknown, predicted to bind substrate and
mediate substrate selection [9]

Motif D2
g I g l X2 P v l P

C-terminal end of TM1 in
proteins with 12-TMS

Unknown, but postulated in substrate binding
and specificity [9]

Motif E
D X2 G X2 L

TM7 of 14-TMS MFS
proteins

Conserved Asp is predicted to bind and
transport protons [61]

Motif F
l G (X)3 G i A v l G X l TM13 of 14-TMS proteins Unknown [9]

Motif G
G P L l g TM11 of 12-TMS proteins

Evolutionary duplication of motif C, and thus
postulated to play similar functional roles during

transport
[9,61]

* Reported consensus sequences are provided. Upper- and lowercase letters represent the one-letter amino acid
residue codes reported to be greater and lower than 70% sequence identity, respectively. X represents any amino
acid. In some cases, more than one consensus sequence is presented, as reported in the literature.

A striking observation in the YajR multidrug efflux pump of E. coli showed that
sequence elements of motif A were conserved structurally in other loops throughout the
transporter, not only in the original loop between helices two and three (L2–3) but in loops
between helices five and six (L5–6), between helices eight and nine (L8–9), and between
helices 11 and 12 (L11–12) [45]. This observation points to motif A’s functional importance
throughout the transporter structure for the canonical MFS protein and potentially all
MFS transporters.

The conserved amino acid sequence of Motif B was denoted as “Arg-(X)2-Gln-Gly”
and as “Leu-(X)3-Arg-(X)2-Gln-Gly-(X)3-Gly-Gly” and was found in the middle of trans-
membrane helix 4 of the two largest subfamilies of the MFS [61], as shown in Table 1.
Because of the positively charged nature of the Arg residue in the center of a transmem-
brane helix, it was postulated to play a catalytic role in protonation and energy coupling
during symport or antiport [61]. It has been speculated that the arginine residue of motif
B in TetA(B) participates in conformational changes that alternately expose the charged
residue to the substrate-translocation channel or plays a role in proton transport and energy
transduction during transport [61–63]. Indeed, after a systematic evaluation of the residues
of transmembrane helices 4 and 5 of the TetA(B) tetracycline efflux pump, it was observed
that the conserved Arg residue at position 101 lost activity when neutralized [63].

Motif D1, denoted as “L d X t v l n v a l p”, where upper- and lowercase lettering
represents percent sequence identity greater and lower than 70%, respectively, is found
at the C-terminal end of transmembrane one in transporters with 14 helices across the
membrane [61]. In comparison, motif D2, “g I g l (X)2 P v l P”, resides in the corresponding
location, TM-1, in transporters with 12 transmembrane helices [65]. Elements of these
motifs (D1 and D2) overlap in the overall consensus sequence identified earlier as “Leu-
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Pro” in members of both 12- and 14-transmembrane helices [65]. Residues in the first
transmembrane domain of MFS sugar-proton symporter LacY were discovered to mediate
substrate selection [57]. Hence, it is predicted that residues may play a similar role in the
corresponding location of antimicrobial efflux pumps.

Another conserved sequence called motif E that is found in 14-TM-specific MFS
transporters is “Asp-(X)2-Gly-(X)2-Leu” and resides in the middle of helix seven [61]. Motif
F, denoted “l G (X)3 G i A v l G X l”, is located in the 13th transmembrane segment of the
MFS with 14 helices [61]. On the other hand, motif G, “G P L l g”, appears unique to the
MFS transporters with 12 helices and is located in helix 11 [61,65]. Interestingly, residues of
motif G seem to be present in the consensus sequence of the highly conserved sequence
motif C, also known as the antiporter motif, suggesting an evolutionary duplication and
predicting a functional role during transport [9,61,65].

5. The Antiporter Motif

Motif C, the MFS antiporter motif, “Gly-(X)8-Gly-(X)3-Gly-Pro-(X)2-Gly-Gly”, was first
reported to reside in the center of the fifth helix in transporters with 12 and 14 transmem-
brane domains in the MFS that are ion-driven antiporters [53,65], as shown in Table 1 and
Figure 3. The functional importance of the motif C consensus sequence was first evaluated
for the most highly conserved residue, Gly-147, in the tetracycline efflux pump, TetA(C),
demonstrating that only serine and alanine were acceptable substitutions [66]. All other
amino acid substitutions resulted in a complete loss of tetracycline resistance. In the same
study, it was demonstrated, using molecular mechanics analyses, that the fifth transmem-
brane helix formed a kinked structure [66]. From this systematic mutational analysis of
the most highly conserved motif C residue in helix five of TetA(C), it was concluded that
elements of the motif confer drug and proton antiport and determine the structural features
necessary to mediate changes in the orientation of the substrate binding site [66].

A structure–functional analysis of the TetA(K) tetracycline efflux pump from S. aureus
was conducted in which the remaining conserved residues of motif C were mutated,
showing reduced drug resistance in the mutants, thus establishing the importance of these
residues for antimicrobial efflux [67]. Further, because of the relative abundance of the
glycine residues in motif C, it was proposed that these residues conferred a relatively
high degree of molecular flexibility, predicting that the structure formed by the fifth helix
plays a role in conformational changes during transport. Likewise, a cysteine-scanning
mutagenesis study of the motif C residues in TetA(B) from E. coli showed they were largely
necessary for tetracycline/proton antiport activity and suggested that helix five formed
a permeability barrier to prevent unwanted ion leakage and collapse of the membrane
potential [63]. An interesting study of second-site suppression analysis of a defective
primary mutation at Gly-247 of TetA(B) showed complementary mutations that restored
resistance activity in helix five [68]. Restoring inactive mutations by compensating second-
site mutations supported the role of motif C in forming the protective permeability barrier
and conformational changes.

The conserved Gly-Pro dipeptide of the antiporter motif became important when
structure–function and molecular modeling of helix five showed a kinked structure in
TetA(C) [66]. The physiological role of the Gly-Pro dipeptide was studied in TetA(L) of
Bacillus subtilis, demonstrating that this structure was necessary for substrate binding
and preventing ion leakage [69]. The proline of the Gly-Pro was evaluated in QacA from
S. aureus, showing decreased resistance levels to antimicrobial agents [70]. The structure
formed by the residues of the Gly-Pro dipeptide became the focus of molecular dynamics
simulations and homology modeling in the VAChT vesicular acetylcholine transporter
from various eukaryotic species, ranging from fungi to humans [71]. Sequence analysis of
a pump from S. aureus, a 14-membrane spanning protein called Tet38, a tetracycline efflux
pump that also transports fatty acids, tunicamycin, and fosfomycin, was further shown to
harbor motif C [72]. In a more recent study, the glycine of the Gly-Pro dipeptide in Tet38
was altered by mutagenesis and demonstrated to lose tetracycline efflux activity [73].
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As predicted [66], the Gly-Pro residues in helix five form a kinked structure [74]. In
the latter study, the kinked membrane-embedded structure involving motif C’s helix was
flexible, exhibiting wobbling behavior and lowering the energetic barrier. As mentioned
above, in the MdfA structure, the fifth helix harboring motif C was kinked as predicted [66].
Interestingly, the TM5 helix underwent rotational twisting as the substrate translocated
through the transporter [75]. The structural dynamics involving these residues of motif
C were consistent with the notion that helix five of the transporters in the MFS line the
interface region between the molecular bundles formed by helices 1–6 and 7–12 of the
VAChT protein, a situation predicted for GlpT [76]. The flexible kinked nature of the
structure formed by motif C was studied in the CaMdr1p multidrug efflux pump from
Candida albicans, a eukaryotic microorganism, showing that these conserved residues
mediated tight helical packing [77]. Along these lines, the VAChT vesicular acetylcholine
transporter from Rattus norvegicus showed the loss of acetylcholine transport after the
conserved Gly-Pro dipeptide residues of motif C were altered by mutation [78]. These
physiological effects on substrate transport across the membrane indicate that motif C
confers a kinked intra-membrane helix and influences a flexible conformational switch
while forming a tight seal that prevents undesirable proton leakage [74,78]. In the related
vesicular monoamine VMAT2 transporter from R. norvegicus, the structure dictated by
residues of motif C formed a molecular hinge, characterized by helices five and eight
interacting with helices two and eleven converging at the bundle interface during substrate
transport [79].

Another function dictated by residues of motif C appears to be the determination of
transporter substrate specificity. The Mdt(A) multidrug efflux pump (previously denoted
as Mef214) encoded on a plasmid isolated from Lactococcus lactis showed resistance to
several structurally unrelated antimicrobial agents [80]. In the milk pathogen Lactococcus
garvieae, the Mdt(A) pump showed differences in the substrate resistance profile, such as
enhanced susceptibility to the macrolide erythromycin, in a protein variant where a valine
at 154 was altered to phenylalanine [81]. In the same study, another motif C-like sequence
in helix nine of Mdt(A) showed that Ile-296 changed to Val, in which tetracycline resistance
was reduced. Interestingly, Mdt(A) appears to harbor an ATPase domain, indicating a
departure from the energetic nature of secondary active transport to that of a primary
energetic constitution. Additional study of this transporter is needed to understand the
types of driving forces involved in mediating antimicrobial transport across the membrane.
This issue of energetics is of importance for other transporters of the MFS.

MdfA is a well-characterized MFS multidrug efflux pump from E. coli, previously
known as Cmr and CmlA [82]. Three high-resolution crystal structures were solved for the
MdfA transporter: one bound to the substrate chloramphenicol, the second structure at-
tached to deoxycholate, and the third bound to n-dodecyl-N, N-dimethylamine-N-oxide, the
latter two of which are known substrate analogs [83]. Strikingly, all three substrate-bound
structures showed the characteristic kinked transmembrane helix five closely associated
with the regions with bound ligands. In MdfA, the TM5 helix represents one of a set
of so-called rocker helices, described as participating in a series of pseudo-symmetrical
helical repeat structures involving three helices, a structural feature observed four times
in symporters of the MFS, such as GlpT [84]. Another striking observation was that the
chloramphenicol binding site in MdfA at helix one was surrounded and perhaps protected
by residues in the motif C helix, such as Val-149, Ala-150, Ala-153, and Pro-154, forming the
critical interface structure between the two bundle domains typical of the MFS transporters.
Thus, it is established that TM-5 of the MFS efflux pumps constitutes part of the interface
between the N- and C-terminal domains. This bundle-interface role for conserved residues
of the fifth membrane helix is consistent with the notion that motif C stabilizes the pump’s
bundle structure to maintain a cytoplasmic-facing configuration and prevents ion (proton
or sodium) gradient dissipation, which would otherwise deplete the energetic driving force
of secondary active transport [83].
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In another study, two crystal structure versions of the MdfA molecule were iso-
lated [85]. One of these showed the MdfA pump bound to the substrate acetylcholine. In
contrast, the other MdfA structure was attached to the efflux pump inhibitor reserpine.
Whereas the two MdfA ligand binding sites are distinct, the fifth helix containing residues
of motif C is involved and plays an important role in each situation. In the case of the
MdfA structure bound to acetylcholine, TM5 appears to form a conformation that provides
a protective function or helps to stabilize the substrate binding pocket for acetylcholine.

On the other hand, motif C seems to play a more direct role in the MdfA structure
bound to reserpine [85]. The proline residue at position 154, a component of the Gly-
Pro dipeptide of motif C, interacts closely with reserpine. The MdfA structure bound to
reserpine appears to prevent the availability of Asp-34 for the transport of acetylcholine,
shedding light on the molecular mechanism of efflux pump inhibition.

According to studies on protein crystal and X-ray diffraction, MdfA is a 12-TM trans-
porter [86]. Conversely, the nature of the fifth helix in MFS transporters with 14 TMs
remains unclear. In a recent report, however, it was shown that in a cryo-EM structure
of the S. aureus QacA efflux pump, which has 14 TMs, the fifth transmembrane helix was
kinked [86]. Previously, it was established that when Gly-143 of QacA was changed to
glutamate, Pro-144-Arg, or Gly-147-Asp, all residues that are conserved in motif C, and
antimicrobial susceptibilities were enhanced, supporting the functional role of the kinked
helix [83]. A recent structure–function study of motif C residues in helix five of the novel
sugar efflux pump, SotB from E. coli, showed that Gly-153 and Gly-157 were necessary
for arabinose transport [44]. It was postulated from these SotB mutants that motif C func-
tions in forming the substrate binding pocket and linking the transport of protons during
sugar efflux.

It should be noted that with more refined primary sequence alignment software [87],
critical elements of the motif C sequence, namely the glycines, also appear in symporters [79],
indicating that it is relevant to the physiological operation of most of the MFS transporters.
The lactose-H+ symporter, LacY, of E. coli lacks the Gly-Pro dipeptide [57]. The corre-
sponding residues of the motif C in TM5 of LacY are “Gly-(X)8-Gly-(X)3-Cys-Ala-(X)3-Gly”,
with the “Cys-Ala” sequence in place of the Gly-Pro dipeptide that is observed in the
antimicrobial antiporters of the MFS [88]. In a systematic evaluation of helix five in the
LacY transporter using cysteine-scanning mutagenesis, the alteration of several residues
corresponding to motif C showed a significant reduction in lactose transport activities
across the membrane [89]. Prominent among these affected residues in the lactose sym-
porter is Gly-147, equivalent to the second glycine of the canonical motif C sequence, and
Cys-154, the third glycine of the consensus sequence of motif C, which corresponds to the
glycine of the Gly-Pro dipeptide [57]. Additional residues of the motif C that are reduced in
transporting lactose when replaced with cysteine include Gly-150 and Gly-159, the second
and last glycine of the motif C sequence, respectively [57,88,89].

Interestingly, two glycines adjacent to each other in the motif C sequence flank an
Arg-144 residue, forming a salt bridge with Glu-126 [90], presumably stabilizing the local
structure around the critical charge-charge pair. It is striking that Arg-144 of LacY is not
conserved in other symporters, like the GlpT glycerol-3-phosphate transporter, which is
also a member of the MFS and has an Asn in place of the Arg [84]. Likewise, the intra-
membranous arginines are lacking in many of the antiporters of the MFS [79], suggesting
that this part of the energy transducing system that utilizes cation gradients across the
membrane is distinct between symporters and antiporters.

6. Conclusions and Future Studies

Because the vast array of the MFS integral membrane proteins is harbored across
all known living taxa, these solute and ion transporters are functionally critical to the
biology and chemistry of the biological cell in all such organisms. Analyses of the deduced
primary sequences of the MFS transporters in light of the structural studies emerging
from various laboratories have provided critical molecular insight regarding the nature of
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solute transport across the biological membrane [91]. In particular, several highly conserved
amino acid sequence motifs have become crucial to understanding the translocation process
as substrates and ions pass across the membrane through the homologous and related MFS
proteins. Among these shared sequence motifs is the critical antiporter motif C, a string of
highly conserved amino acids that occupy a key transmembrane helix and are shown to
play various functional roles while transporting a tremendous array of structurally different
biologically important substrates.

There are numerous molecular biological roles played by residues and molecular
structures dictated by the motif C. Prominent among these roles involve helping to form a
central binding cavity for substrates, modulators, and efflux pump inhibitors; influencing
the direction of solute transport across the membrane; mediating conformational changes
of the MFS transporters during substrate and ion translocation through the channels; and
the maintenance of the energy gradients to prevent undesirable ion leakage that would
collapse the membrane potential. Further, motif C residues can serve structural roles,
such as influencing protein structure stability, protecting transporter-bound substrates,
providing a contact interface between the two large transport bundles, forming a molecular
hinge structure that twists about during substrate and ion transport, and comprising a
conformational switch system and a regulator of that transporter conformation switching. It
is anticipated that future studies in which conformational states of motif C at the structural
level are combined with efflux pump inhibitor complexed with MFS transporter will hold
tremendous promise but are currently lacking investigation.

Originally thought to have been a feature critical solely to the MFS antiporters, mo-
tif C’s residues can also be detected in MFS symporters. Therefore, its presence in MFS
symporters gives the amino acid residues of the membrane helix five enhanced and uni-
versal importance in transporters of living cells from virtually all organisms. Motif C in
antimicrobial antiporters of the MFS can serve as suitable molecular targets for modulation
of antimicrobial and anti-cancer resistance to improve and restore clinical outcomes of
infectious disease and cancer chemotherapies. The MFS’s antimicrobial, multidrug, and
anti-cancer drug efflux pump systems are known to harbor motif C’s highly conserved
signature sequence [49–51]. In this new light, we propose that the structures produced
by motif C be considered a virulence factor harbored by microbial pathogens and cancer
cells [60,64].

Likewise, motif C residues and their structures can potentially be exploited to en-
gineer host cells to acquire industrially and biotechnologically desirable substrates or
perhaps to secrete them from cells modified to manufacture them intracellularly. Thus,
transporters of the MFS and the conserved sequence motifs they share, especially motif
C, represent an untapped resource for enhancing productivity in biomedical and basic
biological research programs.

Despite these past and recent advances in our understanding of the various biological
roles of the molecular structure formed by motif C residues throughout the years and
the vast potential for advancement in basic and applied research, several matters remain
unclear. For instance, it is poorly understood how motif C is involved in mediating non-
specific ion leakage prevention while simultaneously permitting the transport of larger
substrate and ions necessary for symport and antiport. Along these lines and as of this
writing, it remains unclear whether motif C influences the energy-transducing system in
a general, universal way for the majority of the MFS transporters or if the bioenergetics
role played by motif C is unique to each transporter, as the functional roles of the non-
conserved residues that are interspersed throughout the TM5 are poorly studied. The
role of conserved motif C residues versus non-conserved counterparts within helix five of
transporters in the MFS in transferring the energy stored in secondary active systems into
substrate translocation through a transporter is uncertain.

Regarding the relationship between motif C and energy-transduction during transport,
the relationship between the ATPase system and the secondary active transport mechanism
definitively known to operate in MFS proteins is particularly interesting, especially as MFS
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transporters, like LmrP, continue to be studied in detail [92,93]. On a related note, the
relationship between motif C residues and the mechanism of solute transport in passive
transporters of the MFS proteins is a neglected field of investigation. Indeed, much research
is needed to gain a molecular and cellular understanding of motif C’s role in passive versus
active transporter systems. Along these lines, it remains to be understood how transporters
determine whether and how to invoke passive and active solute transport in the cell.

As new studies regarding efflux pump inhibitors for MFS transporters are numerous
and regularly reported, this area appears to suffer from a lack of translation to clinical
treatment against infectious diseases and cancers. It is clear that clinical trials are sorely
lacking and needed, as new cases of multidrug-resistant infection and cancer are currently
alarming and projected to increase in the coming years significantly. New strategies are
required to adequately address the problem of drug resistance, whether in microorgan-
isms or cancer, and studies of the biology of residues in motif C hold promise [94]. Our
laboratories have studied the effects of various modulators of MFS efflux pumps, such as
ErmD-3 from V. cholerae and LmrS from S. aureus, both transporters of which are bacterial
multidrug efflux pumps of the MFS [48,95,96]. Our future work will focus on the molecular
and cellular roles in these modulatory effects and motif C. We anticipate that investigators
who are novel MFS efflux pump inhibitor designers shall consider the helix five with motif
C a suitable target for designing such modulators.

The binding of various substrates to residues in helix five of the MFS transporters poses
a question on the extent to which motif C is involved in mediating substrate specificity. It is
unclear whether motif C influences substrate specificity directly or through indirect means
by remotely stabilizing binding pockets. Further studies on the relationship between ion-
and substrate-specificities are dictated by the functional roles known to be mediated by
motif C. For instance, it is desirable to understand the molecular structural and biochemical
natures of motif C more clearly during each stage of the symport versus the antiport
processes in MFS transporters. Presently, only parts of these transport mechanisms are
understood. The full molecular mechanistic story is needed to understand the biology of
solute transport as conferred by motif C in proteins of the MFS.

As we consider the progress made thus far regarding the various functional roles
conferred by motif C, we acknowledge that much work remains to be investigated on many
fronts, ranging from basic to applied and industrial research. These fronts involve the
mechanisms of solute and ion translocation across the membrane, conformational changes
in transporters during transport, the energetic driving forces involved during transport, the
molecular mechanism of substrate specificities, and our efforts to modulate these various
transport systems. We anticipate that analyses of the different molecular structures inherent
in the MFS transport proteins and their relation to highly conserved amino acid signature
sequences will shed new light on the physiological and molecular biological mechanisms
that drive the operation of these transporters in all known living cells and organisms. Much
work in studying the disparate members of the MFS remains to be performed.
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