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Simple Summary: The cell enumeration, 16S rRNA phylogenetic analysis, and hydrography determi-
nation were conducted to reveal the ecology of prokaryotic picoplankton in the subtropical Kuroshio
current. The picocyanobacteria (i.e., Synechococcus and Prochlorococcus), contributing more than 50%
of chlorophyll a, were important primary producers in the subtropical Kuroshio current. The notable
seasonal distributions of picocyanobacteria and hydrography were also well described. We suggested
the ambient nutrient contents should be the crucial parameter to determine the seasonal patterns of
Synechococccus and Prochlorococcus in the study area. Because of the ability to compete for nutrients
in an oligotrophic environment, picocyanobacteria would become dominant primary producers in
marine ecosystems under the scenario of global warming.

Abstract: The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact on
both the marine ecology of the northwestern Pacific Ocean and the global climate. This study aims
to reveal the seasonal dynamics of picoplankton in the subtropical Kuroshio current. Our results
showed that one of the picocyanobacteria, Synechococcus, mainly distributed in the surface water
layer regardless of seasonal changes, and the cell abundance ranged from 104 to 105 cells mL−1. In
contrast, the maximum concentration of the other picocyanobacteria, Prochlorococcus, was maintained
at more than 105 cells mL−1 throughout the year. In the summer and the autumn, Prochlorococcus
were mainly concentrated at the water layer near the bottom of the euphotic zone. They were
evenly distributed in the euphotic zone in the spring and winter. The stirring effect caused by the
monsoon determined their distribution in the water column. In addition, the results of 16S rRNA
gene diversity analysis showed that the seasonal changes in the relative abundance of Synechococcus
and Prochlorococcus in the surface water of each station accounted for 20 to 40% of the total reads.
The clade II of Synechococcus and the High-light II of Prochlorococcus were the dominant strains in the
waters all year round. Regarding other picoplankton, Proteobacteria and Actinobacteria occupied 45%
and 10% of the total picoplankton in the four seasons. These data should be helpful for elucidating
the impacts of global climate changes on marine ecology and biogeochemical cycles in the Western
Boundary Currents in the future.

Keywords: prokaryotic picophytoplankton; Kuroshio current; Synechococcus; Prochlorococcus

1. Introduction

Picophytoplankton, including picocyanobacteria and picoeukaryotes, are the phy-
toplankton whose cell size is smaller than 2 µm. Because of their high surface area to
volume ratio, picophytoplankton prevail in diverse marine environments, especially thriv-
ing in oligotrophic oceans. Generally, marine phytoplankton contribute approximately
half of global primary production, which is about 46 to 50 petagrams per year. Of these,
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picophytoplankton are responsible for approximately 24% of marine phytoplankton pro-
duction [1,2]. In particular, picophytoplankton are the major primary producers in some
marine provinces [3]. For example, picophytoplankton contribute to greater than 70% of the
total primary production in the tropical Pacific Ocean [4]. Furthermore, picophytoplankton
in the Mediterranean provided 31% to 92% of the primary productivity [5]. The biomass
of picophytoplankton is rapidly consumed by heterotrophic microorganisms and enters
the grazing food chain or the microbial loop. Several studies have predicted that ocean
warming may cause the fraction of tiny phytoplankton (picophytoplankton) to increase
over that of the larger group (>2 µm) [6,7]. This relatively rapid change might alter the
phytoplankton communities toward picophytoplankton sizes. Then, it may further change
the functioning and biogeochemistry of pelagic ecosystems. Therefore, picophytoplankton
are important primary producers in marine ecosystems and global oceanic biogeochemistry
cycles [3,8].

Synechococcus and Prochlorococcus are the significant members of picocyanobacteria.
The abundances of Synechococcus and Prochlorococcus in the global oceans are approximately
104 to 106 cells mL−1 [9–12]. However, due to their different biological characteristics,
Synechococcus and Prochlorococcus have been suggested to occupy diverse marine provinces.
Synechococcus is distributed in the global oceans [9,13]. Based on genetic information, Syne-
chococcus has been divided into fifteen clades and twenty-eight subclades [14]. Clades I and
IV were found in cold and nutrient-rich waters, whereas Synechococcus clades II, III, V, VI,
and VII frequently appear in tropical and subtropical waters [12]. Prochlorococcus usually
distributed the euphotic zone of tropical and subtropical oligotrophic waters between
latitudes 40◦ N and 40◦ S [15,16]. Based on their distribution in the water column, Prochloro-
coccus species are categorized into two groups: high-light (HL)- and low-light (LL)-adapted
ecotypes [14]. These two ecotypes present distinct distributions across depths [17–19].
HL-adapted ecotypes have a lower divinyl chlorophyll b/divinyl chlorophyll a (Chl b/Chl
a) ratio and are typically found in the surface waters of the open ocean [20]. LL-adapted
ecotypes have a higher Chl b/Chl a ratio and usually grow in deep waters with much
lower light intensities. In addition to the different distributions in the water column, the
appearance of two Prochlorococcus ecotypes also exhibits distinct seasonal dynamics. For
example, the abundance of LL-adapted ecotypes has no apparent seasonal variation in the
northern Red Sea, in contrast to the distribution of HL-adapted ecotypes [21]. Moreover,
the HL-adapted ecotypes are composed of six clades. HL clade II was found to dominate at
low and midlatitudes but was changed by HL clade I at latitudes above 30◦ [16,22]. Fur-
thermore, it has been demonstrated that sudden extreme climate events, such as Asian dust
and typhoons, temporarily change the picophytoplankton community composition [23,24].

The Kuroshio current is one of the western boundary currents located in the Northwest
Pacific Ocean. The westward-flowing North Equatorial Current runs into the Philippine
coast and then bifurcates into northward (i.e., the Kuroshio current) and southward streams
(i.e., the Mindanao Current). The Kuroshio current passes the east coast of Taiwan and
southeast coast of Japan and then continues as the North Pacific Current [25,26]. The width
of the Kuroshio mainstream in eastern Taiwan is approximately 100 km, the depth is around
800 to 1000 m, and the mainstream speed is approximately 1 to 1.5 m s−1. The Kuroshio
water is high-temperature and high-salinity. In the subtropical segment of the Kuroshio,
its temperature and salinity have no significant seasonal variation and remain at 26 ◦C
to 30 ◦C and approximately 34.5, respectively [27]. The Kuroshio water in the euphotic
zone is characterized as ultraoligotrophic [28,29]. However, when the Kuroshio current
flows near the east coast of Taiwan, upwelling along the coastal region transports deep
nutrients into the surface [29,30]. The uplift of deep seawater provides a large amount
of nutrients to the Kuroshio euphotic zone when the Kuroshio invades the East China
Sea shelf [31]. In addition, terrestrial material injection and vertical mixing caused by
typhoons or the northeast monsoon provide nutrients to the Kuroshio current. These
nutrient sources support primary productivity in the Kuroshio region [32,33]. The surface
Kuroshio is oligotrophic and has low chlorophyll a (Chl a) concentrations of less than
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0.2 mg m−3 [29,34–37]. The yearly primary production in the subtropical Kuroshio current
is approximately 0.91 ± 0.47 mg carbon m−3 day−1 [36]. Several studies have presented a
significantly positive correlation between Chl a and the abundance of picophytoplankton in
the Kuroshio [37,38]. Furthermore, various models of global circulation have suggested that
the abundance of picophytoplankton will increase significantly with the rise of seawater
temperature [39,40]. According to the above information, we hypothesize that with the
ecology of picophytoplankton and the biogeochemical cycles, their lead should change in
the subtropical Kuroshio under the scenarios of global warming. However, the assemblage
composition of picophytoplankton is very complicated, and the relationship between their
community succession and the primary productivity in this area requires further careful
exploration. The seasonal dynamics of picophytoplankton in the subtropical Kuroshio
current were completely revealed in this study. Our results will facilitate future studies
on the picophytoplankton ecology and their relationship with the marine biogeochemical
cycles under global climate change.

2. Materials and Methods
2.1. Sampling Scheme

This study is a long-term observation of phytoplankton community composition in the
subtropical Kuroshio Sea from 2009 to 2015. Intensive sampling in four seasons was con-
ducted from 2012 to 2013. A total of nine stations across the Kuroshio current were visited
onboard the research vessels Ocean Researcher I and Ocean Researcher II in October (defined
as the autumn voyage) 2012, January (defined as the winter voyage) 2013, April (defined as
the spring voyage) 2013, and July (defined as the summer voyage) 2013 (Figure 1). Tempera-
ture and salinity were continually recorded by a conductivity/temperature/depth recorder
(CTD) (SBE9/11 plus) (Sea-Bird Electronics, Bellevue, WA, USA). The current velocity was
measured by a 150 kHz shipboard acoustic Doppler current profiler (ADCP; Teledyne
RD Instruments, Poway, CA, USA) [41]. To determine the concentrations of chlorophyll a
(Chl a) and inorganic nutrients and the abundance of picophytoplankton, water samples
were collected using 20-L GO-Flo bottles (General Oceanics, Miami, FL, USA) mounted
on the CTD rosette sampler at six depths from 5 m to 300 m. Light intensity in water
was continually measured by a photosynthetically active radiation irradiance sensor (PAR
sensor) (Chelsea Technologies, Molesey, UK) equipped with a CTD. The water samples
collected from surface (depth = 5 m) and the deep chlorophyll maxima (DCM), which was
defined by the fluorescence profile determined by the fluorometer (AquaTracka III, Chelsea,
London, UK), at Stations K2, K4, K5, K6, and K8 were used to isolate environmental DNA
for analyzing the phylogenetic diversity of the 16S ribosomal RNA (rRNA) gene.

2.2. Determination of Chl a and Inorganic Nutrient Concentrations

The detailed methods for determining the concentrations of Chl a and inorganic
nutrients are described in Chan et al. [42]. Briefly, one liter of water for Chl a analysis was
immediately filtered through a GF/F class filter (Whatman, Maidstone, UK) and stored at
−20 ◦C until analysis. The Chl a retained on the filter was extracted in 90% acetone. The Chl
a concentration was determined by a fluorometer (10-AU-005) (Turner Design, Charlotte,
NC, USA)) [42]. To evaluate the fraction of Chl a contributed by picocyanobacteria to the
total Chl a concentration, we applied 1.258 femtograms (fg) Chl a cell−1 and 1.203 fg Chl
a cell−1 as the conversion parameters for Prochlorococcus and Synechococcus, respectively,
which were determined by the average values of the Chl a concentration of several algal
strains measured by high-performance liquid chromatography (HPLC) [43].
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stations with environmental DNA data.

To determine the concentrations of nitrate (NO3) and phosphate (PO4), the water
sample (100 mL) was placed in a polypropylene bottle, immediately frozen with liquid
nitrogen and stored at −20 ◦C until analysis. The NO3 and PO4 concentrations were
measured by the pink azo dye and the molybdenum blue methods, respectively. The
detection limits of NO3 and PO4 are 0.3 and 0.01 µM, respectively [44–46]. The nitracline
depth was defined as the depth at which the NO3 concentration difference was 0.5 µM
concerning the surface value [47–49].

2.3. Determination of Picophytoplankton Abundance

The cells were fixed with paraformaldehyde at a final concentration of 0.2% (w/v) and
were preserved in liquid nitrogen. Different picophytoplankton populations were catego-
rized with flow cytometry (FACSAria) (Becton-Dickinson, Franklin Lakes, NJ, USA) based
on cell size and autofluorescence in the range of orange from phycoerythrin (575 ± 15 nm,
for determining Synechococcus) and red from chlorophyll (>670 nm, for determining
Prochlorococcus and photosynthetic picoeukaryotes) under excitation at 488 nm. A known
number of fluorescent beads (TruCOUNT tube) (Becton-Dickinson, USA) were parallelly cal-
culated to convert the original cell abundance in the sample [24]. The putative relationships
between the picophytoplankton distribution and ambient hydrographic characteristics
were analyzed by redundancy analysis (RDA) and the envfit function in the vegan package
in R.

2.4. Picoplanktonic DNA Isolation

Seawater was filtered through a 5-µm mesh nylon net to remove larger plankton. The
planktonic cells in the filtrate were collected by 0.2-µm pore size polycarbonate membranes
(Nucleopore) (Whatman, Stockbridge, GA, USA) under gentle vacuum (≤100 mmHg). The
membranes were immediately frozen in liquid nitrogen until DNA isolation. The cells
retained on the membranes were disrupted with lysozyme (Roche, Basel, Switzerland) and
proteinase K (Roche, Switzerland) treatments. After purification by hexadecyltrimethylam-
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monium bromide and phenol/chloroform/isoamyl alcohol (25/24/1, v/v/v), the DNA pellet
was precipitated using isopropanol and resuspended in Tris-EDTA buffer (pH 8.0) [24].
The DNA concentration and purity were determined by spectrophotometry (NanoDrop)
(Thermo Scientific, Waltham, MA, USA)) at wavelengths of 230, 260, 280, and 320 nm.

2.5. The Diversity of Picoplankton Composition

DNA product (10 ng) was used as the template for the polymerase chain reaction
(PCR) to specifically amplify the V3–V4 region fragments of 16S rRNA genes using the
high-fidelity DNA polymerase 2× KAPA HiFi HotStart ReadyMix (Roche) and the forward
primer 16SV3V4-F (5′-tcgtcggcagcgtcagatgtgtataagagac AGCCTACGGGNGGCWGCAG-3′)
and the reverse primer 16SV3V4-R (5′-gtctcgtgggctcggagatgtgtataagagacAGGACTACHVG
GGTATCTAATCC-3′) (the lowercase letters indicate the Illumina adaptor sequences; W=A
or T; H=A, T or C; V=A, C or G; N=A, T, G or G) [50]. The amplicons were analyzed by
the Illumina MiSeq high-throughput nucleotide sequencing platform (Illumina, San Diego,
CA, USA)) using the pair-end method. After the removal of low-quality reads (quality
score > Q20) and the trimming of adaptor and primer sequences by Cutadapt software
4.6 [51], the diversity of the resultant reads was analyzed by DADA2 software 1.26 [52].
The taxonomic assignment of representative amplicon sequence variants (ASVs) obtained
by DADA2 analysis was further conducted with the 16S rRNA reference sequences in the
Silva database (version 138). The ASVs of Synechococcus and Prochlorococcus were assigned
following the previous study [53].

The indices of richness (abundance-based coverage estimator, ACE) and diversity
(Shannon) were estimated by the sequences randomly subsampled (the size of the smallest
library was used) from each sample 1000 times and were expressed as averages to avoid
biases generated by differences in the sequencing depth. The beta diversity analysis was
performed with hierarchical clustering to visualize the spatiotemporal distribution of the
picoplankton community assemblage by PRIMER 6 software with the Bray–Curtis distance.

2.6. Nucleotide Sequence Deposition

The nucleotide sequences used in this study have been deposited in the Sequence
Read Archive (SRA) database under BioProject accession number PRJNA904529.

3. Results

Based on physical characteristics such as current velocity, temperature, and salinity,
stations were divided into four categories, namely: K1, which was the station with coastal
upwelling; Stations K2 to K4, which were located at the mainstream of the Kuroshio
current; and Stations K5 and K6, which were close to the Kuroshio, and their hydrological
characteristics were affected by it. Stations K7 to K9 were located in the open ocean and
were regarded as the reference, where they were not affected by the Kuroshio current [42,46].
The hydrography in the upper water column (≤100 m) of the Kuroshio is high-temperature,
high-salinity, and low-nutrient content [46]. In addition to Station K1 being primarily
affected by upwelling, the intensity of monsoon blowing determines the mixing grade of
water columns at other stations. The northeast monsoon started in the autumn (October)
and led to the occurrence of upper water column mixing (Figure 2A). This stirring effect was
the most vigorous in the winter (January), and it resulted in the surface water temperatures
reaching low values of 22 to 24 ◦C (Figure 2B). With the weakening of the monsoon, the
water mixing gradually moderated in the spring (April). In the summer (July), significant
stratification was observed and resulted in a high surface temperature greater than 29 ◦C
(Figure 2C,D). Salinity was maintained above 34.5 at each station throughout the year
(Figure 2A–D).
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Figure 2. Vertical profiles of water temperature (◦C, A–D), nitrate (µM, E–H), phosphate (µM, I–L),
and Chl a concentration (mg m−3, M–P) along Stations K1 to K9 during October 2012 and January,
April, and July 2013. The black lines in (A–D) are salinity. The nitrate clines (black line) are indicated
in (F–I).

The nutrient distribution in the subtropical Kuroshio exhibited notably higher con-
centrations at the coastal upwelling stations. However, in the Kuroshio mainstream and
oceanic province, the concentrations of both nutrients in the euphotic zones were extremely
low (Figure 2E–L). In the autumn (i.e., October 2012) (Figure 2E) and the summer (i.e., July
2013) (Figure 2H), the depth of the nitracline gradually increased from the coast to the open
sea. In contrast, in the winter (i.e., January 2013) (Figure 2F) and the spring (i.e., April 2013)
(Figure 2G), except for the upwelling stations, the nitraclines were maintained at a depth of
approximately 100 m. The seasonal distribution of PO4 was similar to that of NO3. The
elevation of the nitracline derived from the mixing effect caused by the northeast monsoon
in winter and spring would facilitate the upward transport of deep-sea nutrients. The
chlorophyll was around 0.3 to 1.2 mg m−3 across four seasons. In the winter and spring,
there was an even distribution of chlorophyll in the upper layer (Figure 2N,O). However,
the maximum chlorophyll layer in the summer and autumn occurred at water depths of
approximately 50 m and 100 m, except for that at the upwelling station (K1), which was
found at the surface (1.29 mg Chl a m−3) (Figure 2M,P). Furthermore, the highest total
content of Chl a (186.36 mg Chl a m−3) within the depth ≤ 100 m of most stations was
found in the winter (Figure 2N).

The dominance of Synechococcus and picoeukaryotes was found in the surface water in
both the cold and warm seasons (Figure 3A–D,I–L). The highest abundance of Synechococcus
and picoeukaryotes both occurred at 10 m at the K1 station in the summer and spring,
respectively (1.5 × 105 cells mL−1 and 2.2 × 104 cells mL−1) (Figure 3C,D,K,L). However,
the maximum total cell numbers of Synechococcus and picoeukaryotes in the upper water
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column (≤100 m) appeared in the winter (9.3 × 108 cells cm−2 and 2.3 × 108 cells cm−2)
(Figure 3F,J). In contrast to Synechococcus and picoeukaryotes, Prochlorococcus was found
in all seasons (Figure 3E–H). Especially high total Prochlorococcus concentrations in the
upper water column (≤100 m) were present in summer and autumn (3.3 × 109 cells cm−2

and 2.4 × 109 cells cm−2) (Figure 3E,H). In addition, it had the highest number at specific
depths (75 m and 50 m) in these two seasons. In contrast, the distribution of Prochlorococcus
was more even at depths ≤100 m in winter than in summer and autumn, although the
total concentration of Prochlorococcus in the upper water column (≤100 m) was the same
as that in autumn (2.9 × 109 cells cm−2) (Figure 3F). According to the conversion factors
of Chl a concentration of Synechococcus and Prochlorococcus (1.065 fg Chl a cell−1 and
1.51 fg Chl a cell−1) [52], their contributions to total Chl a in the upper water column
(≤100 m) at different sampling sites are shown in Figure 4. On average, picocyanobacteria
(Synechococcus and Prochlorococcus) were responsible for approximately 30% to 50% of
the total Chl a in the four seasons; the highest percentage was shown in September 2009
and August 2015 (Figure 4C). Synechococcus contributed the lowest percentage of total
Chl a in October (1.5%), while the highest contribution was in September (Figure 4A).
Prochlorococcus contributed the highest percentage of total Chl a in the summer (August,
31.7%) (Figure 4B).
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Figure 3. Vertical profiles of the abundance of Synechococcus (Syn, A–D), Prochlorococcus (Pro, E–H),
and picoeukaryotes (PE, I–L) along Stations K1 to K9 during October 2012 and January, April, and
July 2013.

The total abundance of Prochlorococcus, Synechococcus, and picoeukaryotes at depths
above 100 m had distinct correlations with biotic and abiotic environmental factors in the
RDA (Figure 5). For example, Prochlorococcus was positively correlated with nitracline
depth, while Synechococcus was negatively correlated with water temperature and the depth
of the euphotic zone.
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Figure 5. Redundancy analysis (RDA) of the relationship of environmental factors (black dashed line
arrows) and total abundance of different picocyanobacteria groups (red line arrows) in the upper
water column (≤100 m) of different stations during the four sampling months.

The environmental DNA was collected in K2 and K4 to represent the sample in the
mainstream of the Kuroshio current when the K5 and K6 closed to the Kuroshio current.
The K8 station was the oceanic station. A total of 4,410,567 high-quality reads were obtained
after eliminating short- and low-quality sequences. The total reads had 1.6 to 9.8× 105 reads
at each station. The overall coverage at each station was greater than 99%. Each station
obtained 996 to 3012 ASVs (Table 1). The diversity and richness indices increased following
the distance of the station away from the coast. Open ocean stations had higher diversity
and richness indices of picoplankton compared with the stations affected by the Kuroshio
current. Furthermore, the open ocean station (K8) had the highest richness and diversity
indices, while the lowest indices were at the Kuroshio current station (K4) in the summer
(Table 1). Hierarchical clustering analysis showed that the total bacterial community
composition in the surface layer was different from that in the DCM layer (Figure 6). This
result suggested that niche partitioning in the community occurred (ANOSIM, R = 0.68,
p = 0.001).

In terms of the community structure of picoplankton at the surface of the Kuroshio
current, the ASVs were categorized into the phyla Cyanobacteria, Proteobacteria, Actinobacteria,
and Bacteroidetes (Figure 7). Each taxon occupied a consistent ratio in total reads among
all stations during the four seasons. In detail, the reads affiliated with Cyanobacteria
occupied 20 to 40% of the total reads. The highest cyanobacteria percentage occurred at
the K4 station in each season. The maximum percentage of cyanobacteria at the K4 station
was in the winter (41.6%) (Figure 7). Proteobacteria consistently occupied approximately
40% to 50% of the total reads (Figure 7). The major four genera of Proteobacteria were
Alphaproteobacteria, Deltaproteobacteria, Gammaproteobacteria, and Flavobacteria. The most
dominant genus was Alphabacteria, which accounted for approximately 20% to 30.8% of the
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total picoplankton during the four seasons. Actinobacteria accounted for only 6.6 to 14.6%
of the total picoplankton in the four seasons.

Table 1. The results of 16S rRNA gene V3-V4 sequencing and the indices of species richness (ACE)
and diversity (Shannon).

Time Station Reads ASV ACE Shannon

October 2021 K4 161,662 996 997 4.74
K6 199,278 1162 1162 4.95
K8 319,142 1551 1552 5.11

January 2013 K2 427,192 2082 2083 5.71
K4 407,216 1807 1808 5.01
K5 976,914 3012 3014 5.38
K6 272,391 1590 1590 5.22
K8 367,891 1764 1765 5.36

April 2013 K2 291,525 1335 1335 5.07
K4 206,446 1233 1233 5.16
K5 312,912 1409 1409 4.73
K6 294,990 1235 1235 4.65
K8 222,253 1201 1201 4.88

July 2013 K2 251,552 1235 1236 4.97
K4 283,202 1139 1139 4.75
K5 289,476 1134 1134 1.88
K6 278,805 1161 1162 4.85
K8 626,538 1898 1899 5.03
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Figure 7. The hierarchical order fraction (%) of different bacterial communities (in order level) from
the surface (A–D) and DCM (E–H) at Stations K2, K4, K5, K6, and K8 during October 2012 (A,E),
January (B,F), April (C,G), and July 2013 (D,H).

The ASV reads for Synechococcus and Prochlorococcus in the total cyanobacteria phylum
showed different seasonal patterns in both the surface and DCM layers (Figure 8). In
detail, Prochlorococcus accounted for 71.1% to 92.2% of the total cyanobacteria in summer
(Figure 8D,H) and autumn (Figure 8A,E) in the surface and DCM layers. In winter, the
relative abundance of Prochlorococcus significantly decreased (Figure 8B,F) in the two
layers. In particular, Prochlorococcus in DCM accounted for only 20% to 40% of the total
cyanobacteria when it accounted for 30% to 80% on the surface (Figure 8). Then, the relative
abundance of Prochlorococcus increased again in spring (40% to 60% of total cyanobacteria)
in the two layers. In contrast, Synechococcus had a high percentage in winter and spring,
accounting for approximately 20% to 80% of the total cyanobacteria, while that in summer
and autumn accounted for only 2.3% to 13.8% in the two layers (Figure 8). Within the
Synechococcus group, clades I, II, III, and VII formed the major group in the main Kuroshio
current (Figure 9). Synechococcus clade II had the highest relative abundance of Synechococcus
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(90%) in four seasons of the surface (Figure 9A–D). Synechococcus clade II was also dominant
in January and April of DCM (Figure 9F,G). However, it decreased by approximately 50%
in the DCM warm seasons when the relative abundance of clade VII increased (Figure 9H).
Prochlorococcus was categorized into two groups, the high light group (HL) and the low
light group (LL), by the differential Chl a intensity in flow cytometry. The HL-II groups
existed in both the surface and DCM and were responsible for more than 90% of the total
relative abundance of Prochlorococcus (Figure 10). The HL-I group was mainly observed in
the DCM and had a high relative abundance in the summer (Figure 10E–H). Finally, the LL
group only presented DCM (Figure 10E–H). Interestingly, the relative abundance of the LL
group started to increase in spring and had a maximum relative abundance in the summer
(approximately 20%) (Figure 10G,H).
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Figure 8. The hierarchical order fraction (%) of Synechococcus and Prochlorococcus from the surface
(A–D) and DCM (E–H) at Stations K2, K4, K5, K6, and K8 during October 2012 (A,E), January (B,F),
April (C,G), and July 2013 (D,H).
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Figure 9. The hierarchical order fraction (%) of Synechococcus from the surface (A–D) and DCM (E–H)
at Stations K2, K4, K5, K6, and K8 during October 2012 (A,E), January (B,F), April (C,G), and July
2013 (D,H). Different colors indicate different clades (clade-I, clade-II, clade-III, clade-VII, and clade-X).
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Figure 10. The hierarchical order fraction (%) of Prochlorococcus from the surface (A–D) and DCM
(E–H) at Stations K2, K4, K5, K6, and K8 during October 2012 (A,E), January (B,F), April (C,G), and
July 2013 (D,H). The three different colors indicate high light-I, high light-II, and low light groups.

4. Discussion

The Kuroshio current is an important western boundary current in the Northwest
Pacific Ocean. More than half of Chl a in the Kuroshio current is contributed by picoplank-
ton [29]. However, in comparison with other highly oligotrophic oceanic currents (i.e., the
Gulf of Mexico), few studies have focused on prokaryotic picoplankton in the Kuroshio
current [54–56]. Thus, in this study, we revealed the detailed community structure of
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picoplankton and their distribution in the Kuroshio current across four seasons. It would
help to understand the correlation between the western boundary current hydrography
and the picophytoplankton succession.

The Kuroshio current experiences sudden nutrient input events that boost Synechococ-
cus abundance. In our in situ observation results, the highest abundance of Synechococcus
primarily appeared at the K1 station in the summer (1.5 × 105 cells mL−1) and the spring
(9.9 × 104 cells mL−1), where there was strong nutrient input from upwelling (coastal
uplift). On the other hand, obvious stratification was found at other stations. Thus, the
nutrients at the other stations were scarcer than those at the K1 station and could not sup-
port Synechococcus, which had a high abundance similar to that at the K1 station. Liu et al.
(2021) indicated that the growth of Synechococcus in the Kuroshio current was enhanced
following increasing temperature by dilution experiments [57]. In addition, under high
temperature (surface water temperature + 4 ◦C), a higher growth rate of Synechococcus was
observed in nutrient-replete conditions than in nutrient-limited water [57]. Hence, in the
summer of the Kuroshio current, sudden nutrient input events could induce Synechococcus
to thrive temporarily. It has also been demonstrated that the nutrients brought by dust
storms, typhoons, and coastal uplift promote the growth of Synechococcus [23,24,29]. In
addition, deeper nutrients uplifted by upwelling also stimulated Synechococcus to grow in
the upwelling area [58,59].

Another finding was that the total cell number of Synechococcus in the upper water
column (≤100 m) was higher in the winter than in the summer. From a previous study,
the growth rates of Synechococcus increased with increasing water temperature. Although
the average surface water temperature in summer was 28.7 ◦C, it remained at 26.1 ◦C in
the winter season of the Kuroshio current. Following a previous study, the growth rate
of Synechococcus at 26 ◦C remained comparable to that at 28 ◦C. Thus, we suspected that
the growth rate of Synechococcus remained in these two seasons. Furthermore, because
of monsoon-induced vertical mixing, the nutrients in the winter were transported more
effectively to the surface layer in the winter. Additionally, there was strong upwelling
invasion during cold seasons. The upwelling events were observed not only at coastal
stations (K1 and K2) but also at open ocean stations (K8 and K9). From the above, these
factors likely contributed to a more evenly distributed number of Synechococcus across
each station in the winter. In fact, the highest number of Synechococcus in winter reached
9.3 × 104 cells mL−1. Consequently, the total cell number of Synechococcus in the upper
water column (≤100 m) was the highest during the winter season (9.3 × 108 cells cm−2).
This explains the negative correlation between water temperature and the abundance
of Synechococcus in the RDA. Monsoon-induced vertical mixing, upwelling, and holding
high water temperature in the Kuroshio current caused even distribution and high total
Synechococcus abundance in the upper water column (≤100 m) in the winter.

Offshore of northeastern Taiwan, upwelling often occurs when the branch of the
Kuroshio current intrudes into the East China Sea shelf at higher latitudes. Chung and
Gong (2019) [58] discovered that the surface of upwelling sites exhibited a high abundance
of Synechococcus (5.9 × 104 cells mL−1), ranging from 1 to 2 × 104 cells mL−1 in the surface
waters of the sites influenced by the Kuroshio current. The relative abundance of Synechococ-
cus, based on total 16S rRNA amplicon sequencing, was up to 96%. These Synechococcus
populations contained highly phylogenetic divergence, including clade II, clade X, and
clade XI [58], with clade II being the most dominant (96% of total Synechococcus). In this
study, we focused on a more southern Kuroshio current, characterized by low available
nutrients in situ. Therefore, the differences found in the abundance of Synechococcus com-
pared with the findings of Chung and Gong (2019) [58] could be attributed to variations
in the formation of upwelling caused by the main or branch currents of the Kuroshio
current system [58]. Additionally, this study revealed the presence of Synechococcus in clade
VII, clade III, and clade X. These variations in clade composition are likely influenced by
different depths of upwelling, which might provide distinct nutrient concentrations for
microorganisms in situ [60–62].
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Picoeukaryotes may also be stimulated by nutrient input. During the winter, pi-
coeukaryotes and Synechococcus and picoeukaryotes both exhibited high abundance, at-
tributed to nutrient input from subsurface layers through mixing. In addition, picoeukary-
otes were also particularly abundant on the surface of upwelling stations (K1) during the
spring and summer. The RDA revealed a positive correlation between the abundance
of picoeukaryotes and Synechococcus (Figure 5), supporting the notion that the two mi-
croorganisms are correlated. Chan et al. (2020) also demonstrated that the abundance
of picoeukaryotes in the Kuroshio current was positively correlated with Synechococcus
abundance (Pearson correlation, p < 0.01) [63].

Prochlorococcus is dominant in many oligotrophic environments, such as central oceanic
gyres and the southern Gulf of Mexico [64–66]. It has also consistently been observed as the
prevailing group upstream of the Kuroshio current [57,67]. According to our results, the
total abundance of Prochlorococcus in the upper water column (≤100 m) showed a positive
correlation with the nitracline depth (p = 0.031). This indicates that the total Prochlorococcus
increased as the nitracline depth increased, which has a scarce nitrate concentration. This
relationship was particularly evident during summer and autumn, characterized by a
deeper nitracline compared to other seasons (summer: R2 = 0.80 and p < 0.05; autumn:
R2 = 0.75 and p < 0.05). Notably, while Prochlorococcus exhibited a more widespread vertical
distribution in other seasons, its distribution was concentrated at specific depths within
the DCM during summer and autumn. Furthermore, the relative abundance of the LL and
HL-I Prochlorococcus ecotypes, which thrive in low temperature and low light intensity,
increased in DCM during summer and autumn (Figure 10H,E) [68]. In contrast, the LL
and HL-I ecotypes displayed similar relative abundances in the winter season, possibly
due to well mixing that brought them to the surface (Figure 10B,F). Recent studies have
revealed that Prochlorococcus carries numerous nitrate assimilation genes and is abundant
in or near nitracline in oligotrophic marine environments [55,69,70]. Therefore, this distinct
difference in abundance is likely attributable to a clear stratification in the subsurface and
deep nitracline during summer and autumn that allows the two Prochlorococcus ecotypes at
deeper depths to rapidly utilize nutrient pulses [71].

5. Conclusions

The nutrient-scarce, warm, and high-salinity Kuroshio current has a profound impact
on both the marine ecology of the northwestern Pacific Ocean and the global climate [72–74].
It is important to understand the characteristics of the fundamental microorganism com-
munity in different regions within the Kuroshio current. This study revealed that the
composition of prokaryotic picoplankton was significantly different between the surface
and DCM, except in January, which had a deep mixing zone. Synechococcus (dominated
in Clade II) and Prochlorococcus (dominated in HL-II groups) were the major members of
picocyanobacteria, which accounted for half of the Chl a in the Kuroshio current. The
seasonal dynamics of Synechococcus were caused by water temperature, nutrient input, and
euphotic zone, whereas Prochlorococcus had a positive correlation with nitracline depth.
Thus, nutrients in situ rapidly and highly affected the seasonal dynamics of these fun-
damental microorganism groups. Under the scenario of global warming, the flow-speed
of Western Boundary Currents would be decelerating [74]. It would affect the nutrient
transport of Western Boundary Currents and in turn change the abundance and distri-
bution of picoplankton in these regions. The long-term observation of the variations in
picocyanobacterial assemblage and their relative biotic and abiotic factors can highlight
their importance in the ocean, which is regulated by global warming [9].
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