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Simple Summary: In our study, we used well-established cell models to investigate the influence of
a bilberry extract prepared from lowbush blueberries and a fraction of it containing anthocyanins
(red pigments with antioxidant properties). Most importantly, our study shows that bilberry extracts
containing anthocyanins show a protective antioxidant effect in an Alzheimer’s disease neuronal cell
model, underlying the beneficial potential of fruits in diet.

Abstract: Increased intake of dietary antioxidants such as anthocyanins, which are enriched in colour-
ful fruits, is a promising alternative to reduce the risk of degenerative diseases such as Alzheimer’s
Disease (AD). Since Amyloid β (Aβ) is one of the key components contributing to AD pathology,
probably by reactive oxygen species (ROS) induction, this study investigated the preventive effect of
anthocyanin-rich bilberry extract (BE) and its anthocyanin fraction (ACN) on ROS generation and
cell toxicity. The results showed a significant and concentration-dependent decrease in neuroblas-
toma cell (SH-SY5Y) viability by BE or ACN, whereas no cell toxicity was observed in HeLa cells.
Incubation with BE and ACN for 24 h diminished the generation of induced ROS levels in SH-SY5Y
and HeLa cells. In addition, low concentrations of BE (1–5 µg/mL) showed protective effects against
Aβ-induced cytotoxicity in SH-SY5Y cells. In conclusion, our results suggest antioxidant and protec-
tive effects of BE and ACN, which could potentially be used to delay the course of neurodegenerative
diseases such as AD. Further studies are needed to clarify the high potential of anthocyanins and
their in vivo metabolites on neuronal function.
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1. Introduction

A diet rich in fruits and vegetables has long been associated with numerous health
benefits, and one of the key components responsible for these effects are anthocyanins [1,2].
Anthocyanins are water-soluble secondary metabolites found naturally in many fruits, par-
ticularly those with deep red, purple, or blue colours [3]. Consumption of fruit juices rich
in anthocyanins from wild blueberries (bilberries), which are among the most abundant di-
etary sources of anthocyanins [4–6], has been shown to positively impact lipid metabolism,
DNA protection, and exhibit anti-inflammatory and antioxidative properties [7–10]. This
suggests that anthocyanins have beneficial effects in various diseases like cardiovascular
diseases (CVD), diabetes, cancer, and neurodegeneration [11–13]. As the risk of Alzheimer’s
Disease (AD) is also associated with risk factors of CVD and metabolism diseases, antho-
cyanin intake is assumed to decrease the risk of dementia disorders in late age [12,14,15].
Indeed, several lines of evidence suggest that anthocyanins and anthocyanin-rich food
can modulate brain functionalities and age-related neuronal degeneration [16,17], influ-
encing inflammation, oxidative stress, excitotoxicity, and altered neurotransmission [16].
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Blueberries are especially highlighted to improve cognitive functions such as memory
in humans [18–20] or rats associated with a reduction of oxidative stress and excitotoxic-
ity [21]. Although the exact cause of neurodegeneration in Alzheimer’s disease remains
unclear, it is well known that accumulation of amyloid-β (Aβ) leads to the development of
plaques [22,23]. Moreover, Aβ may trigger an increase in the production of reactive oxygen
species (ROS) in neuronal cells that are particularly sensitive to ROS, thereby promoting
cell death [24,25].

Based on these observations, the present study investigates the effects of anthocyanin-
enriched bilberry extracts on ROS formation and cytotoxicity in neuronal cells (human
neuroblastoma cell line; SH-SY5Y) and non-neuronal epithelial cells (HeLa). Furthermore,
we studied cell viability and putative cell death induction (apoptosis and necrosis) in cells
treated with low extract concentrations. In addition, the potential beneficial effects of the
bilberry extract in protecting against oxidative stress, associated with increased levels of
Aβ and further causing cell death, were investigated.

2. Material and Methods
2.1. Materials

All chemicals and reagents used were of analytical grade. 2′,7′-Dichlorofluorescein
diacetate (DCFH-DA), poly-L-lysine, catalase, resazurin sodium salt, and sodium dodecyl
sulfate (SDS) were purchased from Sigma-Aldrich (Taufkirchen, Germany). H2O2 was from
VWR International GmbH (Darmstadt, Germany). Aβ25–35 was obtained from Thermo
Fisher Scientific (Waltham, MA, USA).

SH-SY5Y (ATCC® CRL-2266™) and HeLa (ATCC® CCL-2) cells were obtained from
ATCC (Manassas, VA, USA). Dulbecco’s modified essential medium (DMEM), Minimum
Essential Medium (MEM), Nutrient Mix F12, MEM non-essential amino acids (NEAA),
L-glutamine, fetal calf serum (FCS), penicillin/streptomycin, dimethyl sulfoxide (DMSO),
and trypsin were from Thermo Fisher Scientific (Darmstadt, Germany). Cell culture ma-
terials were purchased from Greiner Bio-One (Essen, Germany) and VWR International
GmbH (Darmstadt, Germany).

2.2. Bilberry Extract and Its Anthocyanin Fraction

Bilberry (Vaccinium myrtillus L.) extract (BE) was generated from pure fruit juice using
Amberlite XAD7 adsorber resin (Sigma Aldrich, Taufkirchen, Germany), and the antho-
cyanin fraction (ACN) was prepared using Sartobind S IEX 150 mL cellulose membrane
(Sartorius, Göttingen, Germany) as described in [26]. Both BE and ACN were provided
and characterised by Prof. Dr. Peter Winterhalter (Institute of Food Chemistry, Technische
Universität Braunschweig, Braunschweig, Germany).

2.3. Cell Culture

All cells were cultivated at 37 ◦C in a humidified atmosphere with 5% CO2 and the
appropriate cell growth media. Human neuroblastoma cells (SH-SY5Y) were grown in
175 cm2 flasks using MEM/Nutrient Mix F12 (1:1) media, supplemented with 10% FCS,
1% L-glutamine, 1% NEAA, 100 U/mL penicillin, and 100 µg/mL streptomycin. Human
cervical cancer cells (HeLa) were cultivated in 10 cm culture dishes with DMEM media,
supplemented with 10% FCS and 1% penicillin/streptomycin.

For performing the biological tests, the cells were incubated with BE and ACN extracts
(1–100 µg/mL dissolved in DMSO, final solvent concentration ≤ 1.0%) in FCS reduced
medium (5% FCS) for 24 h. To avoid the generation of extracellular hydrogen perox-
ide (H2O2) by pro-oxidative interaction of phenolic compounds with cell-culture media
constituents, incubations of cells were performed in the presence of catalase (100 U/mL).

2.4. Cell Viability

Cell viability was determined by a resazurin reduction assay according to O’Brien et al.,
2000 [27], which measures metabolic activity from the reduction of resazurin to resorufin
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at 530/590 nm. Cells (SH-SY5Y cells: 1.8 × 105 cells/well; HeLa cells: 3 × 104 cells/well)
were seeded into PLL-coated clear 48-well plates, cultivated for 24 h, followed by treating
the cells for a further 24 h by a substance of interest. Therefore, different concentrations
of BE and ACN extracts (1–100 µg/mL dissolved in DMSO, final concentration 1.0%)
were diluted into the appropriate cell growth media and applied. In another experiment,
SH-SY5Y cells were pretreated with different concentrations of BE (1–5 µg/mL) for 2 h,
followed by 24 h exposure to 10 µM Aβ25–35. SDS (0.1%) was used as a positive control.

After treatment, the cell media was substituted by serum-free medium (500 µL) contain-
ing 10% resazurin solution for 1 h. Fluorescence was measured by a Synergy 2 microplate
reader (BioTek Instruments GmbH, Bad Friedrichshall, Germany; ex/em: 530/590 nm,
37 ◦C). Results were expressed as relative cell viability in percentage of the solvent control.

2.5. Cellular ROS Level (Dichlorofluorescein (DCF) Assay)

Intracellular ROS levels were determined in SH-SY5Y and HeLa cells by the DCF
assay, according to O’Brien et al. and Fuchs et al., with slight modifications [27,28].
Cells were seeded into PLL-coated black, clear-bottom 96-well plates (SH-SY5Y cells:
2 × 104 cells/well; HeLa cells: 8.5 × 103 cells/well), cultivated for 24 h, and incubated
with BE or ACN extracts (1–100 µg/mL dissolved in DMSO, final solvent concentration
≤ 1.0%) in FCS reduced medium (5% FCS) for further 24 h. After removing the medium,
cells were incubated for 30 min with 50 mM 2′,7′-dichlorodihydrofluorescein diacetate
(DCFH-DA; dissolved in DMSO: 0.5% v/v in PBS, pH 7.0), washed and incubated with
250 µM TBH or 300 µM H2O2 in PBS for 30 min. The increase of fluorescence (FI) resulting
from oxidation of the non-fluorescent product dichlorofluorescein to DCF by intracellular
ROS was measured at 0 and 30 min in a Synergy 2 microplate reader (BioTek Instruments
GmbH, Bad Friedrichshall, Germany; ex/em: 485/528nm, 37 ◦C). FI was calculated as
(F30min − F0min)/F0min × 100, and results are expressed as relative FI in percentage of TBH
or H2O2 control, respectively.

2.6. Annexin V/PI Staining and Flow Cytometry

Detection of apoptosis was measured using Annexin V/PI staining and flow-cytometric
analysis as reported [29]. Briefly, SH-SY5Y cells (1 × 106 cells/mL) were seeded into
PLL-coated petri dishes, cultivated for 24 h, and incubated with BE or ACN extracts
(5–10 µg/mL dissolved in DMSO, final solvent concentration ≤ 1.0%) in FCS reduced
medium (5% FCS) for further 24 h. After removing the medium, the cells were washed
with PBS and isolated by trypsin (0.5% w/v). After centrifugation (4 min, 1100 rpm, RT),
cell pellets were resuspended in binding buffer (10 mM HEPES/140 mM NaCl/2.5 mM
CaCl2/0.1% BSA; pH 7.4) containing AnnexinV-FITC (Miltenyi Biotec, Bergisch Gladbach,
Germany). After incubation on ice for 15 min, propidium iodide (PI) in binding buffer
(10 µL PI and 430 µL binding buffer) was added, and cells were analysed by flow cytometry
using a FACS Canto II (BD Biosciences, Heidelberg, Germany) and the corresponding BD
FACS Diva software 6.0 (BD Biosciences, Heidelberg, Germany).

2.7. Statistics

Results are presented as means and standard deviations (SD) of three to five inde-
pendent experiments. Origin 2018 (OriginLab, Northampton, MA, USA) was used for
statistical analyses. Data from samples treated with BE and ACN were analysed for signifi-
cant differences (p < 0.05, p < 0.01, and p < 0.001) from either the oxidant-treated control
(DCF assay) or the respective solvent control (resazurin assay, apoptosis assay) by unpaired
one-sample (one-sided) t-test.

3. Results

In our study, we used a well-characterised bilberry extract [26], which has a high
polyphenol content (58.3 g GAE/100 g), containing 14 different anthocyanin glycosides
(AC), including glycosides of delphinidin, cyanidin, petunidin, peonidin, and malvidin [26].
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Additionally, the bilberry extract also contained colourless phenolic compounds, commonly
referred to as copigments, such as chlorogenic acid, coumaroyliridoid, and quercetin
derivatives [26]. The ratio of anthocyanins to copigments in bilberry extracts was found to
be equal (50/50%).

3.1. Effects of BE and ACN on Cell Viability

The influence of BE and its ACN fraction on the viability of SH-SY5Y and HeLa cells
was determined to ensure that they were used in a non-cytotoxic concentration range
(cell viability ≥ 80%) (Figure 1). The cells were incubated for 24 h with BE or ACN using
concentrations of 1 µg/mL, 5 µg/mL, 10 µg/mL, 25 µg/mL, 50 µg/mL, and 100 µg/mL
prior to resazurin assay. A significant and concentration-dependent decrease of SH-SY5Y
cell viability was shown after incubation with both BE and ACN, compared to the solvent
control. At low concentrations of both extracts (1–10 µg/mL) tested, the viability of the SH-
SY5Y cells decreased from 94 (1 µg/mL) to 75% (10 µg/mL). However, a distinct cytotoxic
effect was observed at the highest concentration (100 µg/mL), resulting in a loss of cell
viability by 55%. In contrast, BE and ACN caused no significant modulation of cell viability
in HeLa cells, even at the highest concentration of 100 µg/mL. This indicates that the extract
and its fraction did not influence viability in HeLa cells but at higher concentrations in
neuronal SH-SY5Y cells.
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Figure 1. Cell viability in SH-SY5Y (A) and HeLa cells (B) after 24 h incubation with bilberry extract
(BE) or its isolated anthocyanin fraction (ACN) determined by a resazurin assay using concentrations
of 1–100 µg/mL. A positive control (PC) was performed using 0.1% SDS. Results are shown as the
percent of the solvent control (Co; 1% DMSO), while the Co value is indicated with a horizontal line.
Error bars indicate the standard deviation. Significance was calculated against the solvent control
using student’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001; n = 2–4.

3.2. Modulation of Cellular Redox Status

We investigated the preventive effects of BE and ACN on TBH- and H2O2-induced
cellular ROS levels in SH-SY5Y and HeLa cells to test for a possible cell-specific response of
neuronal and non-neuronal cells (Figures 2 and 3).

After incubating SH-SY5Y cells with BE or ACN for 24 h, the TBH-induced ROS levels
were significantly reduced to 80–70% in a concentration-dependent manner compared
to the positive control (Figure 2A). HeLa cells only showed a trend but no significant
reduction in ROS levels when incubated with BE (Figure 2B). However, HeLa cells treated
with ACN also showed a significant preventive effect against TBH-induced ROS production
at concentrations of 50 µg/mL and 100 µg/mL. The modulation of H2O2-induced ROS
levels in the same cells after 24 h incubation with BE or its ACN fraction (Figure 3) showed
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comparable results to those of TBH-induced ROS levels, even though the preventive effect
was less pronounced. Again, a significant and concentration-dependent reduction of ROS
levels was observed in SH-SY5Y cells (Figure 3A). Similarly, ACN was more effective than
BE in HeLa cells (Figure 3B).
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Figure 2. Effects of bilberry extract (BE) and its anthocyanin fraction (ACN) on tert-butyl hydroperox-
ide (TBH)-induced ROS level in SH-SY5Y (A) and HeLa cells (B) after 24 h incubation with different
concentrations of the extracts (1–100 µg/mL). The relative fluorescence (rel. FI) measured within a
DCF-Assay is shown as a percentage of a TBH control (TBH-Co) while the TBH-Co value is shown
as a horizontal line and the solvent control (Co; 1% DMSO) as a dashed line. Error bars indicate
the standard deviation. Significance to the TBH-Co was calculated using student’s t-test: * p < 0.05,
** p < 0.01, *** p < 0.001; n = 3–5.
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Figure 3. Effects of bilberry extract (BE) and its anthocyanin fraction (ACN) on H2O2-induced ROS
level in SH-SY5Y (A) and HeLa cells (B) after 24 h of incubation with different concentrations of the
extracts (1–100 µg/mL). The relative fluorescence (rel. FI) measured within a DCF-Assay is shown as
the percentage of an H2O2 control (H2O2-Co), while the H2O2-Co value is shown as a horizontal line
and the solvent control (Co; 1% DMSO) as a dashed line. Error bars indicate the standard deviation.
Significance to the H2O2-Co was calculated using student’s t-test: * p < 0.05, ** p < 0.01, *** p < 0.001;
n = 3–5.
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Taken together, BE and its anthocyanin fraction showed preventive ROS-reducing
effects in human neuroblastoma cells (SH-SY5Y) already at low concentrations, while only
ACN at higher concentrations significantly reduced ROS generation in HeLa cells.

3.3. Effects of BE and ACN on Cell Death

To exclude the possibility that the observed decrease in cellular ROS levels in SH-
SY5Y cells at the lower extract concentrations (5 µg/mL and 10 µg/mL) was due to their
protective effect and not due to a reduced number of viable cells, we investigated the
influence of BE and ACN on apoptosis and necrosis in SH-SY5Y cells using flow cytometry
(Figure 4). The representative flow cytometry diagram of Annexin V-FITC/PI staining
of the cells (Figure 4A) and its quantification (Figure 4B) showing the percentage of vital,
early apoptotic, and late apoptotic/necrotic cells according to BE and ACN treatment
revealed no changes compared to the solvent control. Together, our findings show that low
concentrations of BE and ACN do not induce apoptotic or necrotic events, indicating that
the observed ROS-reducing effects in SH-SY5Y cells are due to a preventive mechanism
of ACN.
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Figure 4. Effects of bilberry extract (BE) and its anthocyanin fraction (ACN) on cell death after 24 h
of incubation determined by Annexin V-FITC/PI in SH-SY5Y cells using different concentrations
of the extracts (5–10 µg/mL). (A) representative flow cytometry diagram of staining with Annexin
V-FITC/PI. The vital, early apoptotic, and late apoptotic/necrotic cells were present in the lower
left, lower right, and upper right squares, respectively. As a control, the solvent DMSO (0.1%) was
used. (B) Quantification of the percentage of vital, early apoptotic, and late apoptotic/necrotic cells
according to BE and ACN treatment. Error bars represent the standard deviation. n = 3.

3.4. Effects of BE and ACN on Aβ25–35 Induced Cytotoxicity

It has been reported that Aβ increases the generation of ROS [30,31], which leads to
apoptotic neuronal cell death that can be inhibited by antioxidants [31,32]. Therefore, we
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assumed a preventive effect of our BE on Aβ-induced cytotoxicity. To test this assumption,
we treated SH-SY5Y cells with non-cytotoxic concentrations of BE (1–5 µg/mL) for 2 h,
followed by Aβ25–35 (10 µM) incubation for 24 h. Interestingly, we observed that BE relieved
the Aβ25–35-induced loss of cell viability (Figure 5), suggesting a preventive effect of BE on
Aβ-induced cell toxicity.
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pretreated with BE (1–5 µg/mL) for 2 h, followed by 24 h treatment with 10µM Aβ25–35. The results of
the resazurin assay are shown as the percent of solvent control (Co: 1% DMSO; shown as a horizontal
line), indicating a loss of viability via Aβ, which was diminished by BE treatment with different
concentrations (1–5 µg/mL). Error bars indicate the standard deviation. Significance according to the
solvent control was determined using student’s t-test: * p < 0.05. n = 2–3.

4. Discussion

Oxidative cellular damage, characterised by an imbalance between the production of
ROS and antioxidant defences, has been implicated in the pathogenesis of several degen-
erative diseases, such as CVD and certain types of cancer. ROS and other oxidants have
also been described as detrimental factors in neuronal dysfunction and the development of
neurodegenerative diseases such as AD [16]. Numerous in vitro and in vivo studies have
suggested that consumption of food rich in anthocyanins may help to reduce the risk of the
above-mentioned diseases due to the multiple biological effects of anthocyanins, such as
antioxidative, anti-inflammatory, anti-atherosclerotic, and anti-carcinogenic effects [12].

As the content of anthocyanins is relatively high in bilberries, we investigated in this
study the influence of bilberry extract and its anthocyanin fraction on cell viability and cel-
lular ROS levels, using human neuroblastoma SH-SY5Y cells, as well as non-neuronal HeLa
cells, in order to identify a cell-specific response between different cell types. A previous
study showed that higher concentrations of BE induced apoptosis in HeLa cells; therefore,
we used lower concentrations that were reported to be non-cytotoxic [33]. Accordingly,
BE, as well as ACN exhibited no cytotoxic effects against HeLa cells. In contrast, BE and
the ACN enriched fraction exhibited a dose-dependent cytotoxic effect in neuroblastoma
cells, indicating a higher vulnerability of neuronal cells towards the anthocyanin fraction.
Interestingly, other studies using blueberry extracts with lower anthocyanin content in
even higher concentrations reported no changes in SH-SY5Y cell viability [34], whereas
anthocyanins extracted from chokeberry (Aronia melanocarpa) even increased cell viabil-
ity [35]. These data suggest that ACN fractions prepared from different fruit sources using
different extraction protocols may differ in their cytotoxicity to SH-SY5Y cells. Unfortu-
nately, the extracts used in the other studies were not analysed in the same detail as our BE
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extract, thus preventing a more systematic analysis of the potential cytotoxic components
in the BE extracts.

Within our study, investigations on the antioxidative influence of BE and ACN on cellu-
lar ROS showed that both revealed a preventive effect against H2O2 and TBH induced-ROS
production in SH-SY5Y cells similar to the application of low amounts of de-alcoholized red
wine powder [36], dietary polyphenolic metabolites [37] or individual anthocyanins [38].
In our study, BE showed a less pronounced effect on HeLa cells compared to SH-SY5Y cells,
which is in accordance with other studies on cell lines such as HT-29 and Caco-2 colon
carcinoma cells that needed even higher concentrations of BE to show a preventive effect
against TBH-induced ROS [39]. Taken together, our data suggest that neuronal cells benefit
more from the antioxidant effect of ACN than other cell types. Although SH-SY5Y cells are
a valuable model to test the neurotoxic properties of bioactive compounds, especially with
regard to cell viability, mitochondrial function, and oxidative stress [40], it should be noted
that it is a neuroblastoma cell line. As anthocyanins are known to be poorly bioavailable
and the activity of the different metabolites found in plasma or tissues such as the brain are
rarely analysed [41], future studies are very important. These should either examine indi-
vidual metabolites in primary neuronal cultures or test the anthocyanin-enriched extracts
in vivo in animal models or even in humans (proof-of-concept).

The ROS-mediated cytotoxic effect of Aβ is well known and has already been reported
in several in vitro studies [24,25,42,43]. We evaluated the preventive effect of low concentra-
tions (5–10 µg/mL) of BE on Aβ25–35 induced cytotoxicity in SH-SY5Y cells and observed
an increase in cell survival when cells were pretreated with BE before Aβ application. This
indicates that BE counteracts the cytotoxic effect of Aβ, probably by preventing Aβ-induced
ROS formation. Likewise, extracts from Salvia miltiorrhiza (red sage), Aronia melanocarpa
(chokeberry), Centella asiatica, and other herbal plants protect against Aβ induced cytotoxic-
ity in SH-SY5Y cells [35,44–46]. Thus, certain foods, rich in antioxidants, may potentially
benefit individuals with Alzheimer’s disease by supporting brain health and reducing
inflammation. However, more studies are needed to establish a definitive link between
food and Alzheimer’s prevention or treatment [16,17].

In conclusion, our results have demonstrated antioxidant and protective effects of BE
and especially ACN fractions in a cell-specific neuronal/non-neuronal manner. Together,
our data underline the need for further research to clarify the high potential of ACNs and
their in vivo metabolites on neuronal function in the brain.

5. Conclusions

This research revealed cell-type-specific differences in the strength of effects caused by
anthocyanin-rich bilberry extract. Thereby, neuronal cells benefit more from the antioxidant
effect of the fruit extract, while effects on non-neuronal cells are less pronounced using
the same concentrations. Nevertheless, low concentrations of anthocyanin-rich bilberry
extract reduced the formation of ROS and further prevented Aβ-induced cell toxicity,
probably due to its antioxidant effect. Thus, anthocyanin enriched extracts, especially from
bilberries, have a huge potential in slowing down the progression of degenerative diseases
such as AD. However, further in vivo studies are needed to assess the future prospects of
bilberry-derived antioxidants.
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