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Abstract: Platelet rich plasma (PRP) and Micrografts containing human follicle mesenchymal stem
cells (HF-MSCs) were tried as a potential treatment for androgenetic alopecia (AGA). However, little
to no work has yet to be seen wherein the bio-molecular pathway of HF-MSCs or PRP treatments were
analyzed. The aims of this work are to report the clinical effectiveness of HF-MSCs and platelet-rich
plasma evaluating and reviewing the most updated information related to the bio-molecular pathway.
Twenty-one patients were treated with HF-MSCs injections and 57 patients were treated with A-PRP.
The Wnt pathway and Platelet derived-growth factors effects were analyzed. 23 weeks after the last
treatment with mean hair thickness increments (29 ± 5.0%) over baseline values for the targeted area.
12 weeks after the last injection with A-PRP mean hair count and hair density (31 ± 2%) increases
significantly over baseline values. The increment of Wnt signaling in Dermal Papilla Cells evidently
is one of the principal factors that enhances hair growth. Signaling from mesenchymal stem cells and
platelet derived growth factors positively influences hair growth through cellular proliferation to
prolong the anagen phase (FGF-7), inducing cell growth (ERK activation), stimulating hair follicle
development (β-catenin), and suppressing apoptotic cues (Bcl-2 release and Akt activation).

Keywords: micrografts; HF-MSCs; human follicle mesenchymal stem cells; PRP; platelet rich plasma;
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1. Introduction

A clinical need exists for the development of biotechnologies to improve the hair re-growth in
androgenetic alopecia (AGA).

AGA is a dynamic and chronic hair loss disorder, affecting 80% of white men and 40% of women
before age 70, in which lymphocytes and mast cells have been seen around the miniaturizing follicle
detailed in the stem cell-rich lump zone [1–4]. Miniaturization of the follicles is characterized by a
diminishment of anagen phase, with an improvement in the amount of resting hair follicles, telogen,
containing microscopic hairs in a hairless scalp [5–7]

Current treatments affirmed for AGA include drugs as Finasteride, topical lotions such as
Minoxidil, and surgery as hair transplantation [2]. In hair loss scalp, hair follicle stem cell numbers stay
unaltered, though the number of more actively proliferating progenitor cells particularly diminishes [8].

In this way, the aim of hair-tissue engineering (HTE) must be the development of new
autologous-technologies to involve hair re-growth by in vitro and ex vivo culture or by in vivo
regeneration and bio-stimulation. Autologous stem cells have been of great interest for application in
hair-regrowth. Some early efforts in the field focused on isolating primary cells from a biopsy of the
tissue of interest and growing the cells ex vivo for subsequent introduction back into the patient.

In the last year (2017), the authors reported the results of a medical device called Rigeneracons®

(CE certified Class I, Human Brain Wave, Turin, Italy) to provide autologous micro-grafts enriched
of human follicle mesenchymal stem cells (HF-MSCs) immediately available to be used in patients
affected by AGA. The micrografts were obtained by the disaggregation of a 2 mm punch biopsy with
the selection of a cell population with a diameter of 50 microns. High cell viability was reported.
However, a major limitation encountered in this area has been the difficulty in expanding cells to
sufficient numbers for human use, the necessity to perform this expansion in Good Manufacturing
Practices (GMP) laboratories, and the viability of the expanded cells [9].

For this reason, the clinical use of HF-MSCs to improve hair re-growth has not been
adequately considered.

In addition, the use of autologous platelets derived growth factors can represent valid support
in hair-tissue regeneration (HTR) for their capacity to promote cell proliferation, differentiation
and neo-angiogenesis, favoring the wound healing process [10–12]. In fact, platelet-rich plasma
(PRP) contains at least six major growth factors, including basic fibroblast growth factor (bFGF),
platelet-derived growth factor (PDGF), vascular endothelial growth factor (VEGF), epidermal growth
factor (EGF), transforming growth factor-β (TGF-β), and insulin-like growth factor-1 (IGF-1) released
after platelet activation [11]. Each one of these major growth factors is involved in a specific
bio-molecular activity.

The authors intended to clear up the clinical and bio-molecular impacts of HF-MSCs and PRP scalp
infusion in people affected by AGA describing the bio-molecular pathway suggested in hair-regrowth.
Information reviewed and reported exhibit the clinical efficacy and histological safety of the PRP and
HF-MSCs treatments.

In this work, in particular, the recent advances of hair-tissue engineering using HF-MSCs, PRP,
and new biotechnologies, were discussed reporting the most innovative results achieved, and the
possible drawbacks or risks associated with the clinical translation of these technologies.

The examination convention agreed to the Declaration of Helsinki, the European and Italian rules.
All patients gave written informed consent before partaking in the investigation.

2. Experimental Section

2.1. Rules and EMA/CAT Recommendations

This retrospective observational case-series study was conducted following the principles outlined
in the Declaration of Helsinki and internationally consented ethics in clinical research [13]. A quality



Biomedicines 2019, 7, 27 3 of 16

assessment was carried out based on the Strengthening the Reporting of Observational studies in
Epidemiology (STROBE) checklist [14].

The protocol was conducted in strict adherence to the European Rules represented by Regulation
n.1394/2007 of the European Parliament (EC) and by the Reflection Paper on characterization of
cutting edge treatment medicinal products draft concurred, 20 June 2014 EMA/CAT/600280/2010 Rev 1,
Committee for Advanced treatments (CAT), in which the autologous use in one step surgery, minimal
manipulation, omofunctional utilization "utilized for an indistinguishable fundamental capacity in
the beneficiary as in the donor", manipulation with gadgets in aseptic conditions, are conditions that
do not require Good Manufacturing Practices (GMP) rules for processing, Good Clinical Practices
(GCP) for the clinical application and the Ethical Committee endorsement. PRP preparation must be
performed respecting in Italy “Decree of the Blood, 2 November 2015”, dispositions related to quality
and safety parameters of blood and emocomponents. All patients gave written informed consent.

The study protocol, object of a research contract (D.R. 1467/2017) and an university master’s
degree called “Regenerative surgery and medicine in wound care management”, was approved with
Rectoral Degree (D.R. n. 1794/2018) of 19 September 2018 and the Ethics on Research Committee of the
School of Medicine, “Tor Vergata” University, Rome, Italy, with registration number #0031036/2018.

All patients received detailed oral and written information about the study, including the risks,
benefits and alternative therapies, and signed an informed consent form before any study procedures.

2.2. Bio-Molecular Pathway of Stem Cells and Growth Factors that Improve Hair Re-Growth

• HGF and HGF activator (secreted by DPC): Improve proliferation of follicular epithelial cells;
• EGF: Improves migration and growth of follicle ORS cells by activation of Wnt/β-catenin signaling;
• b-FGF: Improves the development of hairs’ follicles;
• IL-6: Involved in WIHN through STAT3 activation;
• VEGF: Improves peri-follicular angiogenesis;
• TGF-β: Stimulates the signaling pathways that regulate hair cycle;
• IGF-1: Improves survival, migration, and proliferation of hair follicle cells;
• IGFBP-1 to -6: Regulates IGF-1 effects and its interaction with extracellular matrix proteins at the

hair follicle level;
• BMP: Maintains DPC phenotype (crucial for stimulation of hair follicle stem cell);
• BMPR1a: Maintains the proper identity of DPCs (essential for specific DPC function);
• M-CSF: Involved in wound-induced hair re-growth;
• M-CSFR: Involved in wound-induced hair re-growth;
• PDGF and PDGFR-β/-α64: Up-regulate the genes involved in hair follicle differentiation.

Induction and regulation of anagen. PDGF and its receptors are essential for follicular development;
• Wnt3a: Involved in hair follicle development through β-catenin signaling;
• PGE2: Stimulates anagen in hair follicles;
• PGF2α: and analogs improve the transition from telogen to anagen;
• BIO (GSK-3 inhibitor);
• PGE2 or inhibition of PGD2 or PGD2 receptor D2/ GPR4477: Improve follicle regeneration;
• Iron and l-lysine (Under investigation)

2.3. Clinical Study Overview and Patients

Two works (HF-MSCs and A-PRP) were conducted and reviewed by the authors. This investigation
enlisted 78 patients, 56 males who showed AGA in stage II–V as controlled by the Norwood–Hamilton
classification scale and 22 females with AGA in stage I–II as dictated by the Ludwig classification
scale. Twenty-one patients were treated with HF-MSCs injections and 57 patients were treated
with A-PRP. Fundamental and local prohibition criteria were considered. Fundamental expulsion
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criteria included immunosuppression and cancer, sepsis, and also the utilization of pharmacological
therapeutics targeting on AGA (finasteride, similar drugs, and/or antiandrogens) in the earlier year.
Localized expulsion criteria included the utilization of topical medicines for AGA in the earlier year.
Low-level led therapy (LLLT) was proposed by the authors 15 days after each treatment to stimulate
hair regrowth during the HF-MSCs and PRP treatment and every 3 weeks after the treatment until
6months post-treatment (Figure 1). The histological outcomes for patients treated with HF-MSCs and
PRP were published by the authors. The Wnt pathway and platelet-derived-growth factors effects
were analyzed and reviewed. AGA diagnoses were established on parameters reported in the previous
works [3,4,15–17].
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of the strips under sterile conditions (vertical laminar flow hood) performed by Rigeneracons 
(Figure 3B,C) in 1.2 mL of saline (NaCl 0.9%) (Figure 3A) through centrifugation at 80 rpm (Figure 
3D) with the aim to select cells with a size of 50 μm; third step: collecting the micrograft’s suspension 
from the system and mechanically infiltration, using 1 mL syringes into the selected area of the 
patient’s scalp affected by AGA. Samples of micrograft’s solutions obtained were previous cultured 
and subsequently characterized by cytospin and immunocytochemistry to identify the Human 
Follicle Stem Cells (HFSCs) (data published). The authors considered HFSCs the cellular population 
containing HF-MSCs and human hair follicle epithelial stem cells (HF-ESCs). 

Figure 1. A non-smoker 58-year-old male patient classified androgenetic alopecia (AGA) 3V according
to Norwood–Hamilton Scale. During Low level led therapy treatment performed by Geno-Led.

2.3.1. Preparation of Autologous Micro-Grafts Suspension

Autologous micro-grafts of HF-MSCs for human application were prepared using Rigeneracons
(Medical Device with CE certified Class I, product by HBW Srl; Turin, Italy) (Figure 2A) in different
steps. First step: harvesting of the scalp with punch biopsy (Figure 2B) and cutting the scalp tissues
into the strips (2 × 2 mm) (Figure 2C,D); second step: collecting and disaggregation of the strips
under sterile conditions (vertical laminar flow hood) performed by Rigeneracons (Figure 3B,C) in
1.2 mL of saline (NaCl 0.9%) (Figure 3A) through centrifugation at 80 rpm (Figure 3D) with the
aim to select cells with a size of 50 µm; third step: collecting the micrograft’s suspension from the
system and mechanically infiltration, using 1 mL syringes into the selected area of the patient’s scalp
affected by AGA. Samples of micrograft’s solutions obtained were previous cultured and subsequently
characterized by cytospin and immunocytochemistry to identify the Human Follicle Stem Cells (HFSCs)
(data published). The authors considered HFSCs the cellular population containing HF-MSCs and
human hair follicle epithelial stem cells (HF-ESCs).
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Figure 3. Rigenera procedure phase 2 (positioning of scalp tissue in Rigeneracons and fragmentation
by centrifugation). (A) The addition of 1.2 mL of physiologic solution into Rigeneracons kit; (B) the
strips collected into Rigeneracons; (C) Deatil of Rigeneracons containing one strip indicated by arrow;
(D) centrifugation at 80 rpm with Rigenera Securdrill device for 60 s.
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2.3.2. A-PRP Preparation and Delivery

Autologous blood (17.7 mL) was harvested using the i-Stem Kit PRP Preparation System
(Figure 4A,B) (i-Stem, Biostems, Co., LTD., Seoul, South Korea 138-843, Medical Device, CE and
Food and Drug Administration (FDA)) under the approval of the transfusional service. Sodium citrate
(ACD) as an anticoagulant, was added (2.2 mL).

After the first spin (centrifugation at 3000 rpm for 6 min) (Figure 4C), the authors removed the
Platelet-Poor Plasma PPP portion (1 mL) and RBC (Red blood cells) (2 mL) and re-centrifuged for
the second time (3000 rpm for 3 min) and at the end of the procedure, 15 mL of A-PRP was obtained
(Figure 4D–F). Microscopic platelet counts were performed on the A-PRP collected from all participants.Biomedicines 2019, 7, 27 7 of 17 
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Figure 4. i-Stem platelet rich plasma (PRP) procedure. (A) Kit i-Stem; (B) The blood collected in i-Stem
Kit underwent at centrifugation; (C) The PRP and PPP suspension obtained by the system after the first
centrifugation; (D) The PRP and PPP after the second centrifugation.; (E) selection of PRP; (F) PRP
concentration in the middle side of kit.

2.3.3. Mechanical and Controlled Injection (MCI) of Autologous Suspension and Study Design

In the patients treated with PRP or with HF-MSCs, the scalp was separated into six regions
(as previous published). The interfollicular infusions, (0.2 mL × cm2) were realized to targeted regions
at a depth of 5 mm, with MCI procedure [17] utilizing an Ultim gun (Anti-Aging Medical Systems,
Montrodat, France) outfitted with a 1 mL Luer lock syringe with needle 30-gauge, in two sessions
spaced two months apart (relatively to HF-MSCs) and in three session spaced 30 days average using
10 mL Luer-look syringe (relatively to PRP).

Suspension infusions were conveyed to the frontal area while placebo infusions (i.e., saline NaCl
0.9%) were infused in the parietal areas in patients with hair loss confined to the frontal-parietal
areas. In like manner, for hair loss restricted to the parietal-vertex regions, the suspension was infused
in the parietal area, and saline was infused in the vertex area. Equivalent quantities of autologous
micrograft’s suspension and placebo infusions were made.
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2.3.4. Evaluation of Hair Re-Growth

Assessment of hair growth was assessed in five phases: T0, before the first infusion
(Figures 5A and 6A); T1 in 3 weeks; T2, in 9 weeks; T3, in 12 weeks (Figure 5B); T4, in 16 weeks, T5 in
23 weeks (Figure 6B), after the last treatment. The hair re-growth assessed after the last treatment
was contrasted by picture and the baseline assessment made before medications and between the
micrografts and/or PRP treatment region and the manipulation region, which got placebo infusions.
The second infusion was performed following two months in the case of HF-MSCs injection. On the
other hand, in the case of PRP treatment, the last infusion was the third and each injection was
performed each 30 days average.

Photos of the area treated with a suspension of PRP are shown in Figure 5A,B. Photos of the area
treated with a suspension of micro-grafts are shown in Figure 6A,B. The impacts of micrografts’ and
PRP’s suspension and placebo medications on hair re-growth were evaluated in all patients with the
assistance of worldwide picture, doctor’s and patient’s worldwide evaluation scale.

In all patients, two translational regions of hair loss, one at the fringe of the treatment half and a
moment along the outskirt of the placebo half, were demarcated with a semi-permanent tattoo.

2.3.5. Statistical Analysis

Values as the mean in addition to baseline mistake were examined by means of Student’s t-test,
and contrasts considered statistically noteworthy were p < 0.05.

3. Results

3.1. PRP Clinical Results

As beforehand detailed [4,17], 12 weeks later the treatment with A-PRP mean hair count increases
significantly over baseline values. In particular, the values obtained, reflect a 31 ± 2% increase in
hair density for the treatment group and less than a 1% increase in hair density for the placebo
group. Moreover, both the hair count and hair density parameters represent statistically significant
improvements in hair growth for the A-PRP treated scalp (Figure 5B) over the placebo-treated
control group.
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Figure 5. A non-smoker 34-year-old male patient classified AGA 2 according to Norwood–Hamilton
Scale. (A) Timing T0 (before the treatment) with hair loss localized to the vertex, parietal, temporal, and
frontal areas; (B) Timing T3 after 12 weeks later the last third treatment with increase of hair density
in the right parietal area treated with three autologous platelet-rich plasma not activated (A-PRP)
injections versus left parietal area treated with placebo.
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As reported in our previous work [3,4] both patient populations treated with A-PRP
(autologous-PRP not activated) and AA-PRP (autologous activated-PRP) respectively, showed an
improvement in the number of follicular bulge cells and follicles, epidermal thickening, improved
vascularization, and a higher number of Ki67+ basal keratinocytes in PRP-treated scalp tissue compared
with placebo.

Indeed, histological examination of A-PRP and AA-PRP treated scalp from our previous work [3,4]
provides such clinical evidence.

Hair re-growth at the clinical level showed a similarly positive response to treatment with A-PRP,
with patients manifesting significant improvements in hair count and total hair density in the targeted
area over the control area (treated with Placebo). Differences between 12 weeks follow-up counts and
baseline count for these hair growth parameters were higher in the A-PRP treatment population in this
study than in the AA-PRP treatment population in the previous trial performed by the authors [3].
In particular, 3 months hair density measurements for patients treated with A-PRP and AA-PRP
were 65 ± 5 and 28 ± 4 hairs/cm2, respectively (Tables 1 and 2). The results obtained constitute a
31 ± 2% increase in hair density when A-PRP treatment is performed versus 19 ± 3% increase in hair
density when AA-PRP treatment is performed, with a statistically significant difference in hair growth
(p = 0.0029) (Tables 1 and 2). The increase of hair growth parameters for A-PRP over AA-PRP may
reflect the greater efficiency of in vivo thrombin to activate platelets and the body to distribute the
contents of activated platelets compared with in vitro calcium activation and injection. Moreover,
delivery of A-PRP may enable the production of thromboxane A2 (TXA2) by the platelets once they
are activated in vivo, which would activate additional platelets and amplify platelet aggregation [18].

3.2. Micrografts Clinical Results

12 weeks later the treatment with micro-grafts, mean hair density was increased significantly over
baseline values. In particular, the values obtained, reflect a 30 ± 5.0% increase in hair density for the
treatment group and less than a 1% increase in hair density for the placebo. Hair Density measurement
for area treated with micro-grafts 12 weeks after the last treatment was 39 ± 5 hairs/cm2 (Table 1).

As beforehand detailed [15], 23 weeks later the last treatment with micrografts containing HFSCs
mean hair density increments (29 ± 5.0%) over baseline values for the treated region and less than a
1% increment in hair density for the placebo region (Figure 6B). At the baseline, no statistical contrasts
in hair tally or hair thickness existed between the micrografts treatment region and manipulation
region of the scalp.
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Figure 6. A non-smoker 54-year-old male patient classified AGA 4 according to Norwood–Hamilton
Scale. (A) Timing T0 (before the treatment) with hair loss localized to the vertex; (B) Timing T5 after
23 weeks later the last second treatment with increase of hair density in the vertex area treated with
two micrograft injections versus parietal area treated with placebo.
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In the preparatory investigation [15], the authors have built up another strategy to disengage
human grown-up stem cells by minimal manipulation based on centrifugation of strips of human hair
follicles without expansion or culture. They reported the counting of these cells and the preparatory
outcomes acquired by the human follicle stem cells infusions in the scalp of patients affected by AGA,
enhancing hair thickness.

Specifically, in the past work, the authors detailed the amount (in term of percentage) of CD44+ cells
(hair follicle-derived mesenchymal stem cells), from dermal papilla, and the percentage of CD200+ cells
(hair follicle epithelial-stem cells), from the bulge, gotten via programmed centrifugation of 11 punch
tests [15].

The authors revealed, the microscopic assessment performed by cytospin, immunocytochemistry,
histological examination got by Hematoxylin-Eosin-stained and clinical assessment, feeling the need
to talk about as follow, current advances in the distinctive methodologies to improve regeneration of
hair follicles, with accentuation on those including neogenesis of hair follicles in grown-up people
utilizing isolated cells and biotechnologies.

Table 1. Study design and clinical results obtained using Micrografts containing HFSCs and autologous
platelet-rich plasma not activated (A-PRP).

Platelet-Rich Plasma Micrografts

Injections performed in three session spaced 30 days Injections performed in two sessions spaced 60 days

Mechanical and controlled injection Mechanical and controlled injection

Addition of low-level led therapy (LLLT) 15 days after each
treatment and every 3 weeks after the third treatment until 6 months

post-treatment

Addition of low-level led therapy (LLLT) 15 days after each
treatment and every 3 weeks after the second treatment

until 6 months post-treatment

Hair density measurements for A-PRP (not activated-PRP) 12 weeks
later the last treatment: 65 ± 5 hairs/cm2

Hair density measurements for Micrografts 12 weeks later
the last treatment: 39 ± 5 hairs/cm2

Hair density improvement for A-PRP (not activated-PRP) 12 weeks,
later the last treatment, compared with placebo area: 31 ± 2%

Hair density improvement for Micrografts, 12 weeks later
the last treatment compared with placebo area: 30 ± 5.0%

Hair density improvement for A-PRP (not activated-PRP) 23 weeks,
later the last treatment, compared with placebo area: 28 ± 2%

Hair density improvement for Micrografts, 23 weeks later
the last treatment compared with placebo area: 29 ± 5.0%

Table 2. Clinical results obtained using A-PRP versus AA-PRP.

A-PRP (Not Activated) AA-PRP (Activated)

Hair density measurements for A-PRP, 12 weeks later the
last treatment: 65 ± 5 hairs/cm2

Hair density measurements for AA-PRP, 12 weeks later the
last treatment: 28 ± 4 hair cm2

Hair density improvement for A-PRP 12 weeks, later the
last treatment, compared with placebo area: 31 ± 2%

Hair density improvement for AA-PRP 12 weeks, later the
last treatment, compared with placebo area: 19 ± 3%

Hair density improvement for A-PRP 23 weeks, later the
last treatment, compared with placebo area: 28 ± 2%

Hair density improvement for A-PRP 23 weeks, later the
last treatment, compared with placebo area: 15 ± 3%

4. Discussion

It is of extraordinary enthusiasm to discover distinctive methods planning to improve regeneration
of the hair follicle under conditions appropriate of a grown-up person. In light of the current knowledge
on the epithelial and dermal cells and their associations amid the embryonic hair generation and
grown-up hair cycling, numerous researchers have endeavored to acquire mature hair follicles utilizing
distinctive methods and methodologies relying upon the reasons for AGA [19–21].

Investigations were performed utilizing rat cells, especially from embryonic or infant origin.
Notwithstanding, no successful methodology to generate human hair follicles from grown-up cells
has yet been accounted for. Maybe the most critical challenge is to give three-dimensional culture
conditions mirroring the structure of living tissue. Enhancing culture conditions that permit the
extension of particular cells while securing their inductive properties, and additionally, the strategies
for choosing populaces of epithelial stem cells should give us the fundamental tools to overcome the
challenges that constrain human hair follicle neogenesis [21].
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These cells give off an impression of being situated in the lump region of human hair follicles.
Hair follicles are known to contain a well-characterized niche for grown-up stem cells: the lump,

which contains epithelial and melanocytic stem cells [22]. Stem cells in the hair lump, an obviously
differentiated structure inside the lower permanent portion of hair follicles, can generate the
interfollicular epidermis, hair follicle structures, and sebaceous glands [7,23]. The lump epithelial stem
cells can likewise reconstitute in a simulated in vivo framework to a new hair follicle [24,25].

Yu et al. [22] demonstrated that follicles of human hairs contain a stem cell populace that can
be separated into the smooth muscle cell, neuron and melanocyte heredities in induction medium.
Their information demonstrates that Oct4+ cells are available in the skin of a human, and the majority
of them are situated in the hair follicles in vivo. Oct4 has a place with the family of POU-domain
transcription factors that are regularly communicated in pluripotent cells of the developing embryo and
mediate pluripotency [26]. Subsequently, follicles of human hair contain multipotent stem cells other
than epithelial and melanocytic stem cells, and these cells are situated in the lump region. These cells
indicate promising plasticity in ex vivo and in vitro conditions, making them potential candidates for
cell engineering and cell substitution treatments.

Each mature hair follicle is a regenerating framework, which physiologically experiences cycles of
growth (anagen), relapse (catagen), and rest (telogen) various times in grown-up’s life [27]. In catagen,
hair follicle stem cells are kept up in the lump. At that point, the resting follicle re-enters anagen
(regeneration) when legitimate molecular signals are given. Amid late telogen to early anagen change,
signals from the Dermal Papilla (DP) stimulate the hair germ and quiescent lump stem cells to wind up
activated [28]. Numerous paracrine factors are engaged with this crosstalk at various hair cycle stages
and some signaling pathways have been implicated [29–31]. In anagen, stem cells in the lump offer
ascent to hair germs, at that point the transient increasing cells in the grid of the new follicle proliferate
quickly to frame another hair filament [32]. As a matter of fact, the authors feel the need to better know
which stage is critical to act.

Regeneration of hair follicles was likewise seen in people [33] when dermal sheath tissue was
utilized, which was adequate to regenerate additionally the DP structure. After implantation, the
whisker DP was equipped for promoting hair follicle regeneration holding the data to decide hair fiber
type and follicle size [34].

In an examination reported by Balañá ME et al. [21] the authors prepared in a research facility
a dermal-epidermal skin substitute by seeding an a-cellular dermal grid with cultured hair follicle
epithelial stem cells and dermal papilla cells (DPCs), both gotten from the grown-up human scalp.
These constructs were grafted into a full-thickness wound produced on bare mice skin. In fourteen days,
histological structures reminiscent of a wide range of phases of embryonic hair follicle improvement
were seen in the grafted region. These structures demonstrated concentric cellular layers of human
origin and expressed k6hf, keratin present in epithelial cells of the companion layer. Despite the fact
that the presence of completely mature hair follicles was not observed, these outcomes demonstrated
that both epithelial and dermal cultured cells from the grown-up human scalp in a dermal scaffold
could create in vivo structures that reiterate embryonic hair improvement.

In a recent report published in 2017 by Kalabusheva et al [35], the authors combined postnatal
human DPCs and skin epidermal keratinocytes (KCs) in a hanging drop culture to build up a simulated
hair follicle germ. The technique depends on DP cell hair-inciting properties and KC self-association.
They assessed two protocols of total collecting. Blended HF germ-like structures showed the initiation
of epithelial-mesenchymal collaboration, including WNT pathway enactment and expression of
follicular markers. They examined the impact of conceivable DP cell niche components including
dissolvable components and extracellular matrix (ECM) molecules during the time spent on the
organoid assembling and growth. Their outcomes showed that soluble components had little effect on
HF germ generation and Ki67+ cell score inside the organoids despite the fact that BMP6 and VD3
kept up effectively the DP character in the monolayer culture. Aggrecan, biglycan, fibronectin, and
hyaluronic acid (HA) significantly stimulated cell proliferation in DP cell monolayer culture with no
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impact on DP cell character. A large portion of ECM compounds restricted the growth of cell totals
while HA advanced the formation of bigger organoids.

Talavera-Adame et al [36], revealed in a recent study the bio-molecular pathway involved in a
cellular treatment. Specifically, it has been additionally demonstrated that Wnt/β-catenin signaling is
fundamental for the growth and upkeep of DPCs [37,38]. The increment of Wnt signaling in DPCs
evidently is one of the principal factors that enhance hair re-growth [37].

In particular, in a study published by Pirastu N. et al [39], androgen receptor signaling, is
implicated by seven genes at six loci. Three main groups were found: genes linked to Wnt signaling
(RSPO2; LGR4; WNT10A; WNT3; DKK2; SOX13; TWIST2; TWIST1; IQGAP1; and PRKD1), genes
involved in apoptosis (DFFA; BCL2; IRF4; TOP1; and MAPT) and a third more heterogeneous group
including the androgen’s receptor and TGF-β pathways (RUNX3; RUNX2; ALPL; PTHLH; RUNX1;
AR; SRD5A2; PDGFA; PAX3; and FGF5). Although many different pathways have been implicated
in the development of androgenetic alopecia, their results suggest that in addition to the androgen
receptor pathway, for which they confirm a prominent function, the Wnt and apoptosis pathways
play a fundamental role. Androgenetic Alopecia is characterized by a shorter growth (anagen), which
has been associated with increased apoptosis of the hair follicle cells. This result suggests the anagen
phase becomes shorter because of differences in the genes regulating apoptosis. The Wnt pathway
has been implicated in the transition from the telogen (resting) to the anagen (growth), and also
in the determination of the fate of the stem cells in the hair bulge, which are both dysregulated in
balding tissue. Finally, baldness risk loci in the WNT ligand biogenesis and trafficking and Class B/2
(Secretin family receptors) pathways were also associated with height, despite none of the individual
loci in these pathways being significant: this suggests a “pathway-wide” effect. Therefore, baldness
shows pathway-specific genetic correlations, which provide a potential biological basis to observed
epidemiological correlations. Pathway-specific genetic correlations hold promise in disentangling the
shared biological pathways underpinning complex diseases [39].

Another fascinating field is the likelihood to utilize the fat graft and stromal vascular fraction
cells (SVFs) in hair re-growth. SVFs is a heterogeneous group of non-cultured cells that can be
dependably removed from fat by utilizing computerized frameworks, in light of centrifugation,
filtration and purification of fat tissue or utilizing enzymatic absorption (not proposed by EMA-CAT
recommendations). These cells work to a great extent by paracrine systems to help adipocyte viability.
Festa et al [40] detailed that adipocyte ancestry cells bolster the stem cell niche and help drive the
complex hair growth cycle. This follicular regenerative approach is fascinating and raises the likelihood
that one can drive or reestablish the hair cycle in male and female hair loss by stimulating the niche
with autologous fat improved with SVF.

Along these lines, Perez-Meza D et al. [41], detailed the safety, tolerability, and quantitative, in
patients affected by hereditary alopecia treated with sub-cutaneous scalp infusion of advanced fat
tissue. An increment of 31 hairs/cm2 was recorded in patients experiencing treatment of fat blended
with SVF; one subject who had fat alone reported a mean increment of 14 hairs/cm2, proposing that
while fat alone may represent an approach for early hairlessness, the addition of SVF may improve
this reaction [41]. The discoveries propose that scalp stem cell-enriched fat grafting may represent
a promising elective way to deal with treating hair loss in people. Fukuoka et al. [42] inspected the
impacts of fat-derived stem cell-conditioned medium infusion in a group of 22 patients affected by
AGA. Patients got treatment each 3 to 5 weeks for a total of 6 sessions. The mean increment in the hair
count was 29 ± 4.1 in men and 15.6 ± 4.2 in women. No noteworthy distinction was seen amongst men
and ladies.

The examination of the investigations reviewed could prompt the conclusion that hair follicle
neogenesis utilizing human epithelial and dermal cells is an extremely cumbersome assignment that
could require unique culture conditions, some way or another reproducing the ordinary or embryonic
skin condition, and the utilization of embryonic or neonatal cells.
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In the other hand, the number of papers published on PRP is considerable, but the results are
often contradictory. The authors thinking that It is not correct to speak of PRP in general, but it is better
to identify different types of PRP preparations depending on their cell content and fibrin architecture.
On this way it is possible to identify:

1. Leukocyte-poor PRP (LP-PRP) or Pure Platelet-Rich Plasma (P-PRP). Suspension without
leukocytes and with a low-density fibrin network after activation;

2. PRP and Leukocyte (L-PRP). Suspensions with leukocytes and a low densities fibrin network
after activation (the largest number of commercial kit);

3. Leukocyte- poor platelet-rich fibrin (LP-PRF) or pure platelet-rich fibrin (P-PRF). Suspensions
without leukocytes and a high-density fibrin network.

4. Leukocytes and platelet rich fibrin (L-PRF) or second generations PRP products are preparations
with leukocytes and a high-density fibrin network.

As reported, there are too many protocols for preparation of PRP depending on the different time
and RPM used, the number of platelets, the availability of growth factors and chemokines. There is
also a wide biological (between patients) and temporal (day to day) variation [43]. So, it is difficult to
assess which kit for PRP preparation is better and which is worse [44].

Different PRP products might be more or less appropriate to treat different types of tissues and
pathologies. The clinical efficacy of PRP remains under debate, and a standardized protocol has not
yet been established [45]. So, physicians should select proper PRP preparations after considering their
bio-molecular characteristics and patient indications [46].

Recently, the use of low-level led therapy (LLLT) has been suggested as a treatment for AGA and
to improve hair re-growth. LLLT was proposed by the authors 15 days after each treatment to stimulate
hair regrowth during the HF-MSCs and PRP treatment and every 3 weeks after the treatment until
6 months post-treatment. Eleven studies were reviewed by Afifi et al. [47]. 9 studies assessing hair
count/hair density found statistically significant improvements in both males and females following
LLLT treatment. Additionally, hair thickness and tensile strength significantly improved in 2 studies.
Patient satisfaction was reported in 5 works.

Autologous platelet-rich plasma (A-PRP), is also now associated with improved surgical outcomes
and lower recurrence rates when incorporated in the treatment protocol for the gingival recession and
keloid therapies, respectively [48,49].

In dermatological use, differences were found when PRP therapies were performed with the
delivery of activated autologous PRP (AA-PRP) in place of non-activated A-PRP. When A-PRP is used
with autologous thrombin to yield AA-PRP, it is possible to observe the healing of chronic wounds and
shortened recovery times for deep burns [50,51]. Likewise, laser resurfacing of acne outcomes affords
qualitatively better results with fewer side effects when performed in conjunction with either topical or
intradermal application of calcium-activated PRP [52]. These results, probably, may be attributed to
the release and concentration of alpha-granule proteins, including growth factors and cytokines, that
stimulate cellular differentiation and proliferation, angiogenesis, and vascular modeling [53].

In the treatment of hair loss, topical use of AA-PRP to harvested follicles prior to implantation has
already been shown to increase their survival rate by 15% [54].

Moreover, patients treated with calcium gluconate-activated PRP exhibit increased hair density
three months post-surgery with terminal hair density (diameter > 40 µm) increasing by 19% during
that time [16].

These findings were confirmed in a study following AGA patients treated with calcium-activated
PRP over the course of one year [55]. Twelve weeks later the last injection of PRP, hair density peaked
with a 19% increase over baseline measurements; at the one-year mark, hair density fell to 7% above
baseline measurements but this value still constituted a significant increase in hair density compared
to the baseline values [55].

The growth factors (GFs) obtained by the degranulation of the alpha-granules have been shown
to stimulate hair re-growth. In detail, insulin-like growth factor-1 (IGF-1) stimulates proliferation of
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cycling Ki67+ basal keratinocytes [56,57], while transforming growth factor β1 (TGF-β1) protects the
proliferative potential of basal keratinocytes by inhibiting cell growth and terminal differentiation [58,59].
Platelet-derived growth factor AA (PDGF-AA) increase the hair inductive activity of DPCs when applied
in combination with fibroblast growth factor 2 (FGF-2) [60,61]. Vascular endothelial growth factor
(VEGF) stimulates angiogenesis, and PDGF-BB is a potent chemo-attractant for wound macrophages
and fibroblasts and stimulates these cells to release endogenous growth factors, including TGF-β1, that
promote new collagen synthesis [62].

DPCs harvested from human scalp have shown increased proliferation, increased Bcl-2 and
FGF-7 levels, activated ERK and Akt proteins, and up-regulation of β-catenin when cultured in an
activated PRP-supplemented growth medium [63]. Since each of these factors positively influences
hair re-growth through cellular proliferation to prolong the anagen phase (FGF-7) [28], inducing cell
growth (ERK activation) [64], stimulating hair follicle development (β-catenin) [65], and suppressing
apoptotic cues (Bcl-2 release and Akt activation) [66,67]. Human scalp affected by AGA injected
with PRP should display marked increases in cellular activity. Indeed, histological examination of
A-PRP and AA-PRP treated scalp from our previous works [3,17,18] provides such clinical evidence.
In both patient populations, the authors observed improvement in the number of follicular bulge cells
and follicles, epidermal thickening, improved vascularization, and a higher number of Ki67+ basal
keratinocytes in PRP-treated scalp tissue compared with placebo.

5. Conclusions

Our information obviously highlights the constructive effects of Micrografts-HF-MSCs and/or
PRP infusions on AGA. Micrografts-HF-MSCs and PRP may fill in an effective and a safe procedure
alternative to AGA; PRP and/or HF-MSCs represent a promising therapy for AGA. The increment of
Wnt signaling in DPCs evidently is the important factor that enhances hair re-growth. DPCs have
shown increased Bcl-2 and FGF-7 levels, activated ERK and Akt proteins, and upregulation of β-catenin
when cultured in an activated PRP-supplemented growth medium.

Author Contributions: P.G. designed the studies, analyzed the results and wrote the paper. M.G.S. and A.B.
performed the cytospin and immunocytochemistry, B.D.A., C.D.S., D.D.F., G.C., A.T., S.G. collected data, V.C and
A.O final approval.

Funding: This research received no external funding.

Acknowledgments: The authors would like to acknowledge all parties that participated in this study.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Alsantali, A.; Shapiro, J. Androgens and hair loss. Curr. Opin. Endocrinol. Diabetes. Obes. 2009, 16, 246–253.
[CrossRef] [PubMed]

2. Price, V.H. Treatment of hair loss. N. Engl. J. Med. 1999, 341, 964–973. [CrossRef]
3. Gentile, P.; Garcovich, S.; Bielli, A.; Scioli, M.G.; Orlandi, A.; Cervelli, V. The effect of platelet-rich plasma in

hair regrowth: A randomized placebo-controlled trial. Stem Cells Transl. Med. 2015, 4, 1317–1323. [CrossRef]
[PubMed]

4. Gentile, P.; Cole, J.P.; Cole, M.A.; Garcovich, S.; Bielli, A.; Scioli, M.G.; Orlandi, A.; Insalaco, C.; Cervelli, V.;
Piva, T. Evaluation of Not-Activated and Activated PRP in Hair Loss Treatment: Role of Growth Factor and
Cytokine Concentrations Obtained by Different Collection Systems. Int. J. Mol. Sci. 2017, 18, 408. [CrossRef]
[PubMed]

5. Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [CrossRef]
6. Jaworsky, C.; Kligman, A.M.; Murphy, G.F. Characterization of inflammatory infiltrates in male pattern

alopecia: Implications for pathogenesis. Br. J. Dermatol. 1992, 127, 239–246. [CrossRef]
7. Cotsarelis, G.; Sun, T.T.; Lavker, R.M. Label-retaining cells reside in the bulge area of pilosebaceous unit:

Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990, 61, 1329–1337. [CrossRef]

http://dx.doi.org/10.1097/MED.0b013e32832b100a
http://www.ncbi.nlm.nih.gov/pubmed/19396986
http://dx.doi.org/10.1056/NEJM199909233411307
http://dx.doi.org/10.5966/sctm.2015-0107
http://www.ncbi.nlm.nih.gov/pubmed/26400925
http://dx.doi.org/10.3390/ijms18020408
http://www.ncbi.nlm.nih.gov/pubmed/28216604
http://dx.doi.org/10.1056/NEJM199908123410706
http://dx.doi.org/10.1111/j.1365-2133.1992.tb00121.x
http://dx.doi.org/10.1016/0092-8674(90)90696-C


Biomedicines 2019, 7, 27 14 of 16

8. Garza, L.A.; Yang, C.-C.; Zhao, T.; Blatt, H.B.; Lee, M.; He, H.; Stanton, D.C.; Carrasco, L.; Spiegel, J.H.;
Tobias, J.W.; et al. Bald scalp in men with androgenetic alopecia retains hair follicle stem cells but lacks
CD200-rich and CD34-positive hair follicle progenitor cells. J. Clin. Investig. 2011, 121, 613–622. [CrossRef]

9. Gimble, J.M.; Bunnell, B.A.; Chiu, E.S.; Guilak, F. Concise review: Adipose-derived stromal vascular fraction
cells and stem cells: let’s not get lost in translation. Stem Cells. 2011, 29, 749–754. [CrossRef]

10. Cervelli, V.; Gentile, P.; Scioli, M.G.; Grimaldi, M.; Casciani, C.U.; Spagnoli, L.G.; Orlandi, A. Application of
platelet-rich plasma in plastic surgery: Clinical and in vitro evaluation. Tissue Eng. Part C Methods 2009, 15,
625–634. [CrossRef]

11. Cervelli, V.; Scioli, M.G.; Gentile, P.; Doldo, E.; Bonanno, E.; Spagnoli, L.G.; Orlandi, A. Platelet-rich plasma
greatly potentiates insulin-induced adipogenic differentiation of human adipose-derived stem cells through
a serine/threonine kinase Akt-dependent mechanism and promotes clinical fat graft maintenance. Stem Cells
2012, 1, 206–220. [CrossRef]

12. Kapur, S.K.; Katz, A.J. Review of the adipose derived stem cell secretome. Biochimie 2013, 95, 2222–2228.
[CrossRef]

13. Schuklenk, U.; Ashcroft, R. International research ethics. Bioethics 2000, 14, 158–172. [CrossRef]
14. Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening

the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting
observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [CrossRef]

15. Gentile, P.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Stem cells from human hair follicles: First mechanical
isolation for immediate autologous clinical use in androgenetic alopecia and hair loss. Stem Cell Investig.
2017, 4, 58. [CrossRef]

16. Cervelli, V.; Garcovich, S.; Bielli, A.; Cervelli, G.; Curcio, B.C.; Scioli, M.G.; Orlandi, A.; Gentile, P.
The effect of autologous activated platelet rich plasma (AA-PRP) injection on pattern hair loss: Clinical and
histomorphometric evaluation. BioMed Res. Int. 2014, 2014, 760709. [CrossRef]

17. Gentile, P.; Garcovich, S.; Scioli, M.G.; Bielli, A.; Orlandi, A.; Cervelli, V. Mechanical and Controlled PRP
Injections in Patients Affected by Androgenetic Alopecia. J. Vis. Exp. 2018, 131, e56406. [CrossRef]

18. Hamberg, M.; Svensson, J.; Samuelsson, B. Thromboxanes—New group of biologically-active compounds
derived from prostaglandin endoperoxides. Proc. Natl. Acad. Sci. USA 1975, 72, 2994–2998. [CrossRef]

19. Liu, X.; Bai, T.; Li, M.; Li, L.; Chi, G.; Liu, J.Y.; Zhang, X.; Wang, Y.; Gao, Y.; Xu, H.; et al. Maintenance of high
proliferation and multipotent potential of human hair follicle-derived mesenchymal stem cells by growth
factors. Int. J. Mol. Med. 2013, 31, 913–921.

20. Ohyama, M.; Terunuma, A.; Tock, C.L.; Radonovich, M.F.; Pise-Masison, C.A.; Hopping, S.B.; Brady, J.N.;
Udey, M.C.; Vogel, J.C. Characterization and isolation of stem cell-enriched human hair follicle bulge cells.
J. Clin. Investig. 2006, 116, 249–260. [CrossRef]

21. Balañá, M.E.; Charreau, H.E.; Leirós, G.J. Epidermal stem cells and skin tissue engineering in hair follicle
regeneration. World. J. Stem Cells 2015, 26, 711–727. [CrossRef]

22. Yu, H.; Fang, D.; Kumar, S.M.; Li, L.; Nguyen, T.K.; Acs, G.; Herlyn, M.; Xu, X. Isolation of a novel population
of multipotent adult stem cells from human hair follicles. Am. J. Pathol. 2006, 168, 1879–1888. [CrossRef]

23. Tumbar, T.; Guasch, G.; Greco, V.; Blanpain, C.; Lowry, W.E.; Rendl, M.; Fuchs, E. Defining the epithelial stem
cell niche in skin. Science 2004, 303, 359–363. [CrossRef]

24. Morris, R.J.; Liu, Y.; Marles, L.; Yang, Z.; Trempus, C.; Li, S.; Lin, J.S.; A Sawicki, J.; Cotsarelis, G. Capturing and
profiling adult hair follicle stem cells. Nat. Biotechnol. 2004, 22, 411–417. [CrossRef]

25. Taylor, G.; Lehrer, M.S.; Jensen, P.J.; Sun, T.-T.; Lavker, R.M. Involvement of follicular stem cells in forming
not only the follicle but also the epidermis. Cell 2000, 102, 451–461. [CrossRef]

26. Pesce, M.; Scholer, H.R. Oct-4: Gatekeeper in the beginnings of mammalian development. Stem Cells 2001,
19, 271–278. [CrossRef]

27. Alonso, L.; Fuchs, E. The hair cycle. J. Cell Sci. 2006, 119, 391–393. [CrossRef]
28. Greco, V.; Chen, T.; Rendl, M.; Schober, M.; Pasolli, H.A.; Stokes, N.; Dela Cruz-Racelis, J.; Fuchs, E. A two-step

mechanism for stem cell activation during hair regeneration. Cell Stem Cell 2009, 4, 155–169. [CrossRef]
29. Blanpain, C.; Lowry, W.E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-renewal, multipotency, and the existence

of two cell populations within an epithelial stem cell niche. Cell 2004, 118, 635–648. [CrossRef]

http://dx.doi.org/10.1172/JCI44478
http://dx.doi.org/10.1002/stem.629
http://dx.doi.org/10.1089/ten.tec.2008.0518
http://dx.doi.org/10.5966/sctm.2011-0052
http://dx.doi.org/10.1016/j.biochi.2013.06.001
http://dx.doi.org/10.1111/1467-8519.00187
http://dx.doi.org/10.1016/j.jclinepi.2007.11.008
http://dx.doi.org/10.21037/sci.2017.06.04
http://dx.doi.org/10.1155/2014/760709
http://dx.doi.org/10.3791/56406
http://dx.doi.org/10.1073/pnas.72.8.2994
http://dx.doi.org/10.1172/JCI26043
http://dx.doi.org/10.4252/wjsc.v7.i4.711
http://dx.doi.org/10.2353/ajpath.2006.051170
http://dx.doi.org/10.1126/science.1092436
http://dx.doi.org/10.1038/nbt950
http://dx.doi.org/10.1016/S0092-8674(00)00050-7
http://dx.doi.org/10.1634/stemcells.19-4-271
http://dx.doi.org/10.1242/jcs.02793
http://dx.doi.org/10.1016/j.stem.2008.12.009
http://dx.doi.org/10.1016/j.cell.2004.08.012


Biomedicines 2019, 7, 27 15 of 16

30. Botchkarev, V.A.; Kishimoto, J. Molecular control of epithelial-mesenchymal interactions during hair follicle
cycling. J. Investig. Dermatol. Symp. Proc. 2003, 8, 46–55. [CrossRef]

31. Roh, C.; Tao, Q.; Lyle, S. Dermal papilla-induced hair differentiation of adult epithelial stem cells from human
skin. Physiol. Genom. 2004, 19, 207–217. [CrossRef]

32. Hsu, Y.C.; Pasolli, H.A.; Fuchs, E. Dynamics between stem cells, niche, and progeny in the hair follicle. Cell
2001, 144, 92–105. [CrossRef]

33. Reynolds, A.J.; Lawrence, C.; Cserhalmi-Friedman, P.B.; Christiano, A.M.; Jahoda, C.A.B. Trans-gender
induction of hair follicles. Nature 1999, 402, 33–34. [CrossRef]

34. Jahoda, C.A. Induction of follicle formation and hair growth by vibrissa dermal papillae implanted into rat
ear wounds: Vibrissa-type fibres are specified. Development 1992, 115, 1103–1109. [PubMed]

35. Kalabusheva, E.; Terskikh, V.; Vorotelyak, E. Hair Germ Model In Vitro via Human Postnatal
Keratinocyte-Dermal Papilla Interactions: Impact of Hyaluronic Acid. Stem Cells Int. 2017, 2017, 1–14.
[CrossRef]

36. Talavera-Adame, D.; Newman, D.; Newman, N. Conventional and novel stem cell based therapies for
androgenic alopecia. Stem Cells Cloning 2017, 10, 11–19. [CrossRef]

37. Tsai, S.Y.; Sennett, R.; Rezza, A.; Clavel, C.; Grisanti, L.; Zemla, R.; Najam, S.; Rendl, M. Wnt/β-catenin
signaling in dermal condensates is required for hair follicle formation. Dev. Biol. 2014, 385, 179–188.
[CrossRef]

38. Huelsken, J.; Vogel, R.; Erdmann, B.; Cotsarelis, G.; Birchmeier, W. Beta-Catenin controls hair follicle
morphogenesis and stem cell differentiation in the skin. Cell 2001, 105, 533–545. [CrossRef]

39. Pirastu, N.; Joshi, P.K.; de Vries, P.S.; Cornelis, M.C.; McKeigue, P.M.; Keum, N.; Franceschini, N.; Colombo, M.;
Giovannucci, E.L.; Spiliopoulou, A.; et al. GWAS for male-pattern baldness identifies 71 susceptibility loci
explaining 38% of the risk. Nat. Commun. 2017, 8, 1584. [CrossRef]

40. Festa, E.; Fretz, J.; Berry, R.; Schmidt, B.; Rodeheffer, M.; Horowitz, M.; Horsley, V. Adipocyte lineage cells
contribute to the skin stem cell niche to drive hair cycling. Cell 2011, 146, 761–771. [CrossRef]

41. Perez-Meza, D.; Ziering, C.; Sforza, M.; Krishnan, G.; Ball, E.; Daniels, E.; Perez-Meza, V.A.P.B.D. Hair follicle
growth by stromal vascular fraction-enhanced adipose transplantation in baldness. Stem Cells Cloning 2017,
10, 1–10. [CrossRef]

42. Fukuoka, H.; Suga, H. Hair Regeneration Treatment Using Adipose-Derived Stem Cell Conditioned Medium:
Follow-up with Trichograms. Eplasty 2015, 15, e10.

43. Metcalf, K.B.; Mandelbaum, B.R.; McIlwraith, C.W. Application of Platelet-Rich Plasma to Disorders of the
Knee Joint. Cartilage 2013, 4, 295–312. [CrossRef]

44. Dhurat, R.; Sukesh, M. Principles and Methods of Preparation of Platelet-Rich Plasma: A Review and
Author’s Perspective. J. Cutan. Aesthet. Surg. 2014, 7, 189–197. [CrossRef]

45. Gobbi, A.; Karnatzikos, G.; Mahajan, V.; Malchira, S. Platelet-rich plasma treatment in symptomatic patients
with knee osteoarthritis: Preliminary results in a group of active patients. Sports Health 2012, 4, 162–172.
[CrossRef]

46. Oh, J.H.; Kim, W.; Roh, Y.H.; Park, K.U. Comparison of the Cellular Composition and Cytokine-Release
Kinetics of Various Platelet-Rich Plasma Preparations. Am. J. Sports Med. 2015, 43, 3062–3070. [CrossRef]

47. Afifi, L.; Maranda, E.L.; Zarei, M.; Delcanto, G.M.; Falto-Aizpurua, L.; Kluijfhout, W.P.; Jimenez, J.J. Low-level
laser therapy as a treatment for androgenetic alopecia. Lasers Surg. Med. 2017, 49, 27–39. [CrossRef]

48. Jones, M.E.; Hardy, C.; Ridgway, J. Keloid management: A retrospective case review on a new approach using
surgical excision, platelet-rich plasma, and in-office superficial photon X-ray radiation therapy. Adv. Skin
Wound Care 2016, 29, 303–307. [CrossRef]

49. Naik, A.R.; Ramesh, A.V.; Dwarkanath, C.D.; Naik, M.S.; Chinnappa, A.B. Use of autologous platelet rich
plasma to treat gingival recession in esthetic periodontal surgery. J. Indian Soc. Periodontol. 2013, 17, 345–353.
[CrossRef]

50. Klosová, H.; Šteˇtinský, J.; Bryjová, I.; Hledík, S.; Klein, L. Objective evaluation of the effect of autologous
platelet concentrate on post-operative scarring in deep burns. Burns 2013, 39, 1263–1276. [CrossRef]

51. Motolese, A.; Vignati, F.; Antelmi, A.; Saturni, V. Effectiveness of platelet-rich plasma in healing necrobiosis
lipoidica diabeticorum ulcers. Clin. Exp. Dermatol. 2015, 40, 39–41. [CrossRef] [PubMed]

http://dx.doi.org/10.1046/j.1523-1747.2003.12171.x
http://dx.doi.org/10.1152/physiolgenomics.00134.2004
http://dx.doi.org/10.1016/j.cell.2010.11.049
http://dx.doi.org/10.1038/46938
http://www.ncbi.nlm.nih.gov/pubmed/1451660
http://dx.doi.org/10.1155/2017/9271869
http://dx.doi.org/10.2147/SCCAA.S138150
http://dx.doi.org/10.1016/j.ydbio.2013.11.023
http://dx.doi.org/10.1016/S0092-8674(01)00336-1
http://dx.doi.org/10.1038/s41467-017-01490-8
http://dx.doi.org/10.1016/j.cell.2011.07.019
http://dx.doi.org/10.2147/SCCAA.S131431
http://dx.doi.org/10.1177/1947603513487553
http://dx.doi.org/10.4103/0974-2077.150734
http://dx.doi.org/10.1177/1941738111431801
http://dx.doi.org/10.1177/0363546515608481
http://dx.doi.org/10.1002/lsm.22512
http://dx.doi.org/10.1097/01.ASW.0000482993.64811.74
http://dx.doi.org/10.4103/0972-124X.115665
http://dx.doi.org/10.1016/j.burns.2013.01.020
http://dx.doi.org/10.1111/ced.12474
http://www.ncbi.nlm.nih.gov/pubmed/25266162


Biomedicines 2019, 7, 27 16 of 16

52. Gawdat, H.I.; Hegazy, R.A.; Fawzy, M.M.; Fathy, M. Autologous platelet rich plasma: Topical versus
intradermal after fractional ablative carbon dioxide laser treatment of atrophic acne scars. Dermatol. Surg.
2014, 40, 152–161. [CrossRef] [PubMed]

53. Zucker, M.B.; Nachmias, V.T. Platelet activation. Arteriosclerosis 1985, 5, 2–18. [CrossRef] [PubMed]
54. Uebel, C.O.; da Silva, J.B.; Cantarelli, D.; Martins, P. The role of platelet plasma growth factors in male pattern

baldness surgery. Plast. Reconstr. Surg. 2006, 118, 1458–1466. [CrossRef]
55. Gkini, M.A.; Kouskoukis, A.E.; Tripsianis, G.; Rigopoulos, D.; Kouskoukis, K. Study of platelet-rich plasma

injections in the treatment of androgenetic alopecia through an one-year period. J. Cutan. Aesthet. Surg. 2014,
7, 213–219. [CrossRef]

56. Hodak, E.; Gottlieb, A.B.; Anzilotti, M.; Krueger, J.G. The insulin-like growth factor 1 receptor is expressed
by epithelial cells with proliferative potential in human epidermis and skin appendages: Correlation of
increased expression with epidermal hyperplasia. J. Investig. Dermatol. 1996, 106, 564–570. [CrossRef]

57. Ristow, H.J.; Messmer, T.O. Basic fibroblast growth-factor and insulin-like growth factor-I are strong mitogens
for cultured mouse keratinocytes. J. Cell Physiol. 1988, 137, 277–284. [CrossRef] [PubMed]

58. Matsumoto, K.; Hashimoto, K.; Hashiro, M.; Yoshimasa, H.; Yoshikawa, K. Modulation of growth and
differentiation in normal human keratinocytes by transforming growth-factor-beta. J. Cell Physiol. 1990, 145,
95–101. [CrossRef] [PubMed]

59. Shipley, G.D.; Pittelkow, M.R.; Wille, J.J.; Scott, R.E.; Moses, H.L. Reversible inhibition of normal human
prokeratinocyte proliferation by type-transforming growth factor-growth inhibitor in serum-free medium.
Cancer Res. 1986, 46, 2068–2071. [PubMed]

60. Born, G.V.R. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962, 194,
927–929. [CrossRef]

61. Kiso, M.; Hamazaki, T.S.; Itoh, M.; Kikuchi, S.; Nakagawa, H.; Okochi, H. Synergistic effect of PDGF and FGF2
for cell proliferation and hair inductive activity in murine vibrissal dermal papilla in vitro. J. Dermatol. Sci.
2015, 79, 110–118. [CrossRef]

62. Pierce, G.F.; Mustoe, T.A.; Lingelbach, J.; Masakowski, V.R.; Griffin, G.L.; Senior, R.M.; Deuel, T.F.
Platelet-derived growth-factor and transforming growth factor-beta enhance tissue-repair activities by
unique mechanisms. J. Cell Biol. 1989, 109, 429–440. [CrossRef] [PubMed]

63. Li, Z.J.; Choi, H.I.; Choi, D.K.; Sohn, K.C.; Im, M.; Seo, Y.J.; Lee, Y.H.; Lee, J.H.; Lee, Y. Autologous platelet-rich
plasma: A potential therapeutic tool for promoting hair growth. Dermatol. Surg. 2012, 38, 1040–1046.
[CrossRef] [PubMed]

64. Robinson, M.J.; Cobb, M.H. Mitogen-activated protein kinase pathways. Curr. Opin. Cell Biol. 1997, 9,
180–186. [CrossRef]

65. Lichtenberger, B.M.; Mastrogiannaki, M.; Watt, F.M. Epidermal ß -catenin activation remodels the dermis via
paracrine signalling to distinct fibroblast lineages. Nat. Commun. 2016, 7, 1–13. [CrossRef] [PubMed]

66. Ahmad, S.; Singh, N.; Glazer, R.I. Role of AKT1 in 17 ß -estradiol- and insulin-like growth factor
1 (IGF-1)-dependent proliferation and prevention of apoptosis in MCF-7 breast carcinoma cells.
Biochem. Pharmacol. 1999, 58, 425–430. [CrossRef]

67. Yang, J.; Zhao, S.L.; Yang, X.L.; Zhang, H.; Zheng, P.; Wu, H. Inhibition of B-cell apoptosis is mediated
through increased expression of Bcl-2 in patients with rheumatoid arthritis. Int. J. Rheum. Dis. 2016, 19,
134–140. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1111/dsu.12392
http://www.ncbi.nlm.nih.gov/pubmed/24354616
http://dx.doi.org/10.1161/01.ATV.5.1.2
http://www.ncbi.nlm.nih.gov/pubmed/2981527
http://dx.doi.org/10.1097/01.prs.0000239560.29172.33
http://dx.doi.org/10.4103/0974-2077.150743
http://dx.doi.org/10.1111/1523-1747.ep12344044
http://dx.doi.org/10.1002/jcp.1041370210
http://www.ncbi.nlm.nih.gov/pubmed/2461376
http://dx.doi.org/10.1002/jcp.1041450114
http://www.ncbi.nlm.nih.gov/pubmed/2211846
http://www.ncbi.nlm.nih.gov/pubmed/2418960
http://dx.doi.org/10.1038/194927b0
http://dx.doi.org/10.1016/j.jdermsci.2015.04.007
http://dx.doi.org/10.1083/jcb.109.1.429
http://www.ncbi.nlm.nih.gov/pubmed/2745556
http://dx.doi.org/10.1111/j.1524-4725.2012.02394.x
http://www.ncbi.nlm.nih.gov/pubmed/22455565
http://dx.doi.org/10.1016/S0955-0674(97)80061-0
http://dx.doi.org/10.1038/ncomms10537
http://www.ncbi.nlm.nih.gov/pubmed/26837596
http://dx.doi.org/10.1016/S0006-2952(99)00125-2
http://dx.doi.org/10.1111/1756-185X.12706
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Experimental Section 
	Rules and EMA/CAT Recommendations 
	Bio-Molecular Pathway of Stem Cells and Growth Factors that Improve Hair Re-Growth 
	Clinical Study Overview and Patients 
	Preparation of Autologous Micro-Grafts Suspension 
	A-PRP Preparation and Delivery 
	Mechanical and Controlled Injection (MCI) of Autologous Suspension and Study Design 
	Evaluation of Hair Re-Growth 
	Statistical Analysis 


	Results 
	PRP Clinical Results 
	Micrografts Clinical Results 

	Discussion 
	Conclusions 
	References

