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Abstract: Telomeres are at the non-coding ends of linear chromosomes. Through a complex 3-
dimensional structure, they protect the coding DNA and ensure appropriate separation of chromo-
somes. Aging is characterized by a progressive shortening of telomeres, which compromises their
structure and function. Because of their protective function for genomic DNA, telomeres appear
to play an important role in the development and progression of many age-related diseases, such
as cardiovascular disease (CVD), malignancies, dementia, and osteoporosis. Despite substantial
evidence that links telomere length with these conditions, the nature of these observations remains
insufficiently understood. Therefore, future studies should address the question of causality. Fur-
thermore, analytical methods should be further improved with the aim to provide informative and
comparable results. This review summarize the actual knowledge of telomere biology and the
possible implications of telomere dysfunction for the development and progression of age-related
diseases. Furthermore, we provide an overview of analytical techniques for the measurement of
telomere length and telomerase activity.
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1. Introduction

Telomeres, the ends of linear chromosomes, have already been studied for over half
a century, and today we possess detailed knowledge of the structural organization and
physiology [1]. One key feature of telomeres is that they shorten with advancing age, which
compromises their structure and function. Over the last decade, numerous studies have
reported associations between telomere length and a broad range of age-related diseases
including cardiovascular disease, malignancies, dementia, osteoporosis, and others [2].
However, the nature of these relationships and potential molecular mechanisms that
may explain them are still insufficiently understood. A particular area of interest in this
context is cancer, where genomic stability, cell differentiation, and proliferation is often
compromised. Because of their protective function for genomic DNA, telomeres appear to
play an important role in the development and progression of malignancies. This review
summarize the actual knowledge of telomere biology and the possible implications of
telomere dysfunction for the development and progression of age-related diseases.

2. Telomeres—Structure and Functions

Telomeres are DNA regions of variable length at the end of all chromosomes. In
humans, they are composed by numerous repeats of the hexanucleotide TTAGGG and
are organized in a complex 3-dimensional structure, which is essential for the protective
properties of telomeres. While telomeres are double-stranded for most of their length, the
very end of the leading strand is single-stranded. This single stranded overhang is the
result of an incomplete lagging strand DNA synthesis, which leads to telomere shortening
with every cell division, beyond telomere shortening due to accidental damage. When
telomeres become critically short, cells no longer divide. In 1961, Hayflick discovered
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that the number of cell divisions in vitro is limited, known as the Hayflick limit [3,4].
In order to prevent inappropriate recognition of the single-stranded overhang as DNA
damage and subsequent activation of the DNA damage repair (DDR) system, it is hidden
inside the 3-dimensional telomere structure. Inappropriate activation of the DDR system at
telomeric sites would results in non-homologous end-joining, alternative non-homologous
end-joining or homologous recombination [5]. Because of the progressive shortening of
telomeres due to aging, they are often referred to as a “molecular clock of aging.”

Telomere function and maintenance is tightly linked to the shelterin protein complex,
which consists of six individual proteins [6]. A detailed description of the shelterin proteins
is given in Table 1. This nucleo-protein complex is attached to telomeres and forces double-
stranded telomeric DNA to fold back, forming the so called T-loop. Furthermore, with the
help of shelterin proteins, the single-stranded DNA overhang at the end of the T-Loop is
hidden inside the D-loop, a short section where double-stranded telomeric DNA drifts
apart (Figure 1). When telomeres become critically short, formation of the protective T-loop
structure is no longer possible, which would expose the single-stranded overhang to the
DDR system. To prevent the adverse consequences, like destruction of the genome a DDR
signal appears, cells arrest their proliferation cycle and gradually go into senescence.

Table 1. Components of the Shelterin complex and their functions. [6–10].

Shelterin Protein Function

Telomeric repeat binding factor 1 (TRF-1)

TRF-1 binds the canonical 5′-TTAGGG-3′

double-stranded telomeric repeats and is
important to determine the structure of
telomeric ends, as it is implicated in the
generation of t-loops and the regulation of
telomeric DNA synthesis by the
reverse-transcriptase telomerase.

Telomeric repeat binding factor 2 (TRF-2)

TRF-2 is a paralog of TRF-1. As its paralog,
TRF-2 has an essential role in maintaining the
conformational status of telomeres. It is
implicated in telomeric ends protection and
telomere length homeostasis.

TRF-1 interacting nuclear protein 2 (TIN-2)

TIN-2 can bridge TRF-1 to the TRF-2/RAP-1
protein complex and recruits the TPP-1/POT-1
heterodimer to telomeric ends. In this way,
TIN-2 is important for the assembly of the
Shelterin complex and thereby the protection
of telomeric ends.

Telomeric overhang binding protein 1 (POT-1)

POT-1 forms with TPP-1 a heterodimeric
binding protein, which binds to the
single-stranded 5′-TTAGGG-3′ repeats. Thus,
it is critically involved in telomere
conformational changes. In this way, the
interaction between POT-1 and the enzyme
telomerase allows the addition of new
hexanucleotides to chromosome ends.

TIN-2 and POT-1 interacting protein 1 (TPP-1)
TPP-1 forms a heterodimer with POT-1 and
plays an important role in the recruitment of
telomerase to telomeric ends.

Repressor-activator protein 1 (RAP-1)

RAP-1 forms a 1:1 complex with TRF-2 and is
important for the structure, protection, and
elongation of telomeres. As a modulator of the
NF-κB signaling pathway, RAP-1 is also
involved in the regulation of the energy
metabolism.
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Figure 1. (A): Illustration of the shelterin nucleoprotein complex, which protects coding DNA and discriminates telomeres
from other free DNA ends resulting from DNA damage. (B): Illustration of the closed chromatin configuration at telomeric
ends. Due to protein-protein interactions and the specific binding of shelterins to telomeric DNA, double-stranded telomeric
DNA is forced to fold back in a loop structure (T-loop) while the 3′ single-stranded DNA overhang is hidden inside the
D-loop. The binding of shelterins to interstitial telomeric sequences (ITS) leads to the formation of interstitial telomeric
loops (ITL) and establishes a closed chromatin structure that impedes the expression of subtelomeric and distal genes
through telomere position effects (TPE). (C): lllustration of the open chromatin configuration at telomeric ends. Critically
short telomeres can no longer maintain the compact chromatin structure. The resulting open chromatin structure facilitates
the access of the translational machinery to genes that were formerly silenced by TPEs.

The compact DNA-structure of telomeres represses the expression of nearby genes
through spatial hindering. This transcriptional silencing is known as telomere position
effect (TPE) [11,12]. Telomeric motifs are also interspersed between genes of the coding
DNA. These interstitial telomeric sequences (ITS) can interact with telomere-associated
shelterin proteins, especially telomeric repeat binding factor 2 (TERF2), resulting in the
formation of interstitial telomeric loops (ITL) [13]. These ITLs contribute to the complex
3-dimensional chromatin structure and permit telomeres to modify the expression of
subtelomeric and distal genes. The latter is referred to as telomere position effect over long
distances (TPE-OLD) [14].

3. Telomerase

Telomerase is a ribonucleoprotein complex that is able to elongate telomeres through
the de-novo synthesis of telomeric DNA and thereby counteracting the end-replication
problem [15]. It consists of the protein component telomerase reverse transcriptase (TERT),
which harbors the enzyme activity, and the telomerase RNA component (TERC), also
referred as human telomerase RNA (hTR). TERC serves as the template for telomere elon-
gation. In early embryonic development, telomerase is active and ensures appropriate
telomere elongation. However, within 18 weeks of gestation, the enzyme becomes inactive.
In contrast, single-cell eukaryotes require a constantly active telomerase to enable continu-
ous cell division. Telomerase silencing during embryonic life is believed to be mediated
either by alternative splicing or epigenetic modifications that alter the 3-dimensional chro-
matin structure [16,17]. Telomerase activity in humans is primarily regulated through the
expression TERT [18]. The regulation of TERC transcription is largely unknown. TERC
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belongs to the family of non-coding small Cajal body RNAs (scaRNA) and small nucleolar
RNAs (snoRNA) and has its own promotor, which is in contrast to most scaRNAs and
snoRNAs [19–21]. Assembling of functional telomerase depends on the structure of TERC,
which can allow or prevent TERT binding [22,23]. In particular, TERT is characterized
by 3 domains, the N-terminal domain, which is the telomerase RNA binding domain,
the C-terminal domain, and the reverse transcriptase domain. These domains build a
ring structure allowing RNA-DNA hybridisation and DNA synthesis. Through the action
of additional proteins, the holoenzyme is recruited to telomeres and becomes fully acti-
vated [24–26]. Firstly, two dyskerin complexes bind to TERC followed by nucleolar protein
10 (NOP10) and NHP2. Finally, assembling of the holoenzyme is completed through associ-
ation of this protein complex with WD repeat containing antisense to TP53, which regulates
catalytic activity. Beyond these co-factors, several other proteins are at least transiently
involved for biogenesis and assembling of the telomerase holoenzyme, including SHQ1,
pontin, reptin, ATPases, the chaperones HSP90, and TriC [27–30]. Two recent publications
on the structure of substrate bound telomerase using cryo electron microscopy give essen-
tially new insights by revealing a bilobal structure [23,31]. The bilobal structure is scaffold
by the RNA component and consists of the catalytic core with TERT and DNA-bound
TERC as well as the H/ACA lobe. This lobe is essentially involved in the assembling and
contains an H/ACA protein complex with dyskerin, NOP10, GAR1, NHP2, and telomerase
Cajal body protein 1 (TCBA1).

As described above, telomeres are associated with the shelterin complex to protect the
telomeric DNA from inappropriate DNA repair response. Moreover, the shelterin complex
is also involved in the recruitment of telomerase to the telomeric DNA. This recruitment is
cell cycle dependent and occurs in the S phase [32] through binding of TERT to the shelterin
protein tripeptidyl peptidase 1 [33–36]. TEN and TEL are the specific protein domains that
mediated the binding of TERT to TPP-1 [37].

Taken together, the telomeric region represents a highly complex DNA-protein struc-
ture, consisting of telomeric DNA and the shelterin complex. Through interaction of the
shelterin proteins with telomeric DNA, a complex 3D structure is formed that protects
telomeres from inappropriate DDR activity and regulates the expression of subtelom-
eric and distal genes. Telomeres shorten naturally with every cell division due to the
end-replication problem and accidental damage. The telomerase enzyme complex can
counteract telomere shortening through de-novo synthesis of telomeric DNA.

4. Influencing Factors of Telomere Length

In humans, mean leukocyte telomere length (LTL) at birth is 11 kilo base pairs (kbp)
and declines to less than 4 kbp in elderly individuals [2]. However, telomere shortening is
not a linear process, where a constant number of base pairs is lost with every cell division.
Telomerase activity and telomere trimming events can modulate telomere length in both
directions. Numerous studies have investigated non-modifiable and modifiable factors that
influence telomere length. Gender, for example, is a non-modifiable factor that determines
telomere length with longer telomeres being observed in females than in males [38]. This
effect is mainly driven by estrogen, which mediates antioxidative effects and induces
moderate telomerase activity. Psychological stress is another well-documented factor that
impacts telomere homeostasis by reducing telomerase activity and increasing reactive
oxidative species [39,40]. Also, nutritional factors can modulate telomere length [41–43].
In particular, a sufficient supply with micronutrients like vitamin A, D, C, E, B12, folate,
and nicotinamide is positively associated with telomere length [44–48]. Minerals like
magnesium, zinc, and iron, and other dietary components, such as omega-3 fatty acid,
polyphenols, and curcumin, are additional modulators of telomere length. The effects of
vitamins on telomere homeostasis seem to be mediated by their antioxidative properties
and the prevention of DNA damage. In addition to a healthy diet, regular physical
activity also contributes to the preservation of telomere length via reducing sustained
oxidative stress and inflammatory mechanisms. Furthermore, exercise has been shown



Biomedicines 2021, 9, 1335 5 of 19

to increase telomerase activity [49–51]. Other lifestyle-related factors that potentially
influence telomere length include smoking and alcohol consumption. However, to date
the evidence for a significant associations between alcohol consumption and telomere
length is insufficient [52]. Regarding smoking, a recent meta-analysis of 84 studies showed
significantly shorter telomeres in ever smokers compared to those who never smoked [53].
Taken together, there is good evidence that a healthy and active lifestyle with sufficient sleep
and a low psychologic stress level contributes to the preservation of telomeres. Physical
inactivity, nutritional deficits, overweight, stress, and smoking can accelerate telomere
shortening and thus promote age-related diseases.

5. Telomeres and Age-Related Diseases

Aging is characterized by progressive telomere shortening due to cell division and
telomere erosion. Individuals of the same age with the shortest telomeres have compared
to those with the longest telomeres a higher hazard ratio for all-cause mortality [54,55].
Furthermore, telomere length is also related to the incidence, progression, and disease-
specific mortality of individual age-related diseases, such as CVD, type 2 diabetes, cancer,
and Alzheimer’s disease [56]. These associations are believed to be the result of the age-
related telomere shortening, which contributes to genomic instability and modulates gene
expression through TPE, TPE-OLD, and DDR activation [57]. Critically short telomeres
cannot loop back to form genomic ITS, which silence nearby genes. As a result, the
expression of these genes is increased [58–60]. Interestingly, one of the genes that is
regulated via TPE-OLD and ITL is TERT, which encodes the telomere elongating enzyme
telomerase [61]. The activation of TERT expression in the context of short telomeres
is considered as a protective mechanism that prevents rapid telomere shortening. It is
believed that the physiologic stimulation of telomerase activity through physical activity,
healthy nutrition, and other modifiable lifestyle factors can reduce the risk for age-related
diseases and promote healthy aging [51]. This concept is supported by experimental
studies in mice showing that constitutive TERT expression delays aging and extends
life span [62–64]. However, it is also well established that the constitutive expression
of TERT is strongly associated with carcinogenesis and TERT inhibition in cancer cells
reduces tumour growth due to the induction of cell death [65–69]. This suggests that only
the physiologic stimulation of TERT may have beneficial effects [62–64]. However, this
assertion is discussed controversial as activation of telomerase as therapeutic target may
have beneficial effects in telomere-shortening-associated conditions [70].

Another mechanism involved in the shortening of telomeres is the clonal hematopoiesis
of undetermined potential (CHIP) [71]. Naturally occurring somatic mutations in hematopoi-
etic stem cells accumulate with advancing age and can induce the clonal expansion of
mutated leucocytes. The prevalence of CHIP is very low in subjects younger than 40 years,
but increases up to 10% and 20% by the age of 70 and 80 years, respectively [72]. Individuals
with CHIP have significantly shorter telomeres, and moreover, a whole-genome analysis
study including 11,262 participants revealed that CHIP showed the strongest association
with the TERT gene, in particular a germline deletion in intron 3 [73]. Clinically, CHIP
carriers have a higher risk for haematological malignancy and adverse cardiovascular
events [74–76].

6. Cardiovascular Diseases (CVD)

In developed countries, CVD is one of the most frequent age-related diseases and
represents the leading cause of death. The prevalence of cardiovascular diseases (CVD)
and the frequency of CVD-related complications increases with advancing age. Expression
of TERT and the presence of telomerase activity in cardiomyocytes and blood vessels have
nurtured the idea that telomeres might be of particular importance for cardiovascular
aging [77–79]. Over the last two decades, numerous human and animal studies have
investigated the role of telomeres and telomerase in CVD with inconsistent results. Most
of them measured telomere length in leucocytes (LTL) as a surrogate marker for telomere
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length in solid tissues, which are not easily accessible. Several prospective cohort studies
have found an elevated risk of CVD, myocardial infarction, heart failure, and stroke in
individuals with a low LTL and a high telomere attrition rate [80–85]. Amongst 800 men
and women who participated in the prospective, population-based Bruneck study, LTL
was an independent predictor of myocardial infarction and stroke [86]. CVD risk differed
between individuals with the longest and shortest LTL by a factor of 2.72. However,
with only 88 CVD events, the number of end-points was rather low. Consistent with the
Bruneck study, in over 1500 Scottish people with and without CVD, individuals in the
lowest and the middle tertile of LTL had a 40–50% higher risk for incident CVD during
follow-up [80]. Another study of patients with and without early myocardial infarction
(<50 years) found that LTL of patients was equivalent to controls that were 11.3 years
older [87]. An interesting study by Benetos et al. showed that the association of short
telomere length and atherosclerotic cardiovascular disease is based on a higher telomere
attrition rate in early life [88]. This observation alludes to additional telomere-related
effects in CVD that go beyond normal age-related telomere shortening. In addition to
coronary atherosclerosis and myocardial ischemia, the risk of ischemic, atherothrombotic,
and haemorrhagic stroke also seems to be associated with telomere length [89–93]. Also,
Martin-Ruiz et al. found that telomere length is associated with post-stroke mortality [94].
However, not all studies corroborate an association of LTL with CVD and stroke [95–99].
To address the inconsistencies of existing studies, Haycock et al. performed a meta-analysis
of 24 studies with over 43,000 participants and 8400 CVD patients [100]. Individuals
with the shortest LTL had a 54% higher CVD risk than those with the longest LTL, and
when considering only prospective studies relative risk of CVD was still 40% higher in
individuals with short telomeres. Despite their significant results, meta-analyses should
be interpreted with caution as the studies included varied substantially in study design
and patient characteristics. This is particularly important when considering that CVD
is a highly multifactorial entity that is associated with multiple risk factors, such as age,
gender, obesity, physical inactivity, genetic predisposition, and others, and involves several
pathomechanisms including inflammation, oxidative stress, and dyslipidemia [100,101].

Telomere length and telomerase activity show huge interindividual variability, and as
a result, most human cohort studies found only a weak correlation between LTL and age.
Considering the many factors that affect telomere length, this observation is not surprising.
As discussed earlier, LTL has been reported to be influenced by many lifestyle factors
including sleep, physical activity, psychological stress, and nutritional factors [48,102–104].
Furthermore, oxidative stress and chronic inflammation are key factors that impact telom-
ere length [47]. Besides many lifestyle and environmental factors, telomere length and
telomerase activity are strongly determined by the inherited genetic background, with
heritability estimates ranging from 34% to 82% [105]. Interestingly, the maternal influence
on telomere length seems to be stronger than the paternal influence. This genetic basis can
be used for Mendelian randomization (MR) studies to evaluate the potential causal rela-
tionship between telomere length and age-relates diseases. In an analogy to randomized
clinical trials, MR creates study groups stratified by genotypes, which are independent
of confounding factors and are inherited at random. MR studies are more robust to con-
founding factors or reverse causation than observational studies [106]. In a large MR study
including more than 261.000 participants, Kuo and coworkers could show a modest causal
association between LTL and lower CVD and cancer risk. However, no causal association of
LTL with other age-related health outcomes was found [107]. Furthermore, GWAS studies
have identified seven SNPs that are responsible for interindividual variations in LTL. The
presence of these alleles seems to be related with an increased CVD risk. In a meta-analysis
by Codd et al. one standard deviation reduction in LTL was associated with a 21% higher
CVD risk [108].

Chronic inflammation and oxidative stress are critical factors that promote atheroscle-
rosis. In addition, they accelerate telomere shortening and cause premature cellular senes-
cence in endothelial cells, vascular smooth muscle cells (VSMC) and blood leukocytes [109].
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The severity of CVD seems to be correlated with the reduction of telomere length in
VSMCs of human atherosclerotic plaques. Also, VSMCs of atherosclerotic plaques are
characterized by oxidative DNA damage and the expression of typical senescence mark-
ers, such as senescence-associated galactosidase, cyclin-dependent kinase inhibitors p16
and p21, decreased expression of cyclin D and cyclin E, and hypophosphorylation of the
retinoblastoma protein [110]. Senescent VSMCs harbor a limited proliferative capacity
and an increased amount of matrix-degrading enzymes, which stimulate the thinning of
fibrous caps and plaque rupture [111]. In patients with acute coronary syndrome, a low
LTL is linked to the presence of highly unstable atherosclerotic plaques and an increased
proinflammatory activity [112]. Accelerated telomere shortening also goes along with func-
tional exhaustion and impaired proliferative capacity of bone marrow-derived endothelial
progenitor cells. These cells are of critical importance for the re-endothelialization process
of damaged blood vessels. As a result, re-endothelialization after vascular injury and
stent implantation is delayed in individuals with short telomeres [113]. Another piece of
evidence that underpins the role of telomeres in CVD is the observation that statins, which
are commonly used to treat hyperlipidaemia, modify TERT expression and telomerase
activity in the vascular wall and in cells of the immune system [114]. Furthermore, in an
experimental mouse model, long telomeres were protective against age-dependent cardiac
disease caused by NOTCH1 haploinsufficiency [115].

Beyond telomeres, telomerase is also discussed to be involved in cardiovascular
diseases due to its noncanonical and nonnuclear functions. Telomerase is also present in
mitochondria, thereby improving membrane potential, reducing mitochondrial reactive
oxygen species (ROS) production. These effects counteract the induction of apoptosis by
protecting mitochondrial DNA [116–118]. In preclinical models, telomerase has also been
shown to be involved in autophagy through inhibition of mammalian target of rapamycin
complex 1 (mTORC1), especially under calorie restriction conditions, thereby improving
diastolic dysfunction [119,120].

In summary, there is substantial evidence that links short telomeres and accelerated
telomere shortening to CVD. However, at present it is still unclear whether telomeres are
causally involved in the development and progression of CVD or if this association simply
represents an epiphenomenon.

7. Type 2 Diabetes (T2DM)

T2DM, a common risk factors for CVD, is a multifactorial disease that is mainly driven
by obesity and physical inactivity. Several studies have shown that individuals with short
telomeres have a higher risk of T2DM, a faster disease progression and more diabetic
complications, such as retinopathy, nephropathy, neuropathy, and peripheral vascular
disease [121–129]. Also, a recent meta-analysis by D´Mello et al. supports a significant
association between telomere length and T2DM [130]. Short telomeres in T2DM seem
to go along with epigenetic modifications. In Chinese diabetics, short telomeres have
been found to be associated hyper-methylation of LINE-1, a surrogate marker for global
DNA methylation [131]. Furthermore, in TERT knockout mice with premature telomere
shortening, the proliferative senescence of adipose progenitor cells contributes to ageing,
obesity, and diabetes [132]. An autopsy study by Tamura et al. revealed shorter telomeres
in the beta-cells of T2DM patients than in non-diabetic individuals [133]. While the studies
discussed before support an association between telomeres and T2DM, others do not. In a
recent general population study with 3921 participants, Menke et al. found no association
of LTL with diabetes status, diabetes duration, or diabetes control [134]. Likewise, in the
Finnish Diabetes Prevention Study, Hovatte et al. found no association between short
telomeres and the development of T2DM during 8.5 years of follow up [135]. A MR
study by You et al. also failed to show an association between telomere length and T2DM
risk [136]. However, a direct comparison of different studies is limited by the substantial
heterogeneity of their study design and the age, ethnicity, sex, and health status of the
participants.
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In summary, there is some evidence indicating an association of accelerated telomere
shortening with T2DM. However, existing studies are inconsistent and mainly of observa-
tional nature. Therefore, the role of telomere function in T2DM remains unclear and more
research is needed to understand if there is a mechanistic link.

8. Cancer

Similar to CVD and T2DM, the incidence of cancer also increases with age. Consider-
ing the protective role of telomeres for genomic DNA, numerous studies have investigated
if telomere length is related to cancer risk or prognosis [2,137]. Existing results suggest a
dual role of telomeres in neoplastic diseases. Short telomeres seem to increase the risk for
incident cancer. On the other hand, with the malignant transformation it is believed that
critically short telomeres contribute to cancer progression and the reactivation of telom-
erase [138]. In contrast to somatic cells, up to 90% of human tumor tissue is characterized
by telomerase activity [18]. This telomerase reactivation is a tumor escape mechanism that
confers immortalization to affected cells and promotes tumor invasion and metastasis.

There is solid evidence that the telomeres from cells of cancerous lesion are shorter than
in healthy tissue from the same organ [139–142]. Furthermore, telomeres from peritumoral
tissue are shorter than from more distant areas [143]. It has also been reported that in
breast and prostate cancer tissue, short telomeres are related to an advanced disease
state at diagnosis, faster disease progression, and poorer survival [139,144]. Most studies
ignored the fact that telomere length varies between chromosomes and cells. However,
the variability of telomere length seems to be a risk factor for cancer-related death. The
practical limitations of telomere length measurement in tumor tissue lead researchers to
analyze LTL in most large human studies. In population-based, prospective studies, a low
LTL at baseline was associated with a substantially higher risk for incident tumors and
tumor-specific mortality [145,146]. Serial LTL measurements, such as in the normative
Aging Study, showed that subjects with incident cancer had a markedly higher telomere
shortening rate than subjects without [138]. However, there are also studies that did not
find significant associations between LTL and cancer risk [147], and others reported a higher
LTL in cancer patients than in cancer-free subjects [148]. These inconsistent results are
further supported by two meta-analyses of retrospective [149] and prospective studies [150].
While the pooled analyses of retrospective studies showed an inverse relationship between
LTL and cancer risk, this was not the case when considering only prospective studies.

Under physiologic circumstances, the natural process of progressive telomere shorten-
ing with ongoing cell division and aging ends with critically short telomeres, which induce
replicative senescence [151,152]. In this situation, chromosomal ends are no longer pro-
tected and therefore recognized by the DDR machinery. Finally, telomere crisis facilitates
autophagy and ultimately leads to cell death. Tumor cells can escape this mechanisms by
the reactivation of telomerase [153–155]. The reactivation of telomerase leads to telomere
elongation and thus prevents telomere crisis with subsequent cell death. Various mecha-
nisms for the reactivation of telomerase in tumor cells have been proposed. For example,
mutations in the TERT promotor region can increase TERT transcription [156]. Such muta-
tions have been described in various tumour types of tissues with low of self-renewal rates,
e.g., melanoma, hepatocellular carcinoma, glioblastoma, and urothelial cancer [157–159].
The wildtype promotor of TERT is silenced by methylated histon H3, whereas the mutated
allele is associated with non-silencing H3 variants, thus enabling TERT expression [160].
Moreover, transcription is driven by recruitment of the transcription factor GA binding
protein transcription factor subunit alpha (GABPA) and subunit beta (GABPB) to the mu-
tated promotor, leading to an increased transcription of the mutated TERT allele in cancer
cells [161]. However, the majority of tumors harbor increased telomerase activity without
activating mutations. Several other mechanisms, such as gene amplification of TERT, where
the number of copies of the TERT gene is increased due to errors in the DNA replication
and repair machinery, have been described. For example, TERT gene amplification has been
found in ovarian and lung cancer [162]. Chromosome rearrangements can also upregulate
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TERT expression, such as in neuroblastoma [163,164]. Another intriguing mechanism that
can activate TERT expression has been described in hepatocellular carcinoma, where a hep-
atitis B infection can result in integration of the virus genome near the TERT promotor [165].
In this scenario, TERT expression is increased through viral enhancer elements [165]. Tu-
mour cells can overcome telomere shortening also by alternative telomere lengthening
via homologous recombination mechanisms resulting in heterogeneous telomeres. This
type of telomere length preservation has been described for neuroendocrine tumours and
sarcomas [166]. TPEs, where critically short telomeres induce the expression of genes near
the telomeric region may also mediate telomere maintenance in cancer cells [167].

The cancer associated activation of telomerase is of particular interest as it may repre-
sent a potential target for novel therapeutic strategies in cancer patients. Several therapeutic
approaches aim to antagonize the continuous activation of telomerase in cancer cells [168].
An advantage of telomerase-targeting therapies is the fact that proliferating cancer cells
have shorter telomeres compared to normal somatic cells, which should make them more
sensitive to anti-telomerase therapeutics [169]. One of the most promising candidates for
telomerase-targeted cancer therapy may be the first-in-class telomerase inhibitor Imetelstat,
which is currently tested in a phase 3 clinical trial (ImpactMF; NCT04576156) with an
estimated enrollment of 320 patients with refractory myelofibrosis (MF). Results of the trial
are expected for May 2024.

In summary, telomere biology in cancer is highly complex, and the role of telomeres
in the development and perpetuation of cancerous lesions is still subject to intensive
research. So far, it seems that short telomeres increase the risk for cancer formation,
whereas telomerase reactivation and preserved telomeres are important for tumour growth
and survival.

9. Alzheimer’s Disease (AD)

In the aging populations of developed countries, dementia and AD affect a rapidly
rising number of individuals. Despite a better understanding of the underlying pathological
mechanisms, effective therapies for this devastating disease are still lacking. Therefore, a lot
of research is focused on risk prediction, early diagnosis, and the identification of modifiable
risk factors. Age-related telomere shortening has been proposed to contribute to neuronal
dysfunction and cognitive decline in elderly individuals. In this context, previous studies
reported shorter LTL in AD patients than in non-demented controls [170]. According to
Panossian et al., the inverse relationship between LTL and AD risk is primarily driven by T
lymphocytes, but not B lymphocytes or monocytes [171]. Furthermore, telomere length
in T cells is inversely correlated with serum levels of TNF-α, with the proportion of CD8+
T cells lacking expression of the CD28 co-stimulatory molecule, and with apoptosis. In
a recent meta-analysis, Forero et al. confirmed a significant difference in LTL between
AD patients and controls [172]. However, most of the studies considered in this meta-
analysis were of cross-sectional nature and included a rather small number of AD patients.
Until today, only a few large prospective observation studies have been published Honig
et al. analysed LTL in 1,978 elderly individuals from the prospective Washington Heights-
Inwood Community Aging Project, and found significantly shorter LTL in participants with
prevalent or incident dementia [173]. In 1,961 elderly participants of the Rotterdam study,
LTL showed a U-shaped association with AD and all-cause dementia [174]. While the
increase of AD risk in individuals with short telomeres is in line with previous studies, the
link between over-elongated telomeres and AD risk is not yet understood and needs further
clarification. Experimental studies that may shed some light into potential mechanisms
are largely lacking. In one of the few existing studies, neurons of TERT knockout mice
showed shorter telomeres, an increased production of oxidative species and an increase in
cellular oxidative damage in response to tau [175]. A higher AD risk in individuals with
long telomeres is supported by the observation that over-elongated telomeres in human
embryonic stem cells become fragile and accumulate DNA damage [176]. According to
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this study, telomere homeostasis is not only regulated by telomerase activity, but also by
telomere trimming events.

Tedone et al. reported that LTL is not only associated with AD risk, but also with
disease progression [177]. Late onset AD patients with slow disease progression had shorter
telomeres than those with fast disease progression or healthy elderly controls. Although
there is substantial evidence for an association between LTL and dementia, an analysis of
telomere length in matched pairs of peripheral blood leucocytes and cerebellum samples
from AD patients and unaffected controls questions a causal relationship [178]. While LTL
and telomere length in the cerebellum of AD patients were correlated, the latter did not
differ between AD patients and controls.

Taken together, existing studies provide robust evidence for an association between
LTL and AD risk. However, the nature of this relationship is largely unclear. It remains to
be elucidated whether low LTL in AD patients represents a cumulative marker of various
AD risk factors or if short telomeres are mechanistically involved in the development and
progression of dementia.

10. Osteoporosis

Like many other tissues, also bone cells exhibit an age-related decline in telomere
length. In addition, premature aging syndromes, such as Werner syndrome and congenital
dyskeratosis, are characterized by telomere dysfunction and osteoporosis. These obser-
vations have led to the hypothesis that the age-related shortening of telomeres does also
contribute to the development and progression of osteoporosis, a highly prevalent condi-
tion amongst elderly individuals [179]. A large population-based study in 2150 women
between 18 and 79 years supports this idea by showing a significant correlation between
LTL and bone mineral density (BMD) at the spine and forearm [180]. Furthermore, risk of
clinical osteoporosis was lower in women with longer telomeres. The difference in LTL
between women with and without osteoporosis was equivalent to five years of telom-
eric aging. Also in elderly men (71–86 years), LTL correlated with bone loss at the distal
forearm [181]. In vitro experiments with cultured mesenchymal stroma cells showed a
reduced proliferative and osteogenic capacity in osteoporotic patients [182]. Additional
support for a causal link between osteoporosis and short telomeres comes from an in vivo
study in telomerase deficient mice [183]. The accelerated telomere shortening in these
animals was associated with bone loss due to dysfunctional osteoblasts and osteoclasts. In
another mouse study of accelerated aging, Wang et al. showed an impairment of osteoblast
differentiation due to proliferation-independent telomere dysfunction [184].

The studies discussed before are contrasted by several other studies that did not find
significant relationships between LTL, BMD and osteoporosis [185–187]. Two large-scale
observational cohort studies in community-dwelling women failed to show significant as-
sociations of BMD, bone loss, and prevalent and incident fractures with LTL [186,187]. Also,
a comparison of telomere length in human osteoblasts and peripheral blood leucocytes
from young, elderly, and osteoporotic women did not support the concept of accelerated
telomere shortening and premature cellular aging in osteoporotic patients [188]. In a recent
review, Fragkiadaki et al. stated that despite a number of promising studies there is still
a lot of inconsistencies in the available literature [179]. Therefore, without further obser-
vational and experimental studies the impact of age-related telomere shortening on bone
aging and osteoporosis cannot be established.

11. Analytical Aspects

The methods for TL measurements vary widely as traditional techniques have been
refined and new techniques have emerged [189]. Beyond the terminal restriction fragment
(TRF) analysis by Southern blot as the gold standard, quantitative fluorescence in situ
hybridization with flow cytomerty (qFISH) and PCR applications such as qPCR, STELA
(Single Telomere Length Assay) and TESLA (Telomere Shortest Length Assay) are used
for TL analyses [190–193]. qPCR is the most commonly used method for telomere length
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analysis, because it is cheap and can easily be performed in a large number of samples. As
the result is the ratio of relative TL to a single copy gene, this method gives no information
about the shortest telomeres or differences between chromosomes. In contrast, qFISH
analysis in combination with TRF determines absolute telomere length and provides
information on the shortest telomeres. This is of particular interest as it is hypothesised that
not average telomere length, but the shortest telomeres drive chromosomal instability and
reduce cell viability [194]. This method seems to have the potential to provide more disease-
related information on alterations of telomere length. However, the method is laborious
and therefore hard to use for large sample analysis. For analysis of telomerase activity the
telomeric repeat amplification protocol (TRAP) is most commonly used. It consists in a
two-step PCR including telomerase mediated primer amplification and subsequent qPCR
analysis of the amplification products. To analyze TA in single cells a droplet digital TRAP
(ddTRAP) assay was developed by Ludlow et al. [195], which provides more sensitivity and
better throughput [196]. However, TA assays are hard to standardize and not practicable
for clinical studies. Most clinical studies are also limited by the fact that the source for
telomere analyses are whole blood samples, and therefore, TL and TA of blood leucocytes is
determined [197–199]. Leucocytes represent a heterogeneous cell population with a highly
variable composition, depending on environmental and lifestyle factors like nutrition,
physical activity, and psychological stress. To date, it is not clear if leucocytes are a suitable
surrogate to investigate telomere dynamics in other solid organs. A recent analysis of 6391
samples from the Genotype-Tissue Expression (GTEx) project showed that LTL correlates
with the telomere length of some, but not all, somatic tissue types [200].

12. Conclusions

There is a large body of evidence that supports significant associations between
telomere length and age-related diseases, such as CVD, T2DM, cancer, dementia, and
osteoporosis. However, existing studies are heterogeneous, and a substantial number of
studies did not find significant relationships. Furthermore, most clinical studies are limited
by the measurement of average telomere length in peripheral blood leucocytes, which may
not necessarily reflect the situation in other solid organ tissues, such as myocardium, blood
vessels, brain, or bone. Mechanistic studies that confirm a mechanistic involvement of short
telomeres in common age-related diseases are largely lacking. Last but not least, available
methods for the measurement are poorly standardized and provide different information,
which strongly limits the comparability between studies. Future research projects should
focus on the question of causality. Also, methods should be selected on the basis of their
analytical capabilities and harmonized wherever possible.
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