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Simple Summary: MicroRNAs (miRNA) inhibit the translation and enhance the degradation of
their target mRNAs, but only moderately. Paradoxically, miRNAs and their target mRNAs are
polysome-associated, which should protect mRNAs from degradation. To mechanistically solve the
paradox, we performed comparative translationally less-active light and more-active heavy polysome
profiling of human cells. Isogenic mutant cells incapable of mature miRNA production due to a
disrupted DICER1 gene were used as the background model. The enrichment of miRNA-targeted
mRNAs in light- over heavy-polysome was observed. That is, though polysome-associated, miRNA-
targeted mRNAs are enriched in the translationally less-active polysome complexes. This enrichment
reconciles the seemingly contradictive miRNA regulatory activities, their moderateness and the
polysome association.

Abstract: miRNAs moderately inhibit the translation and enhance the degradation of their target
mRNAs via cognate binding sites located predominantly in the 3′-untranslated regions (UTR).
Paradoxically, miRNA targets are also polysome-associated. We studied the polysome association by
the comparative translationally less-active light- and more-active heavy-polysome profiling of a wild
type (WT) human cell line and its isogenic mutant (MT) with a disrupted DICER1 gene and, thus,
mature miRNA production. As expected, the open reading frame (ORF) length is a major determinant
of light- to heavy-polysome mRNA abundance ratios, but is rendered less powerful in WT than in
MT cells by miRNA-regulatory activities. We also observed that miRNAs tend to target mRNAs
with longer ORFs, and that adjusting the mRNA abundance ratio with the ORF length improves
its correlation with the 3′-UTR miRNA-binding-site count. In WT cells, miRNA-targeted mRNAs
exhibit higher abundance in light relative to heavy polysomes, i.e., light-polysome enrichment. In MT
cells, the DICER1 disruption not only significantly abrogated the light-polysome enrichment, but also
narrowed the mRNA abundance ratio value range. Additionally, the abrogation of the enrichment
due to the DICER1 gene disruption, i.e., the decreases of the ORF-length-adjusted mRNA abundance
ratio from WT to MT cells, exhibits a nearly perfect linear correlation with the 3′-UTR binding-site
count. Transcription factors and protein kinases are the top two most enriched mRNA groups. Taken
together, the results provide evidence for the light-polysome enrichment of miRNA-targeted mRNAs
to reconcile polysome association and moderate translation inhibition, and that ORF length is an
important, though currently under-appreciated, transcriptome regulation parameter.

Keywords: microRNA (miRNA); polysome; translationally less-active light polysome; more-active
heavy polysome; polysome profiling; DICER1; 3′-untranslated regions (UTR)
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1. Introduction

MicroRNAs (miRNAs), initially discovered in 1993 in Caenorhabditis elegans [1] and
later found evolutionarily conserved in metazoan species, are vital regulators of mRNA
translation and degradation. Major components of the three segments of the miRNA
pathway—biogenesis, targeting and regulatory actions—are generally known [2]. Defects
in the pathway are frequent etiological factors for human diseases, such as cancer [2–9].

Canonical miRNA biogenesis starts from pri-miRNA transcripts’ synthesis viaRNA
polymerase II or III. The Drosha RNase III enzyme, in partnership with the RNA-binding
protein DGCR8, digests the pri-miRNA into pre-miRNAs, with one pri-miRNA often
producing multiple (up to six) pre-miRNAs. The pre-miRNAs travel, via the nucleocy-
toplasmic shuttle Exportin-5 (XPO5), from the nucleus into the cytoplasm. The DICER1
RNase III enzyme, in partnership with the TARBP2 RNA-binding protein, processes the
pre-miRNA further into a mature 22-nucleotide long miRNA duplex [10–12]. The duplex is
then loaded onto the Argonaute (AGO) proteins, and the passenger strand is removed.

There are non-canonical biogenesis pathways as well [13,14]. Mirtrons and 7-methyl
guanine-capped (m7G)-pre-miRNAs both circumvent the pri-miRNA synthesis and the
Drosha processing steps; mirtrons are produced directly from mRNA introns [13,15];
(m7G)-pre-miRNAs are directly exported to the cytoplasm through Exportin-1 (XPO1) [16].
Additionally, one evolutionally conserved miRNA, mir-451, is DICER-independent [17].
It is processed via Drosha from endogenous short hairpin RNA (shRNA) transcripts. The
pre-miRNA is not sufficiently long to be a DICER substrate. Instead, it binds directly to
AGO proteins to complete its maturation within the cytoplasm. In DICER1 knockout cells,
canonical miRNAs are still detected, but at markedly reduced levels (median 0.058% of
wild type cell levels); pre-miRNAs are loaded directly onto AGO and trimmed at the 3′

end, yielding miRNAs from the 5′ strand (5p miRNAs) [18]. Nevertheless, this knockout
experiment further confirmed the importance of Dicer1 in mature miRNA production.

The miRNA–AGO complex then exerts regulatory actions onto target mRNAs via base-
pairing between miRNA seed sequences, which in human is only six–eight nucleotides long,
and cognate binding sites; other binding efficacy factors are also involved [19]. With the PIWI
domain binding to the 5′-end of loaded miRNA, and the PAZ domain to the 3′-end, AGO
orients the miRNA for base pairing with target mRNAs. At the same time, the AGO protein
disassociates from TARBP2 and DICER1 [12] and recruits the p-body (processing body)
scaffold protein TNRC6A/B/C (Trinucleotide Repeat Containing 6), forming the core of
the miRNA-targeting machinery and bridging upstream miRNA biogenesis to downstream
regulatory effectors. The TNRC6s, in turn, recruit downstream effectors—general translation
inhibition and/or mRNA destabilization machinery such as the CCR4–NOT and PAN2–
PAN3 complexes.

There remain gaps in our understanding of miRNA-regulatory actions. One para-
dox is the miRNA–AGO association with the active poly-ribosome complex, commonly
termed polysome, despite their mRNA translation inhibition and degradation activities.
The polysome association was observed in the very early miRNA studies. Subsequently,
numerous studies reproduced this observation, though the extent of polysome associa-
tion relative to association with mono-ribosome and ribosome-free cytoplasmic fractions
varies from study to study and from miRNA to miRNA [20–25]. Additionally, miRNA-
mediated translation inhibition and mRNA degradation are very moderate. We do not
have a mechanistic understanding of the moderateness and the polysome association.

This study examines, to the best of our knowledge, for the first time, the polysome
association by the comparative polysome profiling analysis of a human cell line and its
isogenic DICER1 knockout mutant. We simultaneously analyzed translationally less-active
light and more-active heavy polysomes. Our results provide evidence for the enrichment of
miRNA-targeted mRNAs in the light polysomes, reconciling polysome-association, miRNA
suppressive regulatory actions and their moderateness. We also showed that transcription
factors and protein kinases are the top two groups of most enriched mRNAs.
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2. Materials and Methods
2.1. Cell Culture

HCT116 is a widely used human colon cancer cell line [26,27]. The wild type HCT116
and DICER1 knockout HCT116 cells were generous gifts from Dr. Bert Vogelstein of
Johns Hopkins University that created the isogenic mutant cells and showed mature
miRNA production deficiency in them [26,28]. They were grown in McCoy’s 5A medium
supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin-Streptomycin at 5%
CO2, 37 ◦C.

2.2. Evolutionarily Conserved miRNA Binding Site Count

As previously reported, to alleviate the high noise issue in miRNA binding site
prediction due to the short site length, we used evolutionarily conserved human miRNA
binding sites in this analysis. The set of conserved sites from the TargetScan database 8.0
was downloaded in March 2023 [29,30]. For each mRNA, the number of unique miRNAs
that have conserved 3′-UTR sites was computed as the miRNA binding site count.

2.3. Polysome Profiling

Polysome profiling was performed as previously described [31–33]. Briefly, we treated
the cells with 100 µg/mL cycloheximide for 15 min at 37 ◦C and 5% CO2, followed by two
washes with cold DPBS. We lysed the cells with lysis buffer (10 mM Tris pH 7.5, 100 mM
KCl, 5 mM MgCl2, 1 mM DTT, 0.5% Triton X-100, 1x protease inhibitor cocktail (EDTA-free),
200 units/mL of RNase inhibitor), followed by centrifugation to pellets and removed the
nucleus. Collected cytoplasmic lysates were loaded on top of a 10 to 60 percent sucrose
gradient, followed by centrifugation in a Beckman SW41 rotor at 390,000× g at 4 ◦C for
two hours. The gradient was fractioned into 25 fractions. As previously reported [33],
we assigned 10-mer or more, i.e., with 10 or more ribosomes on the mRNA, as heavy
polysomes, and 2-to-9-mer as light polysomes. The heavy and light polysome fractions,
identified based on the OD260 profile of the fractionation process, were collected for total
RNA isolation. Mutant polysome profile was similar to wild type profile until 9-mer, but
differed from it afterward.

The total RNA samples were processed for NGS sequencing analysis by BGI America.
The samples were first treated with DNase I to degrade any possible DNA contamination.
Then, the oligo(dT) magnetic beads were used to enrich the mRNAs. The mRNA was
fragmented into short fragments (~200 bp). Then, the first cDNA strand was synthesized
by using random hexamer-primer. Buffer, dNTPs, RNase H and DNA polymerase I were
then added to synthesize the second strand. The double-stranded cDNA was purified
with magnetic beads, followed by end reparation and 3’-end single nucleotide A (adenine)
addition. Finally, sequencing adaptors were ligated to the fragments, and the fragments
were enriched by PCR amplification. Following quality control and quantification, the
libraries were analyzed on a BGI America DNBseq sequencer. The BGI America sequencing
team pre-processed the raw sequencing reads to filter out low quality reads and remove
the multiplexing barcode sequences, and then provided clean reads in FASTQ format. As
previously discussed [33], the NGS dataset is publicly available at the NCBI GEO database
(accession number GSE134818).

The sequencing reads in the comparative polysome RNA-seq dataset were aligned to the
human reference genome (hg38) with the STAR alignment software (version 2.4.1d), followed
by gene expression level calculation with the HTSeq-count software (version 2.0.3) [34].

2.4. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) Gene Sets

We downloaded the KEGG and GO functional gene sets from the Molecular Signatures
Database (MSigDB) version 2023.1 at the Gene Set Enrichment Analysis (GSEA) website
(https://www.gsea-msigdb.org/gsea/index.jsp, accessed on 30 July 2023) [35–37]. The
KEGG gene set contained 186 gene sets. The GO molecular function (MF) set contained
1772 sets.

https://www.gsea-msigdb.org/gsea/index.jsp
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2.5. Statistical Analysis

We used the R open source statistical software (version 4.2.2) installed on a Mac
Pro desktop computer for statistical analysis. Outlier identification, Student t-test, F-
test, descriptive statistical parameter calculation, correlation coefficient calculation, linear
regression, LOESS regression, random sampling and other statistical procedures were all
performed with this R software.

2.6. LOESS Regression and the Adjustment of the mRNA Abundance Log-Ratio with Open
Reading Frame (ORF) Length

The adjustment is made with the loess function of the R open source statistical software
(version 4.2.2) with default settings, i.e., span equal to 0.75. The light to heavy polysome
mRNA abundance log-ratio was the response variable, and the ORF length in log-scale was
the predictive variable. The residuals of the resulting regression model, i.e., the difference
from the predicted values, was used as the adjusted log-ratio. The R-squared (R2) was
calculated to quantify the portion of variance explained by the LOESS regression, though it
was not as frequently used as in other parametric regression analyses.

3. Results
3.1. The Enrichment of MiRNA-Targeted mRNAs in Translationally Less-Active Light Polysomes
Suggested by the Comparative WT–Mutant Cell Analysis

MiRNAs are well documented to inhibit the translation activity of their target mRNAs.
We asked whether this inhibition is reflected in the target-mRNA distribution among the
polysomes by using our light and heavy polysome profiling datasets for both WT and
isogenic mutant (DICER1 knock-out) (MT) HCT116 cells. We also used, as in our previous
works, the evolutionarily conserved 3′-UTR miRNA binding site count as the degree to
which a mRNA is regulated by miRNAs [32,33].

A shift in miRNA-targeted mRNAs from light to heavy polysomes in mutant cells
was observed (Figure 1A). The MT-to-WT mRNA abundance log-ratio in heavy polysomes
(log2(MT_H/WT_H) steadily increased as the miRNA binding site count increased (Figure 1A,
black datapoints). For light polysomes (log2(MT_L/WT_L), the trend was much weaker
(Figure 1A, red datapoints). That is, the comparative analysis of WT and MT cells suggested
that miRNA-targeted mRNAs are enriched in light polysomes in WT cells. The DICER1
knockout disrupts the enrichment, releasing the mRNAs into heavy polysomes, in MT cells.

3.2. The Inconsistency with Raw Light to Heavy Polysome mRNA Abundance Log-Ratios of
WT Cells

Encouraged by the results, we directly examined light to heavy polysome mRNA
abundance log-ratios (log2(WT_L/WT_H)) in WT cells. However, we obtained seemingly
inconsistent results. This log-ratio (Figure 1A, blue datapoints) was not much miRNA-
binding-site-count-dependent; unlike the MT-to-WT heavy polysome abundance ratio
(log2(MT_H/WT_H), it exhibited at most a dubious/marginal correlation with the binding
site count. The analysis is also shown as comparative boxplots of this log-ratio of miRNA-
targeted mRNAs (>50 3′-UTR miRNA binding sites) and untargeted mRNAs (no binding
site) (Figure 1B). As previously observed, miRNA-targeted mRNAs seem to be under tighter
regulation, i.e., the log-ratio exhibiting a much lower level of dispersion (WT-cell F-test
p-value: 0.019). MiRNA-targeted mRNAs seem to have higher log-ratios than untargeted
mRNAs (Figure 1B, “WT > 50 sites” versus “WT No Site”). However, the difference is
very small, though statistically significant (t-test p-value: 0.041) and absent in MT cells
(Figure 1B, “MT > 50 sites” versus “MT No Site”).
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Figure 1. MiRNA-targeted mRNAs’ shift toward translationally more-active heavy polysomes in
isogenic DICER1 mutant cells, i.e., suggesting enrichment in less-active light polysomes in WT cells,
and its inconsistence with the raw light to heavy polysome mRNA abundance log-ratio in WT cells.
(A): Scatter plots of mRNA abundance log-ratios versus mRNA 3′-UTR miRNA binding site counts
(WT: wildtype cells; MT: mutant cells; H: heavy polysome; L: light polysome). Mean log-ratio of
genes with corresponding binding site counts were plotted. Binding site count is in log scale, with
one added to each count to avoid the log2(0) error. LOESS regression trend curves are also shown.
(B): Comparative boxplots of light to heavy polysome abundance log-ratios of mRNAs with more
than 50 binding sites and those with no identified site in WT cells (“WT > 50 Sites” and “WT No Site”)
as well as MT cells (“MT > 50 Sites” and “MT No Site”). The t-test and F-test p-values for WT cells
are shown.

3.3. ORF Length as a Determinant of Light-to-Heavy Polysome mRNA Abundance Log-Ratio and
an Effect of DICER1 Disruption on the Log-Ratio

To address this discrepancy, we surveyed other factors that might affect the log2(WT_L/
WT_H) log-ratio. And, mRNA ORF length came to our attention; with all else the same, the
log-ratio should correlate well with mRNA ORF length, as a longer ORF can accommodate
more translating ribosomes. Thus, we tested whether ORF length was the interfering factor
responsible for the poor correlation between the log2(WT_L/WT_H) log-ratio and miRNA
binding site count in WT cells.

The result is shown as scatter-plots (log-ratio versus ORF length) in Figure 2, con-
firming ORF length as a determinant of the log-ratio in both WT (Figure 2A) and MT cells
(Figure 2B). As discussed in Materials and Methods, log-ratio versus ORF length LOESS
regressions (the blue data points in Figure 2) were used to illustrate the trend of decreasing
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log-ratios as ORF length increases. The trend is already clear in WT cells (Figure 2A). It
seems even stronger in MT cells (Figure 2B); the data-points seem to fit much more tightly
into the trend, exhibiting lower levels of dispersion from the LOESS regression. The R2

value increased from 0.215 to 0.362. Additionally, the DICER1 disruption seemed to reduce
the log-ratio value range. The MT-cell datapoints (Figure 2B) are concentrated in narrower
ranges than that of the WT-cell datapoints (Figure 2A). This is confirmed by the comparative
boxplots of WT and MT cell log-ratio values (F-test value: <2.2 × 10−16) (Figure 3A). Thus,
the DICER1 disruption has a clear effect on the log-ratio.
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Figure 2. Open reading frame (ORF) length as a determinant of light to heavy polysome mRNA
abundance log-ratio. A scatter plot of the log-ratio versus ORF length is shown for WT (A) and mutant
cells (B). LOESS regressions (log-ratio versus ORF length) are used to illustrate the relationship, with
predicted values shown as blue datapoints. The R2 value of the regression is also shown. In (A),
the genes with more than 50 miRNA binding sites in their mRNA 3′-UTR are highlighted as red
data points.

3.4. The ORF-Length-Adjusted Light to Heavy Polysome mRNA Abundance Log-Ratio

The correlation with ORF length suggests that, in order to better reveal the miRNA-
mediated regulatory activity on mRNA distribution in light versus heavy polysomes, there
is a need to adjust the mRNA abundance log-ratio with ORF length. The need is illustrated
by mRNAs with more than 50 miRNA binding sites, which are highlighted as red data
points in Figure 2A. Collectively, these mRNAs exhibit high ORF-length-adjusted log-ratios,
i.e., positive LOESS regression residuals (the vertical difference between each data point
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and predicted value) (Figure 2A). In other words, their raw log-ratios are higher than what
would be expected by the LOESS regression.

Thus, we used the LOESS regression residuals as ORF-length-adjusted log-ratio
(Figure 3). The adjusted log-ratio confirmed quantitatively the observation described above:
that the data points fit more tightly into the LOESS regression in mutant cells (Figure 2B)
than in WT cells (Figure 2A). As illustrated by a comparative boxplot of the adjusted
log-ratios (Figure 3A), the WT cells exhibit higher levels of dispersion than mutant cells
(F-test p-value: <2.2 × 10−16). Thus, miRNA regulation rendered the mRNA abundance
log-ratio less dependent upon ORF length in WT cells, and its disruption strengthened the
dependency in mutant cells.
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Figure 3. Comparative boxplots of light to heavy polysome mRNA abundance log-ratio. (A): A
boxplot to compare raw log-ratio (WT and MT) and ORF-length-adjusted log-ratio (Adj.-WT and
Adj.-MT), i.e., the residuals of LOESS regressions in Figure 2, both illustrating reduced dispersion
in mutant cells. That is, DICER1 disruption reduces raw log-ratio’s value range and makes ORF
length a more powerful determinator of the log-ratio in mutant cells. (B): Boxplots of the adjusted
log-ratio to compare mRNAs with more than 50 3′-UTR miRNA binding sites, mRNAs with no
sites and the means of random mRNA samples in WT cells. A more significant difference between
miRNA-targeted and untargeted mRNAs is observed than in Figure 1B; the t- and F-test p-values
are shown.

Not surprisingly, comparative boxplots exhibit an obvious difference between mRNAs
with >50 miRNA binding sites and mRNAs with no such sites (Figure 3B). The differ-
ence is much larger than that shown in Figure 1B; the statistical significance given by
the t-tests improved dramatically, with the p-value decreasing from 0.041 to 1.8 × 10−6

(Figures 1B and 3B). Thus, the ORF length adjustment led to an improved differentiation of
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the two groups of mRNAs. Once again, miRNA-targeted mRNAs exhibited a lower level of
dispersion (F-test p-value: 0.019) (Figure 3B). To further confirm the statistical significance
of this observation, we randomly picked 1000 samples of mRNAs from the transcriptome
with the same sample size of 49 and calculated their mean adjusted log-ratios. None of
the sample means (maximum 0.41) are even close to the mean (0.55) of targeted mRNAs
(Figure 3B). Thus, the higher ORF-length-adjusted log-ratios of miRNA-targeted mRNAs
are extremely unlikely to be random events.

The effect of ORF length is further illustrated in a genome-wide manner with another
LOESS regression. This regression incorporated the miRNA binding site count as an
additional predictive variable, i.e., log-ratio versus ORF length + log2(binding-site-count)
(Figure 4). The predicted log-ratio increased as the binding site count increased, but the
trend became much clearer only when viewed in the context of ORF length—the x-axis
(Figure 4).
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Figure 4. Relationship between light to heavy polysome mRNA abundance log-ratio and miRNA
binding site count viewed in the context ORF length. A LOESS regression (log-ratio versus ORF
length plus log2(binding site count)) was performed for WT cells. A scatter plot of the predicted
log-ratio versus ORF length is shown, with the data points color-coded by the log2(binding site count)
values. The vertical bar denotes mean ORF length.

3.5. MiRNA-Targeted mRNAs Tend to Have Longer ORFs

Figure 4 also showed that mRNAs with high binding site counts (dark red data-points)
tend to concentrate in long ORF length ranges of the plot, i.e., to the right of the vertical
bar that denotes the mean ORF length. A systematic analysis confirmed this observation
(Figure 5). As the binding site increases, the mean ORF length steadily increases, passing
the genome-wide mean ORF length denoted by the horizontal line at the binding site
count of 5 (Figure 5A). The data points fit almost perfectly into the trend until the binding
site count reaches 20, but then exhibit higher levels of scatteredness, likely due to lower
numbers of mRNAs with given binding site counts and thus reduced statistical power.
Many parameters follow the so-called scale-free distribution [38–46]. The MiRNA binding
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site count is one such parameter [32,33,47]; as miRNA binding site count increases, the
number of mRNAs with the count decreases exponentially. Additionally, a similar trend
was also observed with the binding site count normalized by ORF length, i.e., the site count
per KB of ORF length (Figure 5B).
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Figure 5. MiRNA-targeted mRNAs tend to have longer ORFs. The scatter plots display mean ORF
length versus corresponding 3′-UTR miRNA binding site counts (A) or the site counts normalized by
ORF length in KB (B), with both axes in log scale. The smooth curve denotes the trend computed by
a LOESS regression. The horizontal bar denotes the mean log2(ORF length).

3.6. Incorporating ORF Length into the Analysis

Given these results, we incorporated ORF length into our analysis, i.e., using ORF-
length-adjusted light to heavy polysome mRNA abundance log-ratio (see Materials and
Methods). This led to a dramatic enhancement of the dependency upon the 3′-UTR miRNA
binding site count (Figure 6A). Unlike the raw log-ratio, the adjusted log-ratio steadily
increases as the binding site count increases. The data points fitted almost perfectly into
the trend at low binding site count ranges. They then exhibited progressively higher levels
of scatteredness, likely due to the exponentially decreasing numbers of mRNAs with given
site counts. Nevertheless, overall, the trend persists.

On the other hand, there are many non-miRNA translation regulation mechanisms.
The ORF-length-adjusted mRNA abundance log-ratio of WT cells alone is not sufficient to
exclude one or more of these mechanisms as the causes of the correlation with binding site
count—the so-called confounding effect in statistical analysis. To address this issue, we
subtracted from it the ORF-length-adjusted log-ratio of the isogenic mutant cells. That is,
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we calculated the changes of the adjusted log-ratio caused by the DICER1 disruption, thus
filtering out the potential effects of other regulatory factors. As shown in Figure 6B, after
this second adjustment, the log-ratio still correlates well with miRNA binding site count; a
nearly perfect linear correlation was observed.
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Figure 6. ORF length adjustment improves correlation between light to heavy polysome mRNA
abundance log-ratio and miRNA binding site counts. For x-axis, all site counts were increased by one
to avoid the log2(0) error. Panel (A) compares raw log-ratio and ORF-length-adjusted log-ratio in WT
cells. Panel (B) compares the ORF-length-adjusted log-ratio and the adjusted log-ratio subtracted
by the adjusted log-ratio of mutant cells. Upon the subtraction, a nearly perfect linear correlation
is observed.

3.7. The Enrichment of Protein Kinase and Transcription Factor in Light-Polysome-Enriched mRNAs

To identify the cellular functions that are most regulated by mRNA light-polysome-
enrichment, we performed a gene-set enrichment analysis of the double-adjusted mRNA
abundance log-ratio with the KEGG functional gene sets and the Gene Ontology (GO)
molecular function (MF) gene sets [48–50]. The top 20 most enriched gene sets are listed in
Table 1. For the KEGG sets, 8 of the top 20 terms are cellular signaling pathways, with the
MAP Kinase signaling pathway ranked at number one (Table 1, red text). Not surprisingly,
16 of the top 20 GO MF terms are related to the components of cellular signaling: protein
kinase, transcription factor (TF) and other signaling molecules (Table 1, purple, green and
blue text, respectively). The six TF-related GO MF terms are ranked at number 1, 2, 3, 6, 13
and 20 (Table 1, green text). The five protein kinase-related terms are ranked at number 4,
5, 7, 12 and 15 (Table 1, purple text).
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Table 1. Top 20 most light-polysome-enriched KEGG and GO molecular function (MF) terms. KEGG
terms for cellular signaling pathways are in red text. GO MF terms related to transcription factors are
in green text, terms for protein kinase activities in purple text and terms for other signaling molecules
in blue text.

Rank KEGG GO MF

1 MAPK_signaling_pathway DNA_binding_transcription_factor_activity

2 chronic_myeloid_leukemia cis_regulatory_region_sequence_specific_DNA_binding

3 neurotrophin_signaling_pathway sequence_specific_DNA_binding

4 renal_cell_carcinoma protein_kinase_activity

5 ERBb_signaling_pathway protein_serine_threonine_kinase_activity

6 glioma transcription_regulator_activity

7 pancreatic_cancer protein_serine_kinase_activity

8 phosphatidylinositol_signaling_system G-protein_coupled_receptor_activity

9 glycosaminoglycan_biosynthesis_keratan_sulfate molecular_transducer_activity

10 melanogenesis voltage_gated_potassium_channel_activity

11 chemokine_signaling_pathway nucleoside_triphosphatase_regulator_activity

12 non_small_cell_lung_cancer kinase_activity

13 melanoma DNA_binding_transcription_activator_activity

14 neuroactive_ligand_receptor_interaction delayed_rectifier_potassium_channel_activity

15 hedgehog_signaling_pathway receptor_tyrosine_kinase_binding

16 acute_myeloid_leukemia UDP_glycosyltransferase_activity

17 GnRH_signaling_pathway GTPase_activator_activity

18 Fc_epsilon_RI_signaling_pathway phosphatidylinositol_3_kinase_regulator_activity

19 Fc_gamma_R_mediated_phagocytosis phosphatase_regulator_activity

20 colorectal_cancer DNA_binding_transcription_repressor_activity

4. Discussion

This study used comparative polysome profiling analyses of the WT HCT116 cell
and its isogenic DICER1 knockout mutant to shed light onto miRNA-mediated translation
inhibition activity. We separated the polysomes into translationally less active, i.e., with
fewer ribosomes on the mRNA, light fractions and more active fractions. By analyzing the
light and the heavy polysomes separately, we observed that miRNAs retain their target
mRNAs in the light polysomes, thus inhibiting, though not completely shutting off, their
translation. To the best of our knowledge, this is the first report of this phenomenon based
on a genome-wide study.

Notably, to clearly reveal the light-polysome-enrichment of target mRNAs, mRNA
ORF length needs to be incorporated into our analysis. Firstly, ORF length is a determinant
of the light to heavy polysome mRNA abundance log-ratio, though it is rendered less
powerful by miRNA-mediated regulatory activities in WT cells than in the mutant cells.
The log-ratio needs to be viewed in this context to fully differentiate target and non-target
mRNAs. Secondly, target mRNAs are not randomly distributed in the transcriptome in
terms of their ORF lengths. Instead, they tend to have longer ORFs, i.e., coding for longer
proteins, than non-target mRNAs.

The mechanistic and functional underpinning of ORF length as an important transcrip-
tome regulatory parameter is not yet completely understood. However, it is conceivable to
argue that the metabolic and energetic overhead cost of translation might be an important
factor [51,52]. Synthesizing the amino acids levies the metabolic overhead. During elonga-
tion, adding each amino acid to the nascent polypeptide chain consumes one ATP and two
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GTP molecules. The ATP is used to conjugate the amino acid to the tRNA, i.e., to charge
the tRNA; one GTP is used for binding the charged tRNA to a ribosome A-site, and the
other for subsequent ribosome translocation towards the next codon. In a word, translation
is an expensive process; the longer the ORF, the more expensive it becomes. Consequently,
it is not surprising to observe mRNAs with longer ORFs under tighter miRNA regulations.
Additionally, there is a myriad of other mRNA regulatory mechanisms, such as the large
number of RNA-binding proteins (RBP) [53–56]. It will be interesting to examine whether
some of them tend to target mRNAs with long ORFs as well.

Perhaps not coincidentally, proteins encoded in the human genome are longer (median
431 amino acids) than those in the budding yeast genome (median 358 amino acid), which
are in turn longer than those in E. coli genome (median 277 amino acid) (http://book.
bionumbers.org/how-big-is-the-average-protein/, accessed on 30 July 2023). It becomes
interesting to investigate whether longer protein length is generally applicable to the
metazoan genomes. It is possible that the miRNA regulatory system and its mode of
mRNA regulation emerged to meet the needs of a tighter regulation of mRNAs for longer
proteins in metazoan organisms during biological evolution.

The light-polysome-enrichment of miRNA-targeted mRNAs explains key seemingly
contradictive observations of miRNA regulatory actions. It reconciles the paradox of the
polysome association and translation inhibition. It also helps to explain the modesty of
miRNA-mediated regulatory activities, that is, target mRNA degradation and translation
inhibition. The enrichment is equivalent to low, but not completely shut-off, translation
activities. On the other hand, the association with light polysomes protects these target
mRNAs from the fate of the quick degradation of ribosome-free mRNAs. Consistently,
the co-translational degradation of the target mRNAs has been observed, reconciling their
polysome-association and enhanced degradation. It has also been shown that miRNA-
targeted mRNAs are degraded through a different pathway [57].

However, the functional advantages this regulatory system confers to the cell remain to
be fully illuminated; it seems wasteful that the cells expend critical metabolic and energetic
resources to produce these mRNAs, but then render them translationally inhibited under
enhanced degradation pressure [58–60]. Perhaps, we can borrow insights from computer
design in operational latency mitigation. Computers and the cells are frequently analogized
to each other [61–63]. The computer information retrieval from the hard drive to memory,
and then to CPU caches, is strikingly similar to the gene expression process [62,64–66]. The
retrieval process is much slower than CPU cycle execution; the CPU might have to stay idle
for extended periods of time while waiting for information for the next cycle. To minimize
this latency, various principles are implemented for the speculative retrieval of information
prior to the CPU request [64–66]. We are investigating the applicability of these principles
in miRNA-mediated regulatory actions, as gene expression in human cells is a slow and
latency-causing process.

Our results also point to future studies. This study compared steady-state mRNA
polysome distributions between WT and isogenic DICER1 knockout mutant cells. Though
the difference correlated well with miRNA binding site count, it is possible that some of
the observations are secondary effects of the DICER1 knockout [67–69]. To fully distin-
guish direct and secondary DICER1 knockout effects, the DICER1 gene would need to
be introduced back into the mutant cells with an inducible expression vector. Compara-
tive polysome profiling studies can then be performed at multiple time points following
the activation of Dicer1 expression. The restoration of the light polysome retention of
miRNA-targeted mRNAs should occur prior to other secondary effects. Additionally, we
are incorporating other parameters, such as the miRNA affinity/binding-energy to the
targets, into the analysis.

5. Conclusions

In summary, we present evidence for enrichment of miRNA-targeted mRNAs in
the translationally less-active light polysomes, advancing our understanding of miRNA-
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mediated translation inhibition. ORF length is an essential parameter in such analysis of
miRNA regulatory activities, in that it is needed to fully reveal the light polysome enrich-
ment and that miRNA-targeted mRNAs tend to have longer ORFs. That is, ORF/protein
length is an important, but currently under-appreciated, factor in transcriptome regulation.
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