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Simple Summary: This study aimed to investigate the influencing mechanisms of the intestinal
microbiota and gene expression of Fenneropenaeus chinensis under low-salinity stress. The 16S rDNA
results suggest that the relative abundances of Photobacterium and Vibrio decreased significantly,
whereas some bacteria, Shewanella, Pseudomonas, and Lactobacillus, became the predominant com-
munities. Transcriptome sequencing identified numerous differentially expressed genes (DEGs)
through various types of N-glycan biosynthesis, amino acid sugar and nucleotide sugar metabolism,
and lysosomes to adapt to stress. Correlation analysis between microbiota and DEGs showed that
significant changes in Pseudomonas, Ralstonia, Colwellia, and Cohaesibacter were positively correlated
with immune-related genes such as peritrophin-1-like and mucin-2-like, and negatively correlated
with caspase-1-like.

Abstract: Salinity is an important environmental stress factor in mariculture. Shrimp intestines
harbor dense and diverse microbial communities that maintain host health and anti-pathogen capa-
bilities under salinity stress. In this study, 16s amplicon and transcriptome sequencing were used
to analyze the intestine of Fenneropenaeus chinensis under low-salinity stress (15 ppt). This study
aimed to investigate the response mechanisms of the intestinal microbiota and gene expression to
acute low-salinity stress. The intestinal tissues of F. chinensis were analyzed using 16S microbiota
and transcriptome sequencing. The microbiota analysis demonstrated that the relative abundances
of Photobacterium and Vibrio decreased significantly, whereas Shewanella, Pseudomonas, Lactobacillus,
Ralstonia, Colwellia, Cohaesibacter, Fusibacter, and Lachnospiraceae_NK4A136_group became the predom-
inant communities. Transcriptome sequencing identified numerous differentially expressed genes
(DEGs). The DEGs were clustered into many Gene Ontology terms and further enriched in some
immunity- or metabolism-related Kyoto Encyclopedia of Genes and Genomes pathways, including
various types of N-glycan biosynthesis, amino acid sugar and nucleotide sugar metabolism, and
lysosome and fatty acid metabolism. Correlation analysis between microbiota and DEGs showed
that changes in Pseudomonas, Ralstonia, Colwellia, and Cohaesibacter were positively correlated with
immune-related genes such as peritrophin-1-like and mucin-2-like, and negatively correlated with
caspase-1-like genes. Low-salinity stress caused changes in intestinal microorganisms and their gene
expression, with a close correlation between them.
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1. Introduction

Fenneropenaeus chinensis, a prominent aquatic species in the Yellow and Bohai Seas
of China and the Peninsula coast of Korea [1], has considerable economic and nutritional
value and a delectable flavor [2,3]. Its production in China has increased substantially since
2003 [4] and can be adjusted by varying environmental salinities from 18 to 32 [5]. Shrimp
culture has demonstrated a tendency to move increasingly from coastal to inland areas,
making great use of natural water bodies and minimizing the impact on coastal ecological
areas [6,7], owing to the ongoing development of desalination culture technology. Further,
low-salinity water is frequently used in several countries, including China, the United
States, Thailand, Brazil, and Mexico, to produce inland shrimps [8-10].

Environmental stress, including dissolved oxygen [11,12], temperature [13,14], salin-
ity [14,15], and ammonia nitrogen stresses [13], generally serves as an adaptation mech-
anism to survive and benefit from potentially threatening environments. Appropriate
salinity modulates the microbiota composition and the immune response of host animals
in a presumably beneficial manner [16]. In marine species, low-salinity stress typically
leads to oxidative damage, physiological malfunction, and immunological disease [17-19].
Generally, shrimps maintain a balance of osmotic pressure through the hemolymph system
to ensure immune homeostasis in the internal environment [20].

Several studies have shown that the composition of intestinal microbiota of aquatic an-
imals is mainly determined by biotic factors, such as host developmental stages [21,22] and
dietary habits [23,24], whereas abiotic factors have been less studied. The digestive tracts
of animals with sophisticated microecosystems are home to a sizable microbial community
of between 1000 and 5000 species. The animal intestine acts as a portal for pathogenic
colonies and invades host nutrient absorption [25], metabolism [26], immunity [27-29],
and osmoregulation [30] homeostasis. Dysbiosis of the intestinal microbiota may disrupt
the host intestinal barrier and lead to pathogenic infections and diseases by reducing the
ability of the microbiota to guide the development of the immune system [31]. The immune
mechanisms in the intestines of crustaceans have recently become an important research
subject. Therefore, it is critical to elucidate how the microbiota affect the development,
growth, and cellular functions of host organisms under low salinity. This study aims
to provide key insights into the following: (1) the influencing mechanism of intestinal
microbiota and differential expression of some genes subjected to salinity stress; and (2) the
correlation between changes in intestinal microbiota and immune gene expression.

2. Materials and Methods
2.1. Shrimp Rearing and Sample Collection

Healthy F. chinensis shrimps (body weight = 9.53 & 1.55 g) were obtained from the
Haifeng Fishery Technology Company (Changyi, China). The included male and female
shrimps were about 4 months old. A total of 150 shrimps were acclimated in aerated
seawater (salinity 30.02 + 0.44 ppt, pH 8.47 £ 0.17, dissolved oxygen 5.02 + 0.03 mg/L,
temperature 27.9 & 1.9 °C) for 7 days. These water-quality parameters were detected three
times and the average value was taken using a Multi-parameter Water Quality Analyzer
(YSI, EXO2, Yellow Springs, OH, USA). One third of the tank volume of seawater was
changed daily. Oxygenation pumps were continuously operated, and F. chinensis were fed
with fresh wild fish and shrimps at 8:00 a.m. and 6:00 p.m. This experiment included a
low-salinity stress group (salinity 15 ppt) and a control group [32] (salinity 30 ppt, C0), and
50 shrimps were cultured in each group and 9 shrimps (three parallels, three replicates)
were used to collect samples in each group. The experimental conditions were consistent
with those of the acclimatization period. During the experiment, salinity was corrected
every 6 h using light brine. Intestinal tissues were collected after exposure to low-salinity
stress on days 3 (S3), 7 (57), and 14 (514), extracted aseptically, and placed in 1.5 mL sterile
centrifuge tubes for microbiome and transcriptome sequencing. All the samples were
immediately frozen in liquid nitrogen and stored in a —80 °C refrigerator until analysis.



Biology 2023, 12, 1502

3of 14

2.2. Microbiota Analysis Using 165 rDNA Genes Sequencing

The intestinal microbiota of the shrimps was examined using Illumina sequencing
(NovaSeq, Illumina, San Diego, CA, USA) of the V4 region of the 165 rDNA genes. The
whole genomic DNA of the sample was extracted using cetyltrimethylammonium bro-
mide/sodium dodecyl sulfate methods and detected in 12 samples. The purity and con-
centration of the extracted DNA were detected using agarose gel electrophoresis. Using
diluted genomic DNA as a template, a polymerase chain reaction (PCR) was performed
using the following primers: 515 F (5'-GTGCCAGCMGCCGCGGTAA-3’ and 806 R (5'-
GGACTACHVGGGTWTCTAAT-3').

Libraries were constructed using the TruSeq® DNA PCR Free Sample Preparation Kit
(Ilumina, San Diego, CA, USA), quantified with Qubit, and then sequenced with NovaSeq
6000 (TruSeq DNA PCR-Free Library Preparation Kit). The final Amplicon Sequence
Variants (ASVs) and feature lists were obtained using the deblur module in DADAZ2 [33] to
reduce noise and filter out sequences with an abundance of less than 5 species annotation
using the Silva 138.1 database. Alpha and beta diversity indices were calculated using
the QIIME2 software (Version QIIME2-202006, Caporaso Lab, Flagstaff, AZ, USA), and
the rarefaction curves were plotted. Principal Co-ordinates Analysis (PcoA)were analyzed
based on the UniFrac distance of weighted and unweighted [34]. If the samples are closer to
each other, the species’ compositional structure is more similar. Linear discriminant analysis
Effect Size (LEfSe) is an analytical tool for discovering and interpreting high-dimensional
biomarkers, including histograms of the distribution of linear discriminant analysis (LDA)
values and evolutionary branching maps [35]. Finally, the significantly different species
between groups were analyzed using LEfSe, LDA score > 4.

2.3. Gene Expression Analysis Using RNA Sequencing

Total RNA was extracted from all intestinal tissues using TRIzol reagent (Thermo
Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. The
RNA integrity was assessed using the RNA Nano 6000 Assay Kit for the Bioanalyzer 2100
System (Agilent Technologies, Santa Clara, CA, USA). The library construction kit was
NEBNext® Ultra™ RNA Library Prep Kit for Illumina®. All clean paired-end reads were
separately aligned to the F. chinensis genome (ASM1920278v2) using HISAT2.0.5. We used
DESeq?2 to detect differentially expressed genes (DEGs), using fragments per kilobase per
million mapped reads (FPKM) by StringTie (v1.3.3b, The Center for Computational Biology
at Johns Hopkins University, Baltimore, MD, USA), which were defined as genes with

llog2(FoldChange) | > 1 and p-value < 0.05 between the normal salinity and low-salinity

stress groups. DEGs enrichment analyses of Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) were performed using ClusterProfiler (3.8.1) software
(v2.0.5).

2.4. Verification of Real-Time Quantitative PCR (gPCR)

To verify the expression patterns of the genes identified by RNA-seq, quantitative
reverse transcriptase (qQRT)-PCR analyses of some selected genes were performed on a 7500
Fast Real-Time PCR system (Applied Biosystems, Foster, CA, USA) using the SYBR Green
PCR Master Mix (Life Technologies, MASS, Waltham, MA, USA) with the same extracted
RNA samples as those used for transcriptome sequencing. 3-actin was used as an internal
control to normalize the cycle threshold (CT) values of the target genes. The expression of
the target genes was calculated using the 2724Ct method [36], and all the reactions were
repeated in triplicate to ensure the reproducibility of the results.

2.5. Correlations between ASVs and DEGs

Using Cytoscape software (Cytoscape 3.8.0, San Diego, CA, USA), Pearson correla-
tion analysis was used to reveal the correlation between intestinal DEGs expression and
intestinal bacteria in the host: values with p < 0.05 were considered statistically significant.
Immune-related DEGs were filtered using |log2(foldchange)| > 1 and p-value < 0.01. Sig-
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nificant differences among groups were estimated by one-way analysis of variance followed
by Duncan’s multiple range tests using the Statistical Package for the Social Sciences (SPSS
22.0, IBM, Armonk, NY, USA).

3. Results
3.1. Intestinal Microbiota Community Analysis

A total of 992,563 clean reads were obtained from the intestine of F. chinensis using 16S
rDNA sequencing, with an average of 82,714 reads per sample obtained after optimization
and quality control (Table S1). The rarefaction of each sample indicated that the depth
and quality of the sequencing were sufficient (Figure S1). For the intestines collected
from shrimp treated with low salinity for 14 days, unique ASVs were shown, whereas
248 ASVs were shared by all four groups (Figure 1A,B). Alpha diversity analysis showed
that the Chao 1, Shannon, and Simpson indices were decreased significantly (p < 0.05) in S3
under low-salinity conditions compared with C0O, while the dominance index increased
significantly (p < 0.05). It exhibited the opposite tendency in S7 vs. CO. In S14, these
indices gradually returned to the level of normal shrimp (Figure 1C-F, Table S2). Principal
coordinate analysis, based on unweighted and weighted UniFrac distances, demonstrated
the heterogeneity and diversity of the species composition of intestinal samples at various
times (Figure S2).
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Figure 1. Abundance and diversity of the intestinal microbial community in F. chinensis under low-
salinity stress. (A) The numbers of shared Amplicon Sequence Variants (ASVs) indicated by a Venn
diagram. (B) The numbers of unique ASVs indicated by a bar chart. (C) Chaol index, (D) Dominance
index, (E) Shannon index, and (F) Simpson index. The same lowercase letter means the differences
are not significant, and the different lowercase letters mean the differences are significant (p < 0.05).

Low-salinity stress altered the structure and composition of the intestinal microbiota of
F. chinensis. At the phylum level (Figure 2A, Table S3a), the dominant phyla of the intestinal
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Relative Abundance

microbial community of shrimps were Proteobacteria, Firmicutes, and Actinobacteria,
and Proteobacteria was the most abundant phylum, accounting for 38.06-70.53% of all
groups. Compared with C0, the relative abundance of Proteobacteria increased significantly
(p < 0.05) in the S3 group, while it was greatly reduced in 57 and remained stable in 514,
just opposite to Actinobacteria, and was restored to normal levels. Firmicutes decreased
markedly in S3, but increased significantly (p < 0.05) in S14. At the genus level, for all
groups at C0, the dominant genera in the three groups showed different results. The genera
(Figure 2B, Table S3b) Photobacterium and Vibrio were the primary intestinal bacteria in the
C0. Compared to CO, Photobacterium and Sphingomonas abundances were enriched in S3.
Subsequently, Photobacterium and Vibrio decreased dramatically in S7 and S14, respectively.
14 I(\J/l%‘se(:hizohium

Staphylococcus
Streptococcus

oo

Pepmclosmdmm
RB41

Others =
,,,,, Enterococcus

icrobi 0.75¢4--
w Verrucomicrobiota & Pargbacterories
w Gémmatimonadota % m Ensifer
. Chﬂrgbﬂgx] < X]xacu‘mmnhac teraceae
obacteriota
= Cyanobacteria 2 = Halomonas
Bacteroidota é 0.5 | .. Bacteroides
- mActinobacteriota © m Collinsella
W Firmicutes = W Lactococcus
m Proteobacteria = m Esc| -Shigell
= = pelfin .
~ w Lachnospraceae_NK4A136_group

IS)
¥
i

,,,,, ® Muribaculaceas
Fusibacter
m Cohaesibacter
Colwellia

m Ralstonia
w Lactobacillus

l Chloroplast
m Pseudomonas

S14 = Shewancla

hm omonas
Photobacterium

u .wI |

Proteobacteria

. S3vsS7

Cyanobacteria

Actinobacte riota

83vsS14 S4WSI4
S3vsS7
CO\SS[4 . . - COWSM

o

s14

Pralie>0.05 o B pube>0ss

ZSCMC. praie <001 . émm Pvalue <0.01
o praie <005 - * puabie <005

Verrucomicrobiota

EmCO mmm Sl4

o__Pseudomonadales
f_'Shewanellaceae
é_Pseud:omonas

f Pseudomonadaceae
s, Shewanella amazonensls
: g_¢ shewanella

; g_l Ralstonia
f_Burkholdériaceae
ol Burkho!derlales
g_1 Lachnosplraceae NK4A136 _group
. f_Colwelliaceae
g_ Colwellia
g_Cohaesibacter
' g_Fusibacter

Chloroflexi

i _g Phombacrenum : ,. \\\\
—6.0-4.8-3.6-2.4-12 0.0 1.2 24 3.6 48 6.0 “\\ \\\\\\\
LDA SCORE (log 10) i \\\\

s

Cohaesibacter

Bacteroidota
Firmicutes
Ralstonia
Shewanella
Chloroplast

Lactobacillus
Pseudomonas

Myxococcnla

Acidobacteriota

Cladogram

m=Co WRSTREE o: _Colwelliaceae

=i B b: f_Shewanellaceae
B c: {_Burkholderiaceae
o_Burkholderiales
o_Oceanospirilales

o Oceanosplrlllales
s Photobactenum damselae

Figure 2. Intestinal microbiota community analysis of F. chinensis under low-salinity stress.
(A) Relative abundances of the top 10 dominant phyla. (B) Relative abundances of the top
30 dominant genera. (C) Heatmap represents the level of phyla significantly altered. (D) The heatmap
represents the level of genera significantly altered. (E) ASV markers found in the intestinal bacterial
community of F. chinensis exposed to CO (red bars) and S14 (green bars) group. LDA score (above
4.0) of different bacterial taxa. (F) LefSe cladogram plot.
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Numbers of DEGs

At the phylum and genus level, the top 10 bacteria significantly affected by low-
salinity stress were used for further analysis (Student’s t-test, p < 0.05, Figure 2C,D).
To investigate the different abundances of bacterial taxa associated with salinity expo-
sure, an LDA of the effect size between C0 and S14 was performed (Figure 2E,F). In the
cladogram, Photobacterium was enriched in C0. The relative abundances of these eight
genera were significantly increased in 514, Ralstonia, Colwellia, Lactobacillus, Shewanella,
Lachnospiracene_NK4A136_group, Fusibacter, Pseudomonas, and Cohaesibacter.

3.2. Intestinal Transcriptome Analysis

A total of 514,166,164 high-quality clean reads (77.13 G) (Table S4) were obtained after
removing poly-N, adaptor, and low-quality sequences, which were subsequently mapped
to the reference genome (ASM1920278v2). The mapping rates ranged from 85.24 to 91.12%
(Table S5). Sums of 1352 (297 upregulated and 1055 downregulated), 314 (227 upregulated
and 87 downregulated), and 639 (354 upregulated and 285 downregulated) DEGs were
identified in 53, S7 and S14, respectively (Figure 3A).
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Figure 3. Verification of the differentially expressed genes (DEGs) identified by the intestine tran-
scriptome analysis of F. chinensis under low-salinity stress. (A) The number of DEGs identified in
the three samples compared to the control group (CO0). (B) Expression levels of the 10 DEGs were
verified in S3 vs. CO by qRT-PCR. (C) The expression levels of the 10 DEGs were verified in S7 vs. C0O
by gRT-PCR. (D) The expression levels of the 10 DEGs were verified in 514 vs. C0 by qRT-PCR.

To verify the intestinal transcriptome results, 10 DEGs were selected and primers were
designed for real time quantitative PCR (qPCR) (Table S6). The results of the gRT-PCR
analysis were consistent with those of the RNA-seq data, revealing the reliability and
robustness of the transcriptome analysis (Figure 3B,D).

A large number of GO terms were significantly enriched in S3, S7, and S14 among the
differentially expressed transcripts compared with CO (p < 0.05) (Table S7). “proteolysis”,
“carbohydrate derivative biosynthetic process”, “extracellular region”, “peptidase activity”,
and “peptidase activity, acting on L-amino acid peptides” represented many DEGs in the
S3 (Figure 4A). In the S7 and 514 groups, the DEGs were mainly involved in “transmem-
brane transport”, “lipid metabolic process”, “chitin binding”, “sulfotransferase activity”,

“transferase activity”, and “transferring sulfur-containing groups” (Figure 4B,C).
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Figure 4. Enrichment analysis of differentially expressed genes (DEGs). (A) Enrichment results
of Gene Ontology (GO) terms in S3 vs. C0. (B) Enrichment results of GO terms in S7 vs. CO.
(C) Enrichment results of GO terms in 514 vs. C0. Red represents biological processes (BP); green
represents cellular components (CC); and blue represents molecular functions (MF). (D) The top
20 KEGG pathway analysis results in S3 vs. CO0. (E) The top 20 Kyoto Encyclopedia of Genes and
Genomes KEGG pathways analysis results in S7 vs. C0. (F) The top 20 KEGG pathways analysis

results in 514 vs. CO.
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The KEGG pathways were enriched in 53, S7, and S14 (Table S8). In S3, 119 DEGs (18
upregulated and 101 downregulated) were significantly associated with various biosyn-
thesis and energy metabolism processes (Figure 4D). In S7, 19 (15 upregulated and 4
downregulated) DEGs significantly changed in relation to lysosomes, various types of
N-glycan biosynthesis, and the Notch and Wnt signaling pathways (Figure 4E). At S14,
112 (41 upregulated and 71 downregulated) DEGs were significantly enriched in related
pathways, including fatty acid metabolism, lysosome, glycolysis/gluconeogenesis, amino
acid biosynthesis, fatty acid biosynthesis, and nitrogen metabolism (Figure 4F).

3.3. Correlation between Intestinal Microbiota and Immune-Related DEGs

To understand the interaction mechanism between the intestinal microbiota and the
gene expression response to low-salinity stress in F. chinensis, we selected 12 immune-
related DEGs in S3, S7, and S14 (Table S9). Additionally, the 30 most dominant microbial
genera under low-salinity conditions were selected to confirm the key microbial markers of
salinity stress.

The correlations between intestinal bacteria and the expression of immune genes were
calculated (Figure 5). The changes in Pseudomonas and Ralstonia were significantly positively
associated with peritrophin-1-like (PT-1), mucin-2-like (Muc-2), phospholipase A2 group
XV-like (PLA2G15), procathepsin L-like (pCTS-L), and cathepsin B-like (CTSB), but were
negatively correlated with caspase-1-like (Casp1). The genera of Colwellia, Cohaesibacter, and
Fusibacter were significantly and positively correlated with PT-1 expression and negatively
correlated with Caspl. The Lachnospiraceae_ NK4A136_group was significantly positively
correlated with PT-1, Muc-2, tumor necrosis factor alpha-induced protein 8-like protein
(TNFAIP8), PLA2G15, pCTS-L, and CTSB, and negatively correlated with Caspl. Lactococcus
was significantly positively correlated with Muc-2, lysozyme (Lys), CD109 antigen-like
(CD109), TNFAIPS, pCTS-L, and CTSB and negatively correlated with Caspl. Photobacterium
was positively correlated with collagen alpha-5(IV) chain-like (COL445) and Caspl while
being negatively correlated with TNFAIPS, PLA2G15, pCTS-L, and CTSB.
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4. Discussion
4.1. Intestinal Microbial Community Changed under Low-Salinity Stress

Several studies have shown that environmental stress and pathogen challenges can
alter the composition of the intestinal microbiota in aquatic animals [37-39]. In this novel
study, we studied the effect of the intestinal microbiota of F. chinensis in response to low-
salinity stress. High-throughput sequencing analysis of 165 rDNA revealed that low-salinity
stress markedly disrupted the diversity and abundance in the intestine of shrimps in S3.
This is because the shrimp were subjected to acute low-salinity stress, resulting in the
disruption of the dynamic balance of the intestine. Shrimp were unable to satisfy the
energy demand in a short period of time, and thus Alpha diversity was reduced in 53. With
the prolongation of low-salinity stress, shrimp gradually adapted to various metabolic
and energy levels in the body. Acute salinity stress may disrupt the intestinal microbiota
balance, leading to an unhealthy state of the intestine and even death.

Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes were the dominant
phyla in the shrimp intestinal microbiota, consistent with previous studies [40,41]. Notably,
we found that Proteobacteria, the most abundant phylum in the intestine of F. chinensis,
imbalance is a potential marker of immune disorders in the intestine [42,43], thus enhancing
the intestinal disorders in shrimp that typically occur under salinity stress. Additionally,
the proportion of Bacteroidetes increased, whereas that of Firmicutes decreased in this
study. The ratio of Firmicutes to Bacteroidetes can reflect the physiological status of the
intestine, and a decrease in Firmicutes indicates an intestinal dysfunction [44—46]. Until
57, the abundances of Proteobacteria, Firmicutes, and Actinobacteria were gradually up
to the level of normal shrimp compared to C0. This is because with the extension of
stress, the shrimp slowly adapted to its physiological state. However, Firmicutes had the
highest relative abundance in 514 under salinity stress, which is related to fermentation
and provides nutrients to promote energy harvesting by the host [47] when shrimps are
exposed to low-salinity stress.

Although the genus Photobacterium [48], a marine pathogen, increased, the probiotic
Sphingomonas [49] also significantly increased in the S3 group compared to that in the
control group under low-salinity stress. The proportion of opportunistic bacteria increased,
whereas those regarded as commensal or beneficial bacteria decreased when the host faced
hyposaline stress. Particularly, the relative abundance of Vibrio [50], an opportunistic
pathogenic bacterium, increases significantly when exposed to pathogenic infections and
extreme environmental stress. However, its relative abundance decreased in this study,
and possibly extreme environmental stress was not reached. In the S7 group, the relative
abundance of the genera did not change significantly. Additionally, in S14, some potential
probiotics, such as Lactobacillus, Pseudomonas, and Shewanella, were significantly increased,
which may be conducive to balancing the intestinal microbiota and immune system [51-53],
thus alleviating the simultaneous stress imposed by salinity. Based on the LEfSe analysis in
this study, as low-salinity stress continued, bacteria associated with biodegradation, such
as Colwellia [54], Lachnospiraceae_NK4A136_group [55] related to biological metabolism, and
the pathogenic bacteria Ralstonia [56,57], also significantly increased. These bacteria may
be responsible for enhancing intestinal immunity in the host to restore salinity stimulation.

4.2. Participation of Immune-Related Genes in Response to Low-Salinity Stress

As an important immune organ, the intestine maintains homeostasis under conditions
of low-salinity stress by regulating the expression of immune-related genes [58]. Compre-
hensive profiling of the intestinal transcriptome will improve our understanding of the
adaptability of shrimps to salinity. Due to the lack of adaptive immune mechanisms in
crustaceans, researchers have paid increasing attention to the molecular mechanism of the
innate immunity of shrimps, which is the first line of defense against invading pathogenic
microorganisms [59,60]. Phagocytosis and apoptosis, which are critical in the cellular
immune response, play significant roles in endogenous antiviral activity in shrimps [59,61].
In this study, we found that low salinity significantly affected the digestive and absorptive
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functions of the intestine and the expression of immune-related genes. For example, most
genes significantly suppressed transcriptional expression in S3 under low-salinity stress,
confirming that the shrimps were markedly susceptible to stress at this stage.

Mucin protein, an important component of the intestinal mucus layer, could protect the
intestine from bacterial attachment and invasion, thereby inhibiting the local inflammatory
reaction [62,63]. Muc-2 and mucin-4-like (Muc-4) allow components of the microbiota
to penetrate and reside within the mucus, affecting mucosal protection and increasing
susceptibility to luminal insults [64,65]. However, the downregulation of Muc-2 and Muc-4
proteins showed that the intestine could be damaged in the deep layer of the mucosa
in response to salinity stress. In contrast, collagen, the most abundant glycoprotein, is
the main component of the extracellular matrix [66]. Here, we identified that COL4x5
mRNA was significantly overexpressed on day 14 to alleviate the salinity-induced intestinal
barrier damage, which indicates that low-salinity stress severely affected the intestinal
cellular basement.

Organisms rely on antioxidant systems to generate oxidative stress from reactive oxy-
gen species in response to pathogen attacks [67]. Several important immune antimicrobial
peptides, Lys [68], peroxidase-like (PO) [69], and PLA2G15 [70], were significantly induced,
indicating that the intestinal antioxidant oxidation functions were dysregulated in F. chinen-
sis. PLA2G15, a lysosomal specific phospholipase A2, was purified from a bovine brain and
plays a primary role in host defense [70]. Cathepsins, the predominant lysosomal proteases,
play a vital role in physiological processes and several diseases [71,72]. For example, the
upregulation of CTSB and pCTS-L, which have antioxidant properties, was reinforced in
the shrimp intestine to counteract inflammatory disorders. CD109 and TNFAIP8 were also
involved in the anti-pathogenesis of inflammatory diseases [73,74]. PT-1 [75] can protect
the host from pathogen damage, which is beneficial for coping with low-salinity stress.
Caspl1 is a gene encoding a variety of proteins associated with cell death, and the inhibition
of its expression impairs the proliferation of disease-associated cells [76]. With the down
regulation of the apoptosis gene Casp 1 [77,78], it is reasonable to speculate that hosts with
F. chinensis are undergoing an inflammatory process and respond to oxidative stress to
alleviate some of the effects of low-salinity stress. However, further efforts are required to
study the key intestinal immune genes.

4.3. Relationship between Intestinal Microbial Community and Expression of
Immune-Related Genes

To further elucidate host-microbe relationships, we performed a correlation analysis
between intestinal immune-related genes and the microbiota by calculating the Pearson
coefficient. Of these 12 immune genes, the upregulated expressions of PT-1, pCTS-L,
PLA2G15, CTSB, and TNFAIPS were positively correlated with the genera Lactococcus,
Lachnospiracene_NK4A136_group, Pseudomonas, and Ralstonia, suggesting that these bacteria
might contribute to the intestinal immune homeostasis of F. chinensis under low-salinity
stress. Overall, the above microbiota genera were significantly positively correlated with
the downregulation of Muc-2, while they were significantly negatively correlated with
the downregulation of Caspl. Therefore, the two genes were significantly altered after
low-salinity stress, which might be a biomarker for the health status of shrimp.

Taken together, the microbial biomarkers/genes identified in this study could be
applied to monitor the health status of F. chinensis under acute salinity stress, and screened
as tolerance-related markers to better understand the molecular mechanisms of internal
immunity in shrimps.

5. Conclusions

Our results showed that low-salinity stress could induce positive changes in intestinal
microbiota composition and gene expression. Low-salinity stress disrupts intestinal home-
ostasis in shrimp, and stimulates the expression of genes related to energy metabolism,
immune and digestive systems, and glycan biosynthesis. There is a connection between
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the intestinal microbial composition and the expression of immune-related genes under
low-salinity stress. These findings provide new perspectives for ameliorating salinity stress
in the shrimp industry.
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