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Simple Summary: Natural plant products have been used medicinally for thousands of years by
Native Americans in the United States to treat a wide array of ailments. However, there remains
a need to investigate the therapeutic potential or effectiveness of these traditional approaches as
little remains known. In this study, we evaluated the therapeutic potential of aqueous extracts
prepared from four plants traditionally used in Indiana, USA, to inhibit cancer cell proliferation and
infection with human respiratory syncytial virus (hRSV), a major respiratory pathogen of infants and
the elderly.

Abstract: Traditional approaches employing natural plant products to treat a wide array of ailments
have been documented and described for thousands of years. However, there remains limited scien-
tific study of the therapeutic potential or effectiveness of ethnobotanical applications. Increases in
the incidence of cancer and emerging infectious diseases demonstrate a growing need for advances
in the development of therapeutic options. In this study, we evaluate the therapeutic potential of
aqueous extracts prepared from four plants, purple aster (Symphyotrichum novae-angliae (L.) Nemsom),
common sage (Salvia lyrata (L.)), northern spicebush (Lindera benzoin (L.) Blume), and lamb’s ear
(Stachys byzantina (K.) Koch)) traditionally used in Native American medicine in Indiana, USA. Using
a combination of cytotoxicity assays, immunofluorescence microscopy, and antiviral assays, we
found that sage and spicebush extracts exhibit cytotoxic and antiproliferative effects on HeLa cell
proliferation and that sage, spicebush, and aster extracts were capable of significantly inhibiting
human respiratory syncytial virus (hRSV), a major respiratory pathogen of infants and the elderly.
Chemical analysis of the four extracts identified four major compounds which were subsequently
evaluated to identify the responsible constituents in the extracts. While none of the identified com-
pounds were shown to induce significant impacts on HeLa cell proliferation, two of the compounds,
(1S)-(-)-Borneol and 5-(hydroxymethyl)-furfural, identified in sage and spicebush, respectively, were
shown to have antiviral activities. Our data suggest that several of the extracts tested exhibited either
anti-proliferative or antiviral activity supporting future further analysis.

Keywords: cancer; apoptosis; antiviral; phytochemistry; traditional medicine; respiratory syncytial
virus
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1. Introduction

Botanical products and preparations have been used for millennia to treat many
different ailments worldwide. Plants and their chemical constituents have provided the
foundation for a multitude of products that we have today including up to half of all current
pharmaceuticals [1]. Approximately 80% of people worldwide continue to primarily rely
on plant-based medicines [2]. However, it is believed that as few as 10% of known plants
today have been investigated for their therapeutic potential despite the high prevalence of
plant-based medicines [1,2]. Increasingly, there has been a push to investigate and explore
the wealth of knowledge shared within indigenous cultures. In Indiana, a U.S. state in the
Midwest, indigenous peoples such as the Miami have maintained a rich history and culture
of using the products of the land for many applications including treating disease [3].
Despite advances in science and modern medicine, there remains a significant need for
continued development of therapeutics to treat major causes of disease such as cancer and
infectious diseases.

Cancer is the second leading cause of death in the United States (after cardiovascular
events) and is a major cause of both morbidity and mortality worldwide [4,5]. Cancer is
associated with uncontrollable cell growth and proliferation, may impact any tissue in the
human body, and can be caused by an incredibly diverse number of possible genetic modi-
fications, making both treatment and development of targeted therapeutics difficult [6,7].
Furthermore, additional challenges to treating cancer include overcoming inequities in
access to healthcare, high costs of treatments, and the limited availability of specialized
facilities with cancer expertise [8]. Current treatments for cancer remain largely invasive
with significant side effects and often include a combination of both chemotherapy and
radiation. With rising cases of cancer today, identifying novel compounds that can limit the
growth and proliferation of cancer cells remains a major need [9].

Established and emerging infectious diseases are collectively responsible for approx-
imately 20% of all deaths worldwide [10]. In 2019, a novel coronavirus (SARS-CoV-2)
emerged in Wuhan, China and quickly spread, triggering a worldwide pandemic. To
date (as of July 2024), the COVID-19 pandemic has resulted in approximately 775 million
confirmed cases and over 7 million deaths [11]. Despite a wealth of knowledge about
existing coronavirus biology, efforts to identify and develop safe and effective therapeu-
tics for COVID-19 have proven challenging. Numerous studies turned to ethnobotany
and traditional medicines as a source of potential therapeutics [12–14]. For less studied
viruses, such as human respiratory syncytial virus (hRSV), which is a leading viral cause of
infant mortality worldwide, often there remain limited therapeutic options and the default
treatment remains palliative care.

Identifying plant phytocompounds with therapeutic potential to treat significant
causes of disease such as viruses and cancer can expand treatment options and provide a
platform for further development and optimization. In this study, we analyzed extracts
prepared from four plants used traditionally in Indiana (Symphyotrichum novae-angliae (L.)
Nemsom, Salvia lyrata (L.), Lindera benzoin (L.) Blume, and Stachys byzantina (K.) Koch) for
anti-cancer proliferative properties against the HeLa cell cancer line and antiviral activity
against hRSV. HeLa cells are a cervical cancer cell line that has been extensively studied
and has been used in previous studies to evaluate the therapeutic potential of natural
agents [15–17]. There remain no commercially available therapeutics specific to treating
active hRSV cases. Our studies aim to identify significant biological activities towards both
HeLa cells and hRSV that may have anti-cancer and anti-viral therapeutic potential for
further investigation.

2. Materials and Methods
2.1. Cells and Viruses

HEp-2 cells (ATCC CCL-23), a cervical cancer cell line derived from HeLa contamina-
tion, were maintained and cultured at 37 ◦C under 5% CO2 in Dulbecco’s Minimal Essential
Media (DMEM) supplemented with 10% fetal bovine serum (FBS) and 50 µg/mL penicillin,
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50 µg/mL streptomycin, and 2.5 µg/mL amphotericin B (PSA). Antiviral studies were
performed using an hRSV strain A2 which was modified to express a far-red fluorescent
reporter protein, monomeric Katushka 2 (mKate2), that has been previously described [18].

2.2. Plant Extract Preparation

Leaves, flowers, and stems of purple aster (Symphyotrichum novae-angliae (L.) Nemsom),
common sage (Salvia lyrata (L.)), northern spicebush (Lindera benzoin (L.) Blume), and
lamb’s ear (Stachys byzantina (K.) Koch) were identified by an ethnobotanist and obtained
at the Whitley County Historical Museum in Whitley County, Indiana, United States
(41◦9′33.157′′ N, 85◦29′26.107′′ W). Plant specimens obtained from the plants examined in
this study were properly preserved in the Friesner Herbarium at Butler University under
the accession numbers 20240115 and 20240117–20240120 and are available for examination
upon request. The plant products were dried using a mechanical convection oven at
approximately 32 ◦C (90 ◦F) before the leaves and flowers were extracted and coarsely
chopped. Aqueous extracts were prepared by adding sufficient water heated to 95 ◦C to
prepare concentrated solutions (0.08 g/mL aster, 0.10 g/mL sage, 0.13 g/mL spicebush, and
0.07 g/mL lamb’s ear). The extracts were steeped in the heated water for approximately
10 min. The extracts were then initially gravity filtered using coffee filters, before being
treated with 10 mJ of UV light and filter-sterilized (0.2 micron) prior to use in cell culture.
Extracts were stored long-term at −80 ◦C until use.

2.3. GC-MS Analysis of Plant Extracts and Testing of Major Compounds

A 1 mL aliquot of each aqueous plant solution was spiked with 10 mL methanol
and extracted with 500 mL ethyl acetate in the presence of 200 mg anhydrous NaCl. The
organic phase removed and analyzed by gas chromatography–mass spectroscopy (GC-MS)
following an adapted procedure previously described [19]. Prominent hits were identified
using a library database and were purchased for direct testing at the relative concentrations
identified through comparison to the loaded methanol standard. The compounds tested in
this study were 1,8-cineole (Thermo Scientific Chemicals, CAS 470-82-6, Avocado Research
Chemicals Ltd. (part of Thermo Fisher Scientific), Lancashire, UK), 5-(hydroxymethyl)-2-
furaldehyde (Thermo Scientific Chemicals, CAS 67-47-0, Avocado Research Chemicals Ltd.
(part of Thermo Fisher Scientific), Lancashire, UK)), D-(+)-melezitose hydrate (TCI America,
CAS 207511-10-2, Portland, OR), and (1S)-(−)-Borneol (Thermo Scientific Chemicals, CAS
464-45-9, Avocado Research Chemicals Ltd. (part of Thermo Fisher Scientific), Lancashire,
UK). Solutions were prepared of each in cell culture medium at a range of dilutions
proportional to those identified through GC-MS in the plant extracts. The 1× concentrations
of the chemicals found by GC-MS were 5.1 mM cineole, 4.8 mM furfural, 1 mM melezitose,
and 7.7 mM borneol.

2.4. Cytotoxicity (MTS) Assay

HEp-2 cells were plated at a density of 20,000 cells per well and incubated for 24 h
prior to treatment with different concentrations of plant extracts for an additional 24 h.
After 24 h, the supernatant containing medium and dilutions of plant extracts was removed
and new culture medium containing the MTS solution was added as directed (Promega
CellTiter 96 Aqueous One Solution Cell Proliferation Assay). Absorbances were collected
after 2 h incubation using a spectrophotometer at a wavelength of 490 nm. Cell viability
was determined using the following formula: % viability = [(At/As) × 100%], where At is
the absorbance of the concentrated extract and As is the concentration of the solvent.

2.5. Immunofluorescence (IF) Microscopy

Cells were plated on coverslips at a density of 0.1 × 106 cells/well and incubated for
24 h prior to the addition of plant extracts at a 1:10 dilution in complete DMEM. After
an additional 24 h, the coverslips were fixed, permeabilized, and treated with DAPI (4′,6-
diamidino-2-phenylindole) at a concentration of 1 µg/mL, TRITC-conjugated Phalloidin
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(1:300 dilution), and a FITC-conjugated anti-tubulin antibody (1:200 dilution). Multiple
images were obtained from random viewing areas within each coverslip using a Leica
DM5500 fluorescence microscope. Images were scored blindly for the relative percentage
of normal cells, those with altered nuclear morphology, and mitotic cells, as well as for
cytoskeletal disruption for each treatment condition.

2.6. Caspase-3/-7 Activity

HEp-2 cells were plated at a density of approximately 20,000 cells per well and in-
cubated for 24 h prior to treatment with different concentrations of plant extracts for an
additional 4 h. After 4 h, the Caspase-Glo 3/7 Reagent was added as directed (Promega
Caspase-Glo 3/7 Assay). Luminescence values were collected after 30 min incubation.
Values reported are after subtracting the value from a blank reaction without cells and
comparing to untreated cell controls.

2.7. Virus Inactivation Assay

HEp-2 cells were treated with mixtures of complete DMEM containing different
dilutions of plant extracts combined with recombinant hRSV strain A2 expressing mKate2
at a multiplicity of infection (MOI) of 0.05 infectious particles per cell. The number of
infected cells as indicated by red fluorescent foci using a Leica DMIL microscope with a
Texas Red filter was quantified and compared to untreated infection controls as previously
described [20].

2.8. Statistical Analysis

Cytotoxicity data were analyzed with analysis of covariance (ANCOVA) to test for the
main effects of dosage and plant extract type as well as the interaction of the effects, which
tested if the effect of different plant extracts depended on concentration. Data analysis
was conducted using RStudio (ver. 3.6.0) [21]. ANCOVA was conducted using the CAR
package [22]. When an overall interaction was found to be significant, contrasts were run
to test if specific plant extracts differed overall from control (water). Slopes of plant extract
effect by dosage were tested using the emtrends function from the emmeans package (ver.
1.10.04) [23]. Apoptosis, cytoskeleton structure, and mitosis scores were analyzed using
ANOVA [22]. When the overall ANOVA model testing for differences in plant extract
effects was significant, posthoc multiple comparisons (Tukey’s HSD) were conducted to test
if specific plant extract effects differed from each other or water controls. For all analyses,
data were examined if they met the assumptions of ANOVA (normality, equal variances). If
the data did not meet those assumptions, they were transformed by logarithm for analysis,
but the data are presented in their non-transformed values for ease of interpretation.

3. Results
3.1. Analysis of the Cytotoxicity of the Plant Extract Solutions in HEp-2 Cells

Initial experiments were performed to evaluate the cytotoxic potential of the plant
extracts on HEp-2 cells in vitro (Figure 1). When treated with medium containing up to a
quarter (0.25) plant extract solution, spicebush (Lindera benzoin (L.) Blume) and sage (Salvia
lyrata (L.)) extracts showed a dose-dependent decline in cell viability with slopes that were
significantly different compared to water control (ANCOVA, p < 0.0001). In contrast, the cell
viabilities relative to untreated controls for cells treated with either aster (Symphyotrichum
novae-angliae (L.) Nemsom) or lamb’s ear (Stachys byzantina (K.) Koch) extracts remained
at or above 100% at all tested concentrations and showed no significant difference in
slope compared to water treatment. For spicebush and sage extract treatments, the extract
concentration associated with a 50% reduction in cell cytotoxicity (CC50) for HEp-2 cells
was calculated to be 10.12 mg/mL of sage extract and 26.10 mg/mL of spicebush extract.
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Figure 1. Cytotoxicity of Plant Extracts in HEp-2 cells. HEp-2 cells were treated with cell culture
medium containing proportions of plant extracts between 0 and 25% for 24 h. After 24 h, the cell
viability was determined by MTS assay, and average relative viability (±std error of the mean; N = 4)
compared to untreated controls is shown. The individual extracts shown in units of concentration (A)
and by proportion of treatment solution (B). An ANCOVA was performed to compare the slopes of
each treatment to the water control and significance is indicated (***, p < 0.0001).

3.2. Impacts of Plant Extract Solutions on the Morphology and Proliferation of HEp-2 Cells

To determine the impact of the plant extracts on cancer cell morphology in vitro,
immunofluorescence was performed on HEp-2 cells treated with medium supplemented
with 10% of the plant extract solutions (Figure 2). Compared to untreated control, a
reduction in the amount of visible cells and alterations in cell morphology (e.g., rounding
and shrinking) consistent with cell death were observed when treated with colchicine, a
known inducer of apoptosis and positive control (Figure 2A). Consistent with the lack of
cytotoxicity previously observed, there were no major differences in the amount of growth
observed when comparing either aster or lamb’s ear treatments to the untreated control.
In contrast, cell volume and global cell health appeared diminished during treatment
with either sage or spicebush extracts. These cells appeared to more closely resemble the
colchicine treatment.

Using blinded scoring of nuclear morphology from DAPI-stained images, the number
of cells exhibiting altered nuclear morphology (consistent with activation of cell death path-
ways) and cells undergoing mitosis was determined for each of the treatments (Figure 2B).
Compared to untreated controls, there were significantly greater amounts of cells with
altered nuclear morphology in the colchicine, sage, and spicebush conditions (ANOVA,
p < 0.01 for all conditions). The average percentages of cells with altered nuclear morphol-
ogy during treatments with sage (12.2%) and spicebush (14.1%) were 4.1× and 4.7× the
rates observed in untreated cells. Furthermore, comparisons between the amount during
either treatment and colchicine (14.3%) revealed no significant difference. In contrast, no
significant differences were observed between aster (1.7%), lamb’s ear (2.4%), and the
untreated control (3.0%). Analysis of the mitotic index revealed significant reductions in mi-
tosis observed when comparing colchicine (0.6%, p = 0.018) and spicebush (0.7%, p = 0.022)
to the untreated control (4.1%). No other treatments resulted in significant reductions in
mitosis. A similar blinded analysis was performed while examining the actin and tubulin
cytoskeletal morphology of treated HEp-2 cells (Figure 2C). Cells treated with colchicine,
sage, and spicebush exhibited significantly greater cytoskeletal disruption consistent with
progression toward apoptosis (ANOVA, p < 0.001 for all 3 treatments).
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Figure 2. Immunofluorescent Analysis of HEp-2 Cells Treated with Plant Extracts. (A) Immunoflu-
orescence images were taken of HEp-2 cells treated after 24 h incubation in medium containing
10% added extract solutions. DAPI (staining DNA), TRITC-phalloidin (actin), and FITC-conjugated
anti-tubulin (tubulin) were used and the separate and merged images are shown. (B) The number
of cells with altered nuclei (left) and undergoing mitosis (right) was determined by blinded scoring
of DAPI-stained nuclei images (N > 12) of treated cells. (C) A cytoskeleton score for the amount of
cytoskeletal disruption in each image (N > 12) based on blinded analysis of the actin and tubulin
morphology is shown. The box and whisker plots depict the boxes with lines for the median, 25th,
and 75th percentiles, as well as whiskers for the 5th and 95th percentiles. Outliers are shown as
individual points. One-way ANOVA was performed to compare the nuclei, mitotic index, and
cytoskeleton scores to the untreated control. (D) Activation of caspase-3/-7 after 4 h of treatment
with 10% extract solutions as determined. Average percent (±SD) of untreated control activity is
shown. The significance is noted for all experiments (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

While these observations are consistent with induction of apoptosis, it is possible
that other cell death pathways (e.g., necroptosis, ferroptosis) were being activated. An
activation assay for caspases 3 and 7 was performed on cells treated with the plant extracts
for 4 h (Figure 2D). Compared to untreated controls, sage (164%, p = 0.00186) and spicebush
(176%, p = 0.0098) extracts elicited significantly greater caspase 3 and 7 activity, whereas
no significant change was detected in cells treated with either aster (93%) or lamb’s ear
(84%). Collectively, these data are consistent with sage and spicebush treatments promoting
activation of apoptosis.

3.3. Antiviral Activity of the Plant Extracts against Human Respiratory Syncytial Virus (hRSV)

hRSV remains a major pathogen of children and the elderly and is a common circu-
lating respiratory pathogen. Several of the plant extracts being tested were traditionally
used for respiratory ailments. Experiments were performed to evaluate whether the plant
extracts were capable of inhibiting the infectivity of hRSV (Figure 3). To avoid the impact
of cytotoxicity on HEp-2 cell viability, cells were treated with proportions of plant extract
solutions at or below 2.5% during infection with hRSV at an MOI of 0.05. Significant
dose-dependent reductions in hRSV infectivity were observed with aster, sage, and spice-
bush treatments relative to a water-treated control (ANCOVA, p < 0.0001). No significant
reduction was observed between lamb’s ear and the water-treated control. The effective
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concentration to reduce viral infectivity by 50% (EC50) was calculated for each of the
treatments. Consistent with the significant inhibition observed, the EC50 values for aster
and sage were found to be 0.16 mg/mL and 0.99 mg/mL, respectively. While significant
compared to control, the concentration of spicebush needed to reduce viral infectivity by
50% was found to be greater at 3.60 mg/mL.
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Figure 3. Antiviral Activity of Plant Extracts Against hRSV. (A) HEp-2 cells were infected at an MOI
of 0.05 with hRSV strain A2-mKate2 in cell culture medium containing proportions of plant extracts
between 0 and 2.5% for 24 h before images were obtained and the amount of hRSV-infected cells
quantified and normalized to no extract treatment. The concentration of plant extract for 2.5% used is
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no treatment is shown (±std error of the mean; N = 3). An ANCOVA was performed to compare
the slopes of each treatment to the water control and significant reductions are indicated (*, p < 0.05;
***, p < 0.001).

3.4. Antiproliferative and Antiviral Activity of Major Compounds Identified in the Plant Extracts

Each of the plant extracts were analyzed by GC-MS after extraction in ethanol (Figure 4).
Three different prominent compounds were identified in sage extract: (1S)-(−)-borneol,
1,8-cineole (eucalyptol), and D-(+)-melezitose. In spicebush extract, 5-(hydroxymethyl)-
2-furaldehyde was identified as a major component. Lastly, D-(+)-melezitose was also
identified in aster extract. No prominent compounds were identified in lamb’s ear extract.
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Each of the major compounds were analyzed for cytotoxicity at concentrations ranging
from 0.001 times to 10 times the amount present in the plant extracts from which they
were derived (Figure 5). All four compounds induced reductions in cell viability at the 1×
concentration (equivalent to the relative concentration present in the plant extract) with cell
viability. However, the cell viability remained greater than 61% for all compound treatments
at 1× concentration. Consistent with this observation, the CC50 was determined for each of
the treatments, and all treatments required greater than 1× concentrations, which ranged
from 5.74× (furfural) to 19.09× (melezitose), to induce a 50% reduction in cell viability.
When 10× concentrations were used, the cell viability was reduced by approximately 80%
for borneol (23% viability at 77 mM), cineole (22% at 52 mM), and furfural (23% at 48 mM)
treatments, and approximately 25% for melezitose treatment (73% viability at 10 mM).
Collectively, none of the pure compounds exhibited comparable cytotoxicity to the extracts
from which they were each derived (Figure 2).
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Figure 5. Cytotoxicity of Major Compounds from Extracts in HEp-2 cells. HEp-2 cells were treated
with cell culture medium containing major compounds or a water control at concentrations ranging
from 0.001× and 10× (individual concentration curves are shown above) of their concentrations in
the plant extracts. Individual cytotoxicity curves as a factor of concentration are shown above. After
24 h, the cell viability was determined by MTS assay, and average relative viability (±std error of the
mean; N = 3) compared to untreated controls is shown.

Immunofluorescence analysis was performed on each of the compounds to evaluate
any impacts that they have on cell morphology or induction of apoptosis (Figure 6). No
significant differences were observed in the immunofluorescence images obtained for
DNA, actin, or tubulin staining (Figure 6A). Consistent with the images, blind scoring
of the number of cells with altered nuclei or mitosis revealed no significant differences.
The average percent of cells with altered nuclei ranged from 1.2% (melezitose) to 2.1%
(borneol) for compound treatments compared to the control treatment (1.1%) (Figure 6B).
The average percent of cells in mitosis ranged from 4.1% (borneol) to 6.6% (furfural)
for compound treatments compared to the control treatment (7.4%). Lastly, none of the
treatments resulted in an average cytoskeletal alteration score greater than 2 indicating no
appreciable disruption of cytoskeleton arrangement among the treatments (Figure 6C).
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Figure 6. Immunofluorescent Analysis of HEp-2 Cells Treated with Major Compounds from Plant
Extracts. (A) Immunofluorescence images were taken of HEp-2 cells treated after 24 h incubation in
medium containing major compounds at the concentration present in plant extracts. DAPI (staining
DNA), TRITC-phalloidin (actin), and FITC-conjugated anti-tubulin (tubulin) were used, and the
separate and merged images are shown. (B) The number of cells with altered nuclei (left) and
undergoing mitosis (right) was determined by blinded scoring of DAPI-stained nuclei images (N > 8)
of treated cells. (C) A cytoskeleton score for the amount of cytoskeletal disruption in each image
(N > 8) based on blinded analysis of the actin and tubulin morphology is shown. The box and whisker
plots depict the boxes with lines for the median, 25th and 75th percentiles, as well as whiskers for
the 5th and 95th percentiles. Outliers are shown as individual points. One-way ANOVA was
performed to compare the nuclei, mitotic index, and cytoskeleton scores to the untreated control, and
no significance is noted.

Each of the major compounds from the plant extracts was also evaluated for antiviral
activity against hRSV at concentrations ranging from 0× to 2× levels found in the plant
extracts (Figure 7). At the 1× concentration, which is equivalent to the amount of compound
present in the extracts tested, treatment with only two compounds resulted in significant
reductions in virus: borneol and furfural (ANCOVA, p < 0.0001). The EC50 for each of the
major compounds was calculated, and 50% reductions in virus were observed at 0.12×
(0.57 mM) and 0.45× (3.47 mM) amounts of furfural and borneol, respectively, relative to
their actual concentrations in the extract. In contrast, concentrations greater than amounts
observed in the extract, were required to induce a 50% reduction in virus for cineole (1.32×
or 6.73 mM) and melezitose (2.54× or 2.54 mM).
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Figure 7. Antiviral Activity of Major Compounds from Plant Extracts Against hRSV. HEp-2 cells
were infected at an MOI of 0.05 with hRSV strain A2-mKate2 in cell culture medium containing
proportions of the major compounds between 0× and 2× relative to extract concentration (individual
concentration plots are shown at left) for 24 h before images were obtained and the number of
hRSV-infected cells quantified and normalized to no extract treatment. The average percent of
remaining virus relative to no treatment is shown (±std error of the mean; N = 2). An ANCOVA was
performed to compare the slopes of each treatment to the water control and significance is indicated
(***, p < 0.0001).

4. Discussion

The plants used in the current study have been used medicinally for many years.
While previous studies have addressed cytotoxic or antiviral properties of aqueous extracts
of some of these plants, the purpose of this study is to compare the effects of the individual
plants to each other as well as begin the elucidation of the primary active components
within the extracts [24–30]. This analysis may be a direct step toward the future of antiviral
and anti-cancer therapeutics, while also leading the way in further research into RSV
vaccinations.

An in-depth exploration of cytotoxicity revealed distinct impacts of various extracts
on HEp-2 cells. Notably, sage and spicebush extracts exhibited pronounced effects on
cell viability compared to aster, lamb’s ear, and the control (Figure 1). Nuclear staining
indicates that sage and spicebush extracts cause this decrease in cell viability both by
increasing apoptosis and decreasing mitosis. This was confirmed by scoring of the cy-
toskeletal disorganization (Figure 2). Both mitosis and apoptosis are processes governed by
morphological changes to the cytoskeleton with cytoskeletal organization in the former
and disorganization in the latter [31–33]. These findings suggest sage and spicebush could
potentially be used as a cancer therapeutic and are similar to previous findings [27,29].

HEp-2 cells were also infected with RSV and treated with plant extracts to investigate
the impact each extract had on viral inhibition. The plant extracts were used at concen-
trations below those found to significantly reduce cell numbers to ensure that the change
in viral count was due to viral inhibition and not HEp-2 cell cytotoxicity. Aster and sage
displayed concentration-dependent viral inhibition which has been reported previously
(Figure 3) [25,26]. These findings suggest the potential of aster and sage extracts in curbing
RSV infection, with early inhibitory effects observed even at lower concentrations. The
data also indicate that because aster extract showed no evident cytotoxicity but did have
antiviral activity, it may have a better safety profile as a possible therapeutic.
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A pivotal step in exploration involved investigating the individual contributions
of major compounds from each plant extract on HEp-2 HeLa cell cytotoxicity. When
identifying major compounds, a relative amount of compound in the extract was also
calculated. Cells were then treated with a range of compound concentration from 0×
to 2× the levels found in the plant extract. Surprisingly, our findings indicated that
the isolated major compounds did not significantly influence cell viability (Figure 5) or
cytotoxic activity (Figure 6). This implies that the observed antiviral and anti-cancer effects
stem from a collective action of compounds rather than any singular leading compound.
Alternatively, it remains possible that outcomes observed from the whole extracts may be
due to compounds yet to be isolated.

When exploring the antiviral activity of major compounds, borneol and furfural were
both able to significantly inhibit viral replication (Figure 7). Borneol was originally isolated
from the sage extract, and furfural was isolated from the spicebush extract. Borneol’s
ability to inhibit viral replication could be the source of sage’s antiviral activities and has
been previously shown to inhibit RSV fusion [34]. It should be noted that borneol is a
common constituent in many essential oils and has a wide range of therapeutic potential,
including antiviral activities [34–36]. It is also possible that there are other compounds that
are yet to be isolated that have an additive effect with the borneol. Furfural is interesting,
however, since the complete spicebush extract did not show significant antiviral activity
even though furfural was able to reduce viral replication at below 1x concentrations. This
could be because the antiviral effects of furfural are reduced with the combination of other
compounds due to inactivation or blocking of a specific binding site. Melezitose, which
was isolated from aster, and cineole, which was isolated from sage, did not show any
significant antiviral activity. This indicates that there are other compounds within those
extracts that lead to the antiviral properties. The lack of significant activity associated with
cineole (commonly known as eucalyptol) is particularly surprising due to its common use
and broad therapeutic activities, which include pro-apoptotic effects and use in treating
respiratory ailments [37]. Our findings may indicate that the concentration of cineole
identified in our plant extracts was insufficient to elicit these biologic activities. While the
major compounds described here were largely unique to each plant extract, it would be
interesting in future studies to evaluate any therapeutic potential associated with combining
these major constituents together for potential synergistic activities.

5. Conclusions

In conclusion, our investigation highlights aster’s antiviral activity, spicebush’s anti-
cancer potential, and sage’s dual attributes. These findings offer promising leads for
treating RSV and cancer, holding the potential to significantly enhance global human well-
being. Despite our effort to isolate and assess major compounds, the precise molecules
driving the observed antiviral and anti-cancer effects remain an intriguing question. Future
studies may unravel these mysteries, leading to the development of innovative therapies
and vaccination strategies.

This research contributes to the growing understanding of formulated plant extracts’
potential in addressing pressing medical challenges. The intricate interplay of compounds
and their multifaceted activities underscore the complexity of natural therapeutics, urging
further interdisciplinary collaboration and exploration. As we embark on this scientific
journey, the quest for unlocking the precise mechanisms underlying these observed effects
remains an exciting avenue for future research.
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