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Simple Summary: Drug resistance is the main cause of sorafenib treatment failure in clinical acute
myeloid leukemia (AML) patients, but the mechanism is currently not fully clear. In this study, we
analyzed the genetic characteristics of sorafenib-resistant AML cell subclusters using single-cell and
bulk transcription data and found that sorafenib-resistant AML cells can promote BCL2 transcription
by activating STAT3. The BCL2 inhibitor venetoclax can enhance the chemotherapy sensitivity of
AML cells to sorafenib.

Abstract: Sorafenib, a kinase inhibitor, has shown promising therapeutic efficacy in a subset of
patients with acute myeloid leukemia (AML). However, despite its clinical effectiveness, sorafenib
resistance is frequently observed in clinical settings, and the mechanisms underlying this resistance
as well as effective strategies to overcome it remain unclear. We examined both single-cell and
bulk transcription data in sorafenib-resistant and control AML patients and integrated a sorafenib
resistance gene signature to predict the sensitivity of AML cells and the clinical outcomes of AML
patients undergoing sorafenib therapy. In addition, our drug sensitivity analysis of scRNA-seq data
using deconvolution methods showed that venetoclax was effective in targeting sorafenib-resistant
AML cells. Mechanistically, sorafenib was found to activate the JAK-STAT3 pathway and upregulate
BCL2 expression in sorafenib-resistant AML cells. This upregulation of BCL2 expression rendered
the cells vulnerable to the BCL2 inhibitor venetoclax. In conclusion, we developed a platform to
predict sorafenib resistance and clinical outcomes in AML patients after therapy. Our findings
suggest that the combination of sorafenib and venetoclax could be an effective therapeutic strategy
for AML treatment.

Keywords: sorafenib; acute myeloid leukemia; chemoresistance; leukemia; BCL2; venetoclax

1. Introduction

Acute myeloid leukemia (AML) is the most prevalent form of leukemia in adults,
comprising 80% of all adult leukemia cases [1]. The incidence of AML escalates with age,
rising from 1.3 per million individuals under 65 years old to 12.2 per million in those over
65 years old [2,3]. Leukemia cells often display various mutations, for instance, the FMS-
like tyrosine kinase 3 (FLT3)-internal tandem duplication (FLT3/ITD) mutation is observed
in 30% AML [4,5]. FLT3/ITD triggers multiple proliferation and survival downstream
signaling pathways, including STAT5, RAS, MEK, and PI3K/AKT, in leukemic cells [6,7].
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Sorafenib, a multikinase inhibitor, targets overactivated FLT3-ITD mutation to suppress
AML cells in clinical treatment [5,8].

Although sorafenib demonstrates therapeutic efficacy in AML treatment [9], sorafenib
resistance continues to pose a significant clinical challenge, and the underlying mechanisms
remain unclear. Sorafenib resistance has been suggested to result from either FLT3 muta-
tions or the alternative activation of downstream pathways involved in cell growth and
apoptosis inhibition, such as RAS/RAF/ERK, mTOR, MAPK, and GSK3β/MCL-1 [9–15].
Hence, developing an effective platform to predict the outcomes of sorafenib treatment and
enhance its efficacy is critical for AML management. In this study, we established a plat-
form to predict sorafenib resistance and demonstrated that the BCL2 inhibitor venetoclax
could overcome sorafenib resistance in AML cells.

2. Materials and Methods
2.1. Cell Culture

The THP-1 (TIB-202, ATCC, Manassas, VA, USA), U937 (CRL-1593.2, ATCC), HL-60
(CCL-240, ATCC), MOLM13 (C6600, Beyotime, Shanghai, China), K562 (CCL-243, ATCC),
and Jurkat (CRL-2898, ATCC) cell lines were cultivated in RPMI 1640 (11875093, Gibco,
Grand Island, NY, USA) supplemented with 10% fetal bovine serum (FBS, SH30084, Hy-
clone, Logan, UT, USA), 1% penicillin–streptomycin (SV30010, Hyclone), 1% HEPES (H3375-
25G, Sigma-Aldrich, St. Louis, MO, USA) and 2 mM glutamine (25-005-CI, Corning, Salt
Lake City, UT, USA). All cells were maintained in a humidified incubator at 37 ◦C with
5% CO2.

2.2. Flow Cytometry

To perform proliferation analysis, 1 × 105 cells were seeded into a 48-well plate and
treated with sorafenib (SF, HY-10201, MCE, Romulus, MI, USA) and/or venetoclax (Vene,
HY-15531, MCE) where indicated. Cell growth curves were plotted using flow cytometry
to count viable cells, and 7-aminoactinomycin D (7-AAD, 420404, Biolegend, San Diego,
CA, USA) was used to exclude dead cells. For apoptosis analysis, 1 × 106 cells were seeded
into a 24-well plate and treated with SF and/or Vene where indicated. AnnexinV (640907,
Biolegend) and 7-AAD were used to stain the cells. FACS assay was conducted using an
analyzer (Attune NxT; Thermo Fisher, Waltham, MA, USA), and the data were analyzed
using FlowJo software (FlowJo 10.8.1).

2.3. Western Blot

An equal number (1 million) of cells were lysed using RIPA buffer (P0013C, Beyotime)
containing 1 mM PMSF (A610425, Sangon Biotech, Shanghai, China). The protein extracts
were fractionated using 10% SDS-PAGE and transferred to a PVDF membrane (IPVH00010,
Merck Millipore, Burlington, NJ, USA). Following blocking with 5% non-fat milk in Tris-
buffered saline containing 0.1% Tween-20 (TBST, pH 7.6) for 1 h at room temperature, the
membranes were incubated with primary antibodies for BCL2 (1:1000, PTM-5587, PTM BIO,
Chicago, IL, USA), cleaved caspase 3 (1:1000, 9661, CST), p-STAT3 (1:1000, 9145, CST), and
β-actin (1:1000, AF0003, Beyotime) overnight at 4 ◦C, as indicated. The membranes were
then incubated with secondary antibodies (1:10,000, rabbit W401B, mouse W402B, Promega,
Madison, WI, USA) for 1 h at room temperature. The Western blots were detected either
using X-ray film or a digital imaging system (Odyssey Fc). Protein levels were quantified
using densitometric intensity.

2.4. Single-Cell RNA-seq and Pre-Processing

Fresh primary AML cells were isolated using Ficoll (LTS1077, WEST GENE) gradient
centrifugation from leftover BM aspirates of clinical routine sampling. Patient characteris-
tics for primary samples used are provided in Supplementary Table S1. AML bone marrow
samples underwent single-cell capture using the 10 × Chromium 3’ Library and Gel Bead
Kit (10 × Genomics). scRNA-seq libraries were generated as per the manufacturer’s pro-
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tocol on the Illumina NovaSeq 6000 Sequencing System. To generate feature-barcode
matrices, Cell Ranger (version 6.1.2) was employed to align reads with the human genome
reference sequence (GRCh38) for the Chromium single-cell data. Processed count matrices
for each sample were subjected to quality control where cells containing fewer than 1000
or more than 25,000 unique UMI counts or more than 10% mitochondrial RNA content
were excluded. The Seurat R package (version 4.3.0) was used for further processing.
The SCTransform command in Seurat was implemented to perform normalization. Prin-
cipal components analysis (PCA) was used for linear dimensional reduction, while the
RunTSNE function in Seurat was used to project the data into a 2D visualization space
with t-distributed stochastic neighbor embedding (tSNE). Graph-based cell clustering was
performed using the FindClusters function in Seurat with the appropriate resolution. To
remove the batch effect of each scRNA-seq sample, the Harmony R package (version 0.1.1)
was utilized.

2.5. Analysis of Sorafenib-Resistant Cells

To forecast the cellular constitution of sorafenib-resistant cells in single-cell data,
BayesPrism deconvolution was executed utilizing bulk RNA-seq samples obtained from
sorafenib-treated AML cells (GSE104594) [16,17]. The Seurat FindMarkers function was
employed to detect marker genes for each cell type. Gene set enrichment analysis (GSEA)
was conducted with the ClusterProfler package (version 4.6.0) in R. To gauge pathway
activity, gene set variation analysis (GSVA) was executed using GSVA (version 1.46.0). All
gene sets were sourced from the Molecular Signatures Database (MSigDB).

2.6. Identification and Validation of Sorafenib Resistance Genes

To establish a correlation between patient prognosis and significant genes in sorafenib-
resistant clusters, we conducted univariate Cox regression analysis on 553 AML patients
from the GEO database (GSE37642). We employed the least absolute shrinkage and selection
operator (LASSO) regression analysis to compute the coefficient. Finally, we computed the
risk score of individual patients utilizing the following formula: risk score = coefficient1
× expression of gene1 + . . . + coefficientN × expression of geneN. Based on the median
risk scores, patients were categorized into a high-risk (HR) or low-risk (LR) cohort. To
assess overall survival (OS) between the HR and LR in each cohort, we employed the
Kaplan–Meier analysis. To evaluate the precision of the prognostic model, we utilized ROC
curves. We validated our model with 140 samples from the LAML project in the Cancer
Genome Atlas (TCGA) database using the same model.

2.7. Association with Drug Sensitivity

We obtained ex vivo drug sensitivity area under the curve (AUC) scores for acute
myeloid leukemia (AML) from BEAT-AML and Lee et al. [18,19]. Pearson correlation
analysis was employed to assess the association between sorafenib-resistant cell abundance
and AUC values, which were multiplied by −1. The Enhanced Volcano R package (version
1.16.0) and corrplot R package (version 0.92) were utilized to graphically represent the drug
response associations. Furthermore, the BayesPrism deconvolution approach was applied
to RNA-seq data obtained from 430 AML patients in the Leucegene cohorts [20]. Principal
component analysis (PCA) and Leiden clustering were utilized to map and obtain four
hierarchical clusters. To calculate the sorafenib resistance score 7 (SF-res-7), 22 sorafenib
resistance genes (named SF-res-22) were used as input features for LASSO regression
analysis on the first principal component (PC1), which has high expression in SF-res and
low expression in SF-sens.

2.8. Cell Line Sensitivity to Sorafenib

RNA-seq data for THP1, MV4-11, HL60, U937, MOLM13, K562, Jurkat cell lines,
and primary patient cells were obtained from the GEO database (GSE21758, GSE163466,
GSE184891, GSE142662, GSE217585, GSE180229, GSE221851, and GSE202222). The raw
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count matrices were normalized by applying log2 transformation. The ComBat function in
the sva R package (version 3.46.0) was utilized to eliminate batch effects.

2.9. Statistical Analysis

The data are presented as means ± standard deviation (s.d.). Student’s t-tests were
employed for comparison between two groups (* p < 0.05, ** p < 0.01, and *** p < 0.001),
while one-way ANOVA followed by Dunnett’s tests were used for multiple comparisons
(‡ p < 0.05, ‡‡ p < 0.01, and ‡‡‡ p < 0.001). Statistical significance was established at p < 0.05.

3. Results
3.1. Characterization of Sorafenib-Resistant AML Cells

We conducted single-cell transcriptome analysis of bone marrow cells from eight AML
patients, dividing the leukemic cells into fifteen subsets (Figure 1a–c). To investigate the
sensitivity of distinct clonal subsets of leukemia cells to SF, we downloaded eight bulk RNA
sequencing results of four AML patients before and after sorafenib treatment from the GEO
database [15]. We performed Bayesian prism deconvolution on the bulk sequencing results
using the fifteen defined leukemia subsets and categorized AML subpopulations into three
main groups, namely SF-unrelated (C0, C1, C3, C10, C12, and C13), SF-sens (C2, C4, C7, C8,
and C14), and SF-res (C5, C6, C9, and C11), by comparing the cluster abundances before and
after treatment (Figure 1d). Our results showed an increase in the SF-res group after relapse,
in contrast to the initial diagnosis (Figure 1e). Gene expression analysis demonstrated an
increase in MT1G, S100A9, S100A12, and CD36, genes participating in the inflammatory
response and fatty acid transport, in the SF-res cell group. In contrast, genes such as
HLA-DQB1, ZEP36, MAFB, NFKBIZ, and MS4A7, related to immune response and signal
transduction, were upregulated in the SF-sens group (Figure 1f). Furthermore, stemness
genes including SOX4, BCL2, and previously reported LSC markers such as CD82 and
CD99 were significantly higher in SF-res than in the SF-sens group, indicating that SF-res
cells possess stronger stemness (Figure 1g). The gene ontology (GO) and KEGG enrichment
analysis revealed that MYC targets, E2F signaling pathway, stemness, G2M checkpoint,
DNA repair, and pathways related to stem cell differentiation were upregulated in the
SF-res group compared with the SF-sens groups, while inflammatory response, apoptosis,
TGF-β, and P53 signaling pathway-related genes were downregulated (Figure 1h,i). In
parallel, GSEA revealed that hematopoietic stem cells, MYC targets, G2M checkpoint, DNA
repair, and E2F targets were activated in the SF-res group, while apoptosis, inflammatory
response, antigen presentation, and hypoxia were silenced (Figure 1j). Together, these
findings suggest that genes enriched in the SF-res population function in stemness and
cell cycle, while genes enriched in the SF-sens population function in immune response
and apoptosis.
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Figure 1. Characterization of sorafenib-resistant AML cells in scRNA-seq: (a) The tSNE map was
generated by analyzing single-cell RNA sequencing data of bone marrow cells of newly diagnosed
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(D) and relapsed AML patients (R) were analyzed to generate. (b) The distribution of each cluster
in 4 pairs of newly diagnosed and relapsed patients. (c) Quantification of each cluster of AML
patients at diagnosis and relapse. (d) The distribution of SF-unrelated, SF-sens, SF-res populations
in the tSNE map. (e) The abundance of SF-unrelated, SF-sens, and SF-res populations of AML
patients at newly diagnosed (D) and relapsed (R). Box plots indicate the range of the central 50%
data, with the central line marking the median. Significance was evaluated through a two-sided
Wilcoxon rank-sum test. (f) Bubble diagram of differentially expressed genes in SF-unrelated, SF-sens,
and SF-res clusters, wherein color and size represent the expression level. (g) Volcano plot of the
differential genes between SF-res and SF-sens cluster. (h,i) Gene ontology (GO) analysis (h) and
differentially expressed genes (i) in SF-res and SF-sens clusters. (j) Gene set enrichment analysis
(GSEA) of hematopoietic stem cell up, MYC-target pathway, apoptosis, inflammatory response,
antigen-processing cross-presentation, G2M checkpoint, hypoxia, DNA repair, E2F targets, and
hematopoietic stem cell proliferation pathways in SF-res and SF-sens clusters.

3.2. The Characteristic Genes of the Sorafenib-Resistant Population Can Predict the Prognosis
of Patients

To investigate the correlation between gene sets associated with sorafenib resistance
and patient prognosis, we conducted univariate Cox regression analysis on genes that were
highly expressed in the SF-res group. Our analysis revealed 45 genes that were significantly
linked with prognosis (Figure 2a). Utilizing the LASSO algorithm, we developed a patient
prognosis assessment model, where the median of the calculated risk score was set as
the threshold for distinguishing between the high-risk (HR) cohort and the low-risk (LR)
cohort. We used the 553 patients in the GEO database as the training cohorts (TC). The
distribution of risk scores (Figure 2b) and the survival status (Figure 2c) of the HR and LR
patients in the TC are displayed. We then reduced the number of significant genes to 22
(Figure 2d) and analyzed the overall survival (OS) of patients in the HR and LR cohorts
using Kaplan–Meier (Figure 2e, p < 0.001). Our analysis revealed that the OS of patients in
the HR cohort was significantly lower than that of patients in the LR cohort. We validated
the resistance genes using ROC curves, where the area under the ROC curve (AUC) was
positively associated with prognostic accuracy. The AUCs for the 1-year, 3-year, and 5-year
patient survival rates were 0.684, 0.721, and 0.722, respectively (Figure 2f). These results
suggest that the 22 sorafenib resistance genes, named SF-res-22 thereafter, could effectively
predict the prognosis of AML patients.

We further validated our prognostic model using the 140 patients in the TCGA
database as the validation cohort (VC). The risk score distribution (Figure S1a) and survival
status (Figure S1b) of the HR and LR patients are demonstrated. Additionally, we reduced
the number of genes to 22 (Figure S1c) and analyzed the OS of the HR and LR cohorts.
Kaplan–Meier analysis revealed that the OS of patients in the HR cohort was significantly
lower than that of patients in the LR cohort (Figure S1d). The AUCs for the 1-year, 3-year,
and 5-year survival rates of patients in the VC were 0.694, 0.696, and 0.678 (Figure S1e,
p = 0.007), respectively. The AUC values of TC and VC were both greater than 0.65, which
confirmed that the 22 sorafenib resistance genes were effective in predicting the prognosis
of AML patients.
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Figure 2. Sorafenib resistance gene set predicts the prognosis of AML patients: (a) Forest map shows
the relationship between sorafenib resistance gene set and prognosis of patients. (b,c) The risk score
distribution (b) and the survival outcome (SO) analysis (c) of the training cohorts (TC). (d) Heat
map of 22 sorafenib resistance genes that are related to AML prognosis in TC. (e) The Kaplan–Meier
survival curves of the high-risk (HR) and low-risk (LR) patients in the TC. (f) The time-dependent
ROC analyses of the SF-res-22 prognosis model to estimate the 1-, 3-, and 5-year OS of TC patients.
(g) PCA of 430 patients with Leucegene cohorts based on the composition of their cellular hierarchy
and SF-res-7 (trained on PC1) captures the SF-res versus SF-sens axis. (h) Heat map of 7 genes that
are significantly upregulated in the SF-res group. (i) Event-free survival and relapse-free survival of
HR compared with LR patients, stratified by SF-res-7 score into SF-res-7 High (SF-res > SF-sens) and
SF-res-7 Low (SF-sens > SF-res). Significance was evaluated through a log-rank test.
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To further scrutinize genes linked with sorafenib resistance, we employed our de-
convolution method to deduce the abundance of cell types associated with SF sensitivity
from 430 AML patient samples gathered in the Leucegene cohorts [20]. The hierarchy of
patients was separated based on two principal components: spanning from SF-sensitive
to SF-resistant on PC1, and spanning from SF-sensitive to SF-unrelated on PC2 (Figure 2g
left). We postulated that deriving a subscore from the aforementioned 22 sorafenib resis-
tance genes to estimate PC1 could serve as a precise tool to predict the drug sensitivity
to sorafenib. Therefore, we retrained these genes on PC1 through LASSO regression and
derived a sorafenib resistance score composed of seven genes (sorafenib resistance score 7,
SF-res-7) [18]. These seven genes were significantly upregulated in SF-res (Figure 2g right)
and mainly related to immune regulation and transcription regulation (Figure 2h). After-
ward, we used this streamlined gene set to assess patients’ prognosis. We set the median
of the calculated risk score as the threshold for distinguishing the high-risk (HR) cohort
from the low-risk (LR) cohort to verify whether the SF-res-7 score could predict patient
prognosis. Kaplan–Meier analysis revealed that the OS of HR was significantly lower than
that of LR (Figure 2i, p = 0.041), confirming that the SF-res-7 score can effectively predict
the response of patients to different chemotherapy drugs and thus the patient prognosis.

3.3. Sorafenib Resistance Gene Set Predicts Sorafenib Sensitivity of Leukemic Cells

To investigate the correlation between sorafenib resistance genes and the susceptibility
of leukemia cells to sorafenib, and to validate the predictive efficacy of SF-res-7 and SF-
res-22 prognostic models on cell line sensitivity to sorafenib, we examined the RNA-seq
outcomes of various leukemia cells from the GEO database. The prognostic model scored
distinct leukemia cell lines, with higher scores reflecting greater resistance to sorafenib. Our
findings revealed heterogeneous sorafenib sensitivity across different leukemia cell lines,
with the highest resistance scores observed in U937, HL60, Jurkat, and FLT3-ITD mutation
patients with sorafenib resistance and the lowest scores in MV4-11, MOLM13, K562, and
THP-1 (Figure 3a,b, Supplementary Figure S2a,b). Additionally, we corroborated the
sorafenib resistance score through a cell proliferation assay. Notably, U937 (Figure 3c) and
HL60 (Figure 3d) exhibited relatively weak inhibitory effects on proliferation after sorafenib
treatment. In contrast, Jurkat, despite receiving a relatively high score, demonstrated a
substantial sensitivity to the drug (Figure 3e). Furthermore, the resistance outcomes of
K562 (Figure 3f), MOLM13 (Figure 3g), and THP-1 (Figure 3h) were consistent with the
prognostic model predictions. Our results confirmed that the sorafenib resistance genes we
identified in conjunction with the constructed prognostic model facilitated the prediction
of leukemia cell sensitivity to sorafenib.

3.4. Analysis of the Drug Sensitivity of Sorafenib-Resistant Cells

No effective treatment schemes have been clinically applied for AML patients who
are resistant to sorafenib. Therefore, it is crucial to find novel targeted drugs to overcome
sorafenib resistance. The BEAT-AML database provides information on gene expression sig-
natures and the corresponding sensitivity of AML samples to clinically available drugs ex
vivo [18]. To analyze the drug sensitivity of sorafenib-resistant cells, we integrated the tran-
scriptional profiles of SF-unrelated, SF-sens, and SF-res populations with the BEAT-AML
database to generate a drug sensitivity profile. The three populations displayed signifi-
cant differences in response to different drugs (Figure 4a,b). The SF-sens cells were more
sensitive to staurosporine, while SF-res cells were sensitive to lenalidomide and venetoclax.

To ascertain the correlation between SF-res-7 and the drug sensitivity of AML cells,
we analyzed the sensitivity of 33 drugs from BEAT-AML (Figure 4c) and 72 drugs from Lee
et al. (Figure 4d) [19]. We found that the cell population with a high expression of SF-res-7
in the BEAT-AML database was more sensitive to ABT-737 and venetoclax and relatively
less sensitive to dasatinib and saracatinib (Figure 4e). Cells with a high SF-res-7 score,
according to the sensitivity comparison by Lee et al., were more sensitive to navitoclax
and azacitidine and relatively less sensitive to dasatinib and rapamycin (Figure 4f). Since
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venetoclax and navitoclax are both BCL2 inhibitors, Through analysis of the BEAT-AML
database and Lee et al.’s database, we predicted that the SF-res population was more
sensitive to BCL2 inhibition.

3.5. Venetoclax Enhanced the Sorafenib Cytotoxicity to Leukemia Cells

The analysis of the drug sensitivity database revealed that venetoclax effectively tar-
geted the sorafenib-resistant population (Figure 4a). To ascertain the efficacy of venetoclax
on sorafenib-resistant cells, we administered leukemia cells with a combined treatment
of sorafenib and venetoclax. Sorafenib plus venetoclax, compared with either drug alone,
significantly inhibited the proliferation of Jurkat (Figure 5a), MOLM13 (Figure 5b), and
K562 (Figure 5c), suggesting that venetoclax improved the sensitivity of leukemia cells
to sorafenib. Furthermore, the co-administration of these two drugs resulted in a signifi-
cant increase in apoptosis of leukemia cell lines, including Jurkat (Figure 5d), MOLM13
(Figure 5e), and K562 (Figure 5f), as evidenced by a substantial rise in the proportion
of apoptotic cells and the upregulated apoptotic protein, cleaved caspase 3 (Figure 5g).
Our results confirmed that venetoclax was capable of enhancing leukemic apoptosis by
upregulating the expression of proapoptotic proteins, thereby augmenting the sensitivity
of leukemia cells to sorafenib.
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correlations with p < 0.05 are presented; those with q < 0.05 are marked with an asterisk. (b) Volcano
plot showing correlations between the SF-res versus SF-sens axis (PC1) and ex vivo drug sensitivities
from the BEAT-AML screen, identifying drugs that preferentially target either SF-res or SF-sens AML
blasts. (c,d) Correlation with SF-res-7 identifies drugs targeting either SF-res blasts or SF-sens blasts
from BEAT-AML (c) (Tyner et al.; n = 202) as well as a separate primary AML drug screen (d) (Lee
et al.; n = 30). (e,f) Violin chart showing drug resistance scores of SF-res and SF-sens populations
with the BEAT-AML database (e) and a separate prediction model of drug sensitivity (Lee et al.) (f).
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Figure 5. Venetoclax enhances the sensitivity of leukemia cells to sorafenib: (a–c) The proliferation
rate of Jurkat (a), MOLM13 (b), and K562 cells (c) with sorafenib and/or venetoclax treatments as
indicated. (d–f) The representative FACS plots (left) and apoptosis rate (right) of Jurkat (d), MOLM13
(e), and K562 cells (f) with indicated in vitro treatment for 48 h (n = 3 independent experiments).
(g–i) Western blots and quantification of the cleaved caspase 3 in Jurkat (g), MOLM13 (h), and K562
(i) cells received sorafenib (1 µM) and/or venetoclax (1 µM) treatments as indicated. β-actin was
used as a loading control. SF, sorafenib; Vene, venetoclax. ns: no significance.

3.6. The JAK-STAT3 Pathway Is Activated to Upregulate BCL2 in Sorafenib-Resistant
Leukemia Cells

To investigate the underlying mechanism of how venetoclax enhances the sensitivity
of leukemia cells to sorafenib, we conducted single-cell sequencing analysis and found
that the expression level of BCL2 was higher in the sorafenib-resistant group (SF-res group)
than in the SF-unrelated and SF-sens groups (Figure 6a). The Western blot results further
confirmed that BCL2 was significantly upregulated in leukemia cells treated with sorafenib
(Figure 6b). To gain insight into the mechanism through which sorafenib upregulates BCL2,
we performed a GSEA enrichment analysis and found that the JAK-STAT3 pathway was



Biology 2023, 12, 1337 12 of 16

more active in the SF-res group (Figure 6c). The JAK-STAT3 pathway has been shown
to increase the intracellular BCL2 content by promoting BCL2 transcription [21,22]. The
p-STAT3 expression was significantly upregulated after sorafenib treatment using Western
blot (Figure 6d), suggesting that the JAK-STAT3 pathway might be involved in the resistance
of leukemia cells to sorafenib. To confirm the role of the JAK-STAT3 pathway, we treated
leukemia cell lines with sorafenib and Stattic, a STAT3 inhibitor, and detected the BCL2
expression using Western blot. We found that sorafenib upregulated BCL2 expression in
leukemia cells, while JAK-STAT3 inhibition decreased the expression of BCL2 induced by
sorafenib, suggesting that leukemia cells upregulate the expression of BCL2 through the
JAK-STAT3 pathway, leading to resistance to sorafenib (Figure 6e–f).
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Figure 6. Sorafenib activates the JAK-STAT3 pathway to upregulate BCL2: (a) Violin diagram shows
the expression levels of BCL2 in SF-unrelated, SF-sens, and SF-res groups. (b) Western blots (left)
and quantification (right) of BCL2 in K562, MOLM13, and Jurkat cells with/without sorafenib (1 µM)
treatment. β- actin was used as a loading control. (c) Gene set enrichment analysis (GSEA) of JAK-
STAT3 pathways in sorafenib-resistant group. (d) Western blots (left) and quantification (right) of
p-STAT3 in K562, MOLM13, and Jurkat cells with/without sorafenib (1 µM) treatment. (e) Schematic
diagram of leukemic cells treated with sorafenib and Stattic (10 µM, STAT3 inhibitor). (f) Western
blots (f, left) and quantification (f, right) of BCL2 and p-STAT3 in K562, MOLM13, and Jurkat cells
with indicated treatment. β-actin was used as a loading control. SF, sorafenib.
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4. Discussion

The acquired mutations on FLT3/ITD and FLT3 tyrosine kinase domain (TKD), which
activate the proliferation and survival signal pathway, account for the sorafenib resis-
tance [23–25]. Furthermore, sorafenib is applicable for treatment in CML and ALL and
represents a distinct target compared with imatinib, a tyrosine kinase inhibitor for the
BCR-ABL pathway [26–28]. Sorafenib suppresses STAT5 to inhibit MCL1 (MCL1 apoptosis
regulator, BCL2 family member), which overcomes imatinib resistance in CML cells [29].

By analyzing the drug sensitivity of the sorafenib-resistant cell group, we found
that it exhibited greater sensitivity to lenalidomide, VX.745, azacitidine, and venetoclax.
Lenalidomide is an immunomodulatory drug used in the treatment of chronic lymphocytic
leukemia (CLL) and multiple myeloma [30,31]. Lenalidomide may enhance the function of
antileukemia immunity by regulating CD8+ T cells [32]. The combination of sorafenib and
azacitidine has demonstrated positive therapeutic effects in patients with recurrent FLT3-
ITD mutations after transplantation [33]. VX.745, small molecule inhibitors of MAPK, may
increase the sensitivity of leukemia cells to sorafenib by inhibiting the previously reported
MAPK pathway related to sorafenib resistance [34,35]. The combination of sorafenib with
cytotoxic drugs such as doxorubicin and irinotecan significantly eliminates liver cancer cells
in vitro and in vivo [36,37]. The combination of PI3K-delta inhibitor and FLT3 inhibitor has
also shown synergistic antitumor activity in AML treatment [38].

Venetoclax has been reported to restore the sensitivity of TKI-resistant leukemia
cells by inhibiting the MAPK pathway or downregulating BIM expressions [39,40]. Most
importantly, we found that sorafenib can inhibit apoptosis by activating the JAK-STAT3
pathway to promote the expression of BCL2 in leukemia cells. The activation of the
STAT3 pathway in sorafenib-resistant cells has also been observed in previous studies of
hepatocellular carcinoma, indicating that STAT3 inhibition enhances tumor cell sensitivity
to sorafenib [41,42]. Our findings suggest that sorafenib combined with venetoclax could
potentially be applied in the clinical treatment of AML patients.

5. Conclusions

In summary, we analyzed the gene expression characteristics of sorafenib-resistant
AML cells in detail and found that its highly expressed gene set can predict sorafenib sensi-
tivity and prognosis in AML patients. In addition, sorafenib-resistant AML cells activate
STAT3, promote BCL2 transcription, and achieve drug resistance. Targeting the activation
of BCL2 in drug-resistant AML cells can effectively enhance the sorafenib sensitivity of
AML cells.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology12101337/s1, Figure S1. The SF-res-22 gene set was used to
predict the prognosis of AML patients in the validation cohort (VC): (a, b) The risk score distribution
(a) and the survival outcome (SO) analysis (b) of the VC. (c) Heat map of 22 sorafenib resistance
genes significantly related to the prognosis of patients in VC. (d) The Kaplan–Meier survival curves
of the HR and LR patients in the VC. (E) The time-dependent ROC analyses of the patient prognosis
evaluation model to estimate the 1-, 3-, and 5-year OS of VC patients. Figure S2.The SF-res-22 gene set
was used to predict the sorafenib sensitivity of leukemia cells: (a) Analysis of different leukemia cell
lines in the GEO database for expressions of the SF-res-22 genes to generate the sorafenib resistance
score. (b) Heat map of sorafenib resistance genes in different cell lines. Table S1. scRNAseq samples
information. Western blots in Figures 5 and 6.
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