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Abstract: Primary mitochondrial diseases are caused by mutations in mitochondrial or nuclear genes,
leading to the abnormal function of specific mitochondrial pathways. Mitochondrial dysfunction is
also a secondary event in more common pathophysiological conditions, such as obesity and metabolic
syndrome. In both cases, the improvement and management of mitochondrial homeostasis remain
challenging. Here, we show that beta-resorcylic acid (β-RA), which is a natural phenolic compound,
competed in vivo with 4-hydroxybenzoic acid, which is the natural precursor of coenzyme Q biosyn-
thesis. This led to a decrease in demethoxyubiquinone, which is an intermediate metabolite of CoQ
biosynthesis that is abnormally accumulated in Coq9R239X mice. As a consequence, β-RA rescued the
phenotype of Coq9R239X mice, which is a model of primary mitochondrial encephalopathy. Moreover,
we observed that long-term treatment with β-RA also reduced the size and content of the white
adipose tissue (WAT) that is normally accumulated during aging in wild-type mice, leading to the
prevention of hepatic steatosis and an increase in survival at the elderly stage of life. The reduction
in WAT content was due to a decrease in adipogenesis, an adaptation of the mitochondrial proteome
in the kidneys, and stimulation of glycolysis and acetyl-CoA metabolism. Therefore, our results
demonstrate that β-RA acted through different cellular mechanisms, with effects on mitochondrial
metabolism; as such, it may be used for the treatment of primary coenzyme Q deficiency, overweight,
and hepatic steatosis.

Keywords: mitochondrial disease; encephalopathy; astrogliosis; spongiosis; obesity; white adipose
tissue; mitochondrial proteome; 3T3-L1; mouse model; hepatic steatosis

1. Introduction

Mitochondria are the primary sites of cellular energy production and also have a
broad range of metabolic functions. Thus, mitochondrial dysfunction can produce far-
ranging, varied, and severe consequences. Mitochondrial dysfunction can be directly
caused by mutations in mitochondrial DNA or mutations in nuclear genes that encode
mitochondrial proteins, leading to primary mitochondrial diseases. Aside from direct
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causes, mitochondrial dysfunction can also occur as a secondary event in more common
diseases, such as neurodegenerative diseases, obesity, or metabolic syndrome.

One particular case of mitochondrial disease is coenzyme Q10 (CoQ10) deficiency
syndrome, which can be primarily caused by mutations in genes that encode proteins
that are involved in the CoQ10 biosynthetic pathway (primary CoQ10 deficiency). Primary
CoQ10 deficiency presents heterogeneous clinical phenotypes depending on the specific
mutation in the CoQ biosynthesis pathway [1,2]. Furthermore, especially given the variety
of functions of CoQ, multiple pathomechanisms are induced by low levels of CoQ, includ-
ing declined bioenergetics [1,3–6], increased oxidative stress [3,4,7,8], disrupted sulfide
metabolism [9,10], and defective de novo pyrimidine biosynthesis [11].

CoQ10 deficiency can also be induced as a secondary effect of certain drugs [12] and
triggered indirectly by other diseases, including multifactorial diseases and disorders
that are caused by mutations in genes that are not related to the CoQ10 biosynthesis path-
ways [13–16]. Metabolic syndrome is a multifactorial disease with secondary mitochondrial
dysfunction. The white adipose tissue (WAT) and skeletal muscle from patients and mice
with insulin resistance, which is a characteristic that is usually associated with metabolic
syndrome, show decreased levels of the CoQ biosynthetic proteins COQ7 and COQ9,
leading to reduced CoQ levels in the mitochondria [17].

In experimental cases of CoQ10 deficiency, the levels of CoQ10 in blood, cells, and tis-
sues could be increased by exogenous CoQ10 supplementation. However, CoQ10 has very
low absorption and bioavailability when it is orally administrated, and a very low propor-
tion of this exogenous CoQ10 can reach the mitochondria of the cells in most tissues [18,19].
Thus, hydroxybenzoic acid derivatives (HBAs) were proposed as an alternative strategy
to attenuate CoQ10 deficiency since they were shown to modulate the endogenous CoQ
biosynthetic pathway [20]. HBAs constitute a group of natural phenolic compounds that
are present in plants with a general structure of the C6–C1 type that is derived from
benzoic acid. Variable positioning of hydroxyl and methoxy groups on the aromatic ring
produce several different compounds, such as 2-hydroxybenzoic acid (or salicylic acid),
4-hydroxybenzoic acid (4-HB), 2,4-dihydroxybenzoic acid (2,4-diHB, or β-resorcylic acid
(β-RA)), and 4-hydroxy-3-methoxybenzoic acid (or vanillic acid (VA)). Interestingly, β-RA
has a hydroxyl group that is incorporated into the benzoic ring during CoQ biosynthesis.
This hydroxylation step is catalyzed by COQ7, which uses demethoxyubiquinone (DMQ)
as a substrate and requires the COQ9 protein for its normal function and stability [6].
As a consequence, the administration of high doses of β-RA bypasses the defects in the
COQ7 reaction, leading to a dramatic increase in the survival of Coq7 conditional knockout
mice and the Coq9R239X mice due to increased levels of CoQ and/or to decreased levels
of DMQ in the kidneys, heart, skeletal muscle and intestine [21–23]. In Coq9R239X mice,
which is a model of mitochondrial encephalopathy due to the accumulation of DMQ and
the reduced levels of CoQ, these biochemical changes resulted in significant improvements
in encephalopathic features, such as astrogliosis and spongiosis [22]. Similarly, supple-
mentation with high doses of β-RA to podocyte-specific Coq6 or Adck4 (Coq8b) knockout
mice prevented renal dysfunction and increased survival, although the effect of β-RA on
CoQ metabolism in these mouse models was not reported and, therefore, the therapeu-
tic mechanisms of these cases are unknown [24,25]. Additionally, Wang and colleagues
reported that β-RA decreased the body weight of wild-type mice and increased survival
in animals at the middle-age and elderly stages of life, but the mechanisms behind these
observations remain to be elucidated. Consequently, these results in the Coq6 and Adck4
mouse models and in wild-type mice suggest that β-RA may work through additional
unidentified mechanisms.

Here, we evaluated whether a lower dose of β-RA, which may increase its translational
potentiality, leads to therapeutic outcomes in the encephalopathic Coq9R239X mice and
whether that effect is mainly due to β-RA interference in CoQ metabolism. Additionally,
we tested whether β-RA could be a useful agent to treat the fat accumulation that is linked
to aging.
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2. Materials and Methods
2.1. Animals and Treatments

Coq9+/+ and Coq9R239X mice were used in the study, both of which harbored a mix
of C57BL/6N and C57BL/6J genetic backgrounds. The Coq9R239X mouse model (MGI:
5473628) was previously generated and characterized [1,6,10]. All animal manipulations
were performed according to a protocol that was approved by the Institutional Animal Care
and Use Committee of the University of Granada (procedures numbers 18/02/2019/016
18 February 2019 and 16/09/2019/153 16 September 2019) and were in accordance with
the European Convention for the Protection of Vertebrate Animals Used for Experimental
and Other Scientific Purposes (CETS #123) and the Spanish law (R.D. 53/2013). Mice
were housed in the Animal Facility of the University of Granada under an SPF zone with
lights on at 7:00 AM and off at 7:00 PM. Mice had unlimited access to water and rodent
chow (SAFE® 150, which provided 21, 12.6 and 66.4% of energy from proteins, lipids, and
nitrogen-free extracts, respectively). Unless stated otherwise, the analytical experiments
were completed on animals at 3 or 18 months of age.

β-Resorcylic acid (β-RA) (Merck Life Science S.L.U, Madrid, Spain) was given to the
mice in the chow at a concentration of 0.33% (w/w). For some experiments, a concentra-
tion of 1% (w/w) β-RA was used for two months [22]. A mix of β-RA and 4-HB (at a
concentration of 0.5% of each one) was also provided in the chow for particular experi-
ments. Mice began receiving the assigned treatments at 1 month of age, and the analyses
were performed at the age indicated for each case. Animals were randomly assigned to
experimental groups. Data were randomly collected and processed.

The body weights were recorded once a month. To weigh the skeletal muscle, mice
were sacrificed at 18 months of age and the gastrocnemius and vastus lateralis were dissected
and weighed on a laboratory scale. To weigh the WAT, mice were sacrificed at 18 months
of age, and the epididymal, mesenteric, and inguinal WATs were dissected and weighed
on a laboratory scale.

The motor coordination was assessed at different months of age using the rotarod
test by recording the length of time that mice could remain on the rod (“latency to fall”),
rotating at a rate of 4 rpm, accelerating to 40 rpm in 300 s. Muscle strength was assessed
using a computerized grip strength meter (Model 47200, Ugo-Basile, Varese, Italy). The
experimenter held the mouse gently by the base of the tail, allowing the animal to grab
the metal bar with the forelimbs before being gently pulled until it released its grip. The
peak force of each measurement was automatically recorded by the device and expressed
in grams (g). The hindlimb grip strength of each mouse was measured in duplicate with at
least 1 min between measurements [1].

2.2. Cell Culture and Cell Assays

3T3-L1 preadipocytes (ECACC #: 86052701; lot CB 2618) were obtained from the cell
bank of the University of Granada and maintained in DMEM containing 10% fetal calf
serum (FCS) in a humidified atmosphere of 5% CO2 at 37 ◦C. The differentiation of the
preadipocytes was induced 2 days post-confluence (day 0) following the manufacturer’s
instructions (DIF001-1KT; Merck Life Science S.L.U, Madrid, Spain)) via the addition of
0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 µM dexamethasone, and 10 µg/mL insulin
(multiple daily insulin (MDI)) for 2 days. Subsequently, the culture medium was changed
to DMEM and 10% fetal bovine serum (FBS) containing insulin. After 2 days, the medium
was replaced with DMEM and 10% FBS, and the cells were incubated for a further 2 days
until the cells were harvested to be used in the experiments described below.

C2C12 myocytes (ECACC #: 91031101; lot 08F021) were obtained from the cell bank at
the University of Granada and maintained in DMEM containing 10% FBS in a humidified
atmosphere of 5% CO2 at 37 ◦C. The differentiation of the preadipocytes was induced
1-day post-confluence (day 0) by changing to a 1% FBS medium. Subsequently, the culture
medium was changed to DMEM and 1% FBS. The medium was changed every other day
and the cells were harvested to be used in the experiments described below.
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In both cell types, namely, 3T3-L1 and C2C12, each assay was carried out in one of three
experimental conditions: proliferative, differentiative, or proliferative + differentiative.
Proliferative conditions were developed in both types of cells after cell splitting, and
cells were collected upon reaching the confluency at day 7. Differentiative conditions
were initiated in both cell types when the cells reached confluency. In 3T3-L1 cells, the
differentiation was induced with the differentiation medium described above. In the
C2C12 cells, differentiation was induced in a medium with 1% FBS, as described above.
The cells were collected on day 7. Proliferative + differentiative conditions combined both
procedures in the same experiment. β-RA was added at a final concentration of 1 mM
every other day in each experimental condition.

To visualize the lipid droplets, the 3T3-L1 cells were fixed in formalin and stained
with Oil Red solution on days 2, 4, and 6 in both the proliferative and proliferative +
differentiative conditions.

Cell viability and proliferation were quantified on day 7 using a Vybrant MTT Cell
Proliferation Assay Kit according to the manufacturer’s instructions (Thermofisher, Madrid,
Spain). Absorbance was measured at 450 nm on a microplate reader (Powerwave ×340
spectrophotometer; Biotek, Winooski, VT, USA).

2.3. Histology and Immunohistochemistry

Tissues were fixed in formalin and embedded in paraffin. Multiple sections (4 µm
thickness) were deparaffinized with xylene and stained with hematoxylin and eosin (H&E)
(Merck Life Science S.L.U, Madrid, Spain), Masson’s trichrome, or Oil Red (Merck Life
Science S.L.U, Madrid, Spain). Immunohistochemistry was carried out on the same sections
using the following primary antibodies: glial fibrillary acidic protein or anti-GFAP (glial
fibrillary acidic protein) (MAB360; Millipore, Madrid, Spain). The Dako Animal Research
Kit for mouse primary antibodies (Dako, Agilent Technologies, Madrid, Spain) was used
for the qualitative identification of antigens by light microscopy. Sections were examined at
40–400 magnifications with a Nikon Eclipse Ni-U microscope (Werfen, Madrid, Spain), and
the images were scanned under equal light conditions with the NIS-Elements Br computer
software (Werfen, Madrid, Spain).

2.4. Plasma and Urine Analysis

Blood samples were collected in K3-ethylenediaminetetraacetic acid (EDTA) tubes
(Kima, VWR, Barcelona, Spain) using a goldenrod lancet and the submandibular vein of
each mouse as a puncture site. The plasma was extracted from blood samples via centrifu-
gation at 4500× g for 10 min at 4 ◦C. Biochemical analyses of the urine and plasma were
developed in a biochemical analyzer Bs-200 (Shenzhen Mindray Bio-Medical Electronics
Co., Ltd., Shenzhen, China) using reagents from Spinreact.

The NEFAS concentration was quantified using the Free Fatty Acid Quantitation Kit
(MAK044) according to the technical bulletin (Merck Life Science S.L.U, Madrid, Spain).
The results were expressed in nanograms per microliter.

The insulin concentration was quantified using the Mouse INS ELISA Kit (EM0260)
according to the manufacturer’s instructions (FineTest, Labclinics, Barcelona, Spain). The
results were expressed in picograms per milliliter.

The Glucagon concentration was quantified using the Mouse GC ELISA Kit (EM0562)
according to the manufacturer’s instructions (FineTest, Labclinics, Barcelona, Spain).The
results were expressed in picograms per milliliter.

2.5. Mitochondrial Proteomics Analysis

Both the Coq9+/+ mice and Coq9+/+ mice that were given the 1% β-RA supplemen-
tation were sacrificed, and the kidneys were removed and washed in a saline buffer.
The tissues were chopped with scissors in 3 mL HEENK (10 mM 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid (HEPES), 1 mM EDTA, 1 mM ethylene glycol-bis(β-
aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 10 mM NaCl, 150 mM KCl, pH
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7.1, 300 mOsm/L) (Merck Life Science S.L.U, Madrid, Spain) containing 1 mM phenyl-
methanesulfonyl fluoride (PMFS) (Merck Life Science S.L.U, Madrid, Spain) (from 0.1 M
stock in isopropanol) and 1× protease inhibitor cocktail (Pierce). The tissues were ho-
mogenized with a 3 mL Dounce homogenizer (5 passes of a tight-fitting Teflon piston).
Each obtained homogenate was rapidly subjected to standard differential centrifugation
methods until a mitochondrial pellet was obtained, as previously described [26]. Briefly,
the homogenate was centrifuged at 600× g for 5 min at 4 ◦C (twice), and the resultant
supernatant was centrifuged at 9000× g for 5 min at 4 ◦C. The final pellet, corresponding
to a crude mitochondrial fraction, was resuspended in 500 µL of HEENK medium with-
out PMSF or protease inhibitor [26]. The protein concentration was determined (using
Bradford dye, Bio-Rad, Madrid, Spain) and a Shimadzu spectrophotometer, resulting in
approximately 3 mg protein for renal mitochondria and 1.5 mg for cerebral mitochondria.
To verify the content of the mitochondrial fraction, complex IV activity was determined
using optical absorption of the difference spectrum at 550 nm, as previously described [10].

The purified mitochondria were spun down to remove the previous buffer, and
lysis buffer (1% sodium deoxycholate SDC in 100 mM Tris at pH 8.5) was added to the
pellets. The samples were boiled for 5 min at 99 ◦C to denature all the proteins and then
sonicated using microtip probe sonication (Hielscher UP100H Lab Homogenizer, Hielscher
Ultrasonics GmbH, Teltow, Germany) for 2 min with pulses of 1 s on and 1 s off at 80%
amplitude. The protein concentration was estimated using a bicinchoninic acid assay (BCA)
and 200 µg were taken from each sample. Then, 10 mM tris(2-carboxyethyl)phosphine
and 40 mM chloroacetamide (final concentration) at 56 ◦C were added to each of these
200 µg samples for 10 min to reduce and alkylate the disulfide bridges. After this step,
samples were digested with LysC (FUJIFILM Wako Chemicals Europe GmbH, Neuss,
Germany) in an enzyme/protein ratio of 1:100 (w/w) for 1 h, followed by a trypsin digest
(Promega, Leiden, The Netherlands) 1:50 (w/w) overnight. Protease activity was quenched
with trifluoroacetic acid (TFA) to a final pH of ~2. Samples were then centrifuged at
5000× g for 10 min to eliminate the insoluble SDC, and loaded on an OASIS HLB (Waters
Chromatography Europe, Etten-Leur, The Netherlands) 96-well plate. Samples were
washed with 0.1% TFA, eluted with a 50/50 acetonitrile (ACN) and 0.1% TFA, dried using
a SpeedVac (Eppendorf, Hamburg, Germany), and resuspended in 2% formic acid prior to
the MS analysis. From each sample, 5 µg were taken and pooled in order to be used for
quality control for MS (1 QC was analyzed every 12 samples) and to be fractionated at a
high pH for the match between runs.

All samples with the QC and 7 high-pH fractions were acquired using a UHPLC
1290 system (Agilent Technologies, Santa Clara, CA, USA) that was coupled online to a
Q Exactive HF mass spectrometer (Thermo Scientific, Bremen, Germany). Peptides were
first trapped (Dr. Maisch Reprosil C18, 3 µm, 2 cm × 100 µm) prior to separation on an
analytical column (Agilent Poroshell EC-C18, 2.7 µm, 50 cm × 75 µm). Trapping was
performed for 5 min in solvent A (0.1% v/v formic acid in water), and the gradient was as
follows: 10–40% solvent B (0.1% v/v formic acid in 80% v/v ACN) over 95 min, 40–100%
B over 2 min, then the column was cleaned for 4 min and equilibrated for 10 min (flow
was passively split to approximately 300 nL/min). The mass spectrometer was operated
in a data-dependent mode. Full-scan MS spectra in the range of m/z 300–1600 Th were
acquired in the Orbitrap at a resolution of 120,000 after accumulation to a target value
of 3 × 106 with a maximum injection time of 120 ms. The 15 most abundant ions were
fragmented with a dynamic exclusion of 24 s. HCD fragmentation spectra (MS/MS) were
acquired in the Orbitrap at a resolution of 30,000 after accumulation to a target value of
1 × 105 with an isolation window of 1.4 Th and a maximum injection time of 54 ms.

All raw files were analyzed with MaxQuant v1.6.10 software (Martinsried, Ger-
many) [27] using the integrated Andromeda Search engine and searched against the mouse
UniProt Reference Proteome (November 2019 release with 55,412 protein sequences) with
common contaminants. Trypsin was specified as the enzyme, allowing up to two missed
cleavages. Carbamidomethylation of cysteine was specified as fixed modification and
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protein N-terminal acetylation, oxidation of methionine, and deamidation of asparagine
were considered variable modifications. We used all the automatic settings and activated
the “match between runs” (time window of 0.7 min and alignment time window of 20 min)
and LFQ with standard parameters. The files generated by MaxQuant were opened in
Perseus for the preliminary data analysis: the LFQ data were first transformed in log2, then
the identifications that were present in at least N (3/5) biological replicates were kept for
further analysis; missing values were then imputed using the standard settings of Perseus.
Ingenuity pathway analysis (IPA) was used to identify the changes in metabolic canonical
pathways and their z-score predictions [28].

2.6. Sample Preparation and Western Blot Analysis in Tissues and Cells

For the Western blot analyses, a glass Teflon homogenizer was used to homogenize
the mouse kidney, liver, skeletal muscle, and WAT samples at 1100 rpm in a T-PER® buffer
(Thermo Scientific, Madrid, Spain) with a protease and phosphatase inhibitor cocktail
(Pierce, Fisher Scientific, Madrid, Spain). Homogenates were sonicated and centrifuged at
1000× g for 5 min at 4 ◦C, and the resultant supernatants were used for the Western blot
analysis. For the Western blot analyses of the cells, the pellets containing the cells were
re-suspended in RIPA buffer with a protease inhibitor cocktail. About 30 µg of protein from
the sample extracts were electrophoresed in 12% Mini-PROTEAN TGXTM precast gels (Bio-
Rad) using the electrophoresis system mini-PROTEAN Tetra Cell (Bio-Rad). Proteins were
transferred onto PVDF 0.45 µm membranes using a Trans-Blot Cell (Bio-Rad) and probed
with target antibodies. Protein–antibody interactions were detected using peroxidase-
conjugated horse anti-mouse, anti-rabbit, or anti-goat IgG antibodies and Amersham
ECLTM Prime Western Blotting Detection Reagent (GE Healthcare, Buckinghamshire, UK).
Band quantification was carried out using an Image Station 2000R (Kodak, Madrid, Spain)
and Kodak 1D 3.6 software (Kodak, Madrid, Spain). Protein band intensity was normalized
to VDAC1 for mitochondrial proteins and to GAPDH or β-actin for cytosolic proteins. The
data were expressed in terms of the percent relative to wild-type mice or control cells.

The following primary antibodies were used: anti-ALDH1B1 (15560-1-AP, Proteintech,
Manchester, UK), anti-GSK3B (22104-1-AP, Proteintech, Manchester, UK), anti-EHHADH
(sc-393123, Santa Cruz, Heidelberg, Germany), anti-ACADM (ab110296, Abcam, Cam-
bridge, UK), anti-SKP2 (15010-AP, Proteintech, Manchester, UK), anti-P27 (25614-1-AP,
Proteintech, Manchester, UK), anti-Cyc A2 (18202-1-AP, Proteintech, Manchester, UK),
anti-β-ACTIN (sc-47778, Santa Cruz, Heidelberg, Germany), anti-PPARγ (MA5-14889,
Thermo Scientific, Madrid, Spain), anti-PPARδ (PA1-823A, Thermo Scientific, Madrid,
Spain), anti-AMPK (#2532, Cell Signaling, Danvers, MA, USA), anti-P-AMPK (#2531, Cell
Signaling, Danvers, MA, USA), anti-ULK1 (#8054, Cell Signaling, Danvers, MA, USA),
anti-P-ULK1 (#5869, Cell Signaling, Danvers, MA, USA), anti-ACC (#3676, Cell Signaling,
Danvers, MA, USA), and anti-P-ACC (#11818, Cell Signaling, Danvers, MA, USA).

2.7. Quantification of CoQ9 and CoQ10 Levels in Mice Tissues and 3T3-L1 Cells

After the lipid extraction from homogenized tissues and cultured cells, CoQ9 and
CoQ10 levels were determined via reversed-phase HPLC coupled to electrochemical detec-
tion, as previously described [1,6]. The results were expressed in nanograms of CoQ per
milligram of protein.

2.8. CoQ-Dependent Respiratory Chain Activities

Coenzyme Q-dependent respiratory chain activities were measured in tissue samples
of brain, kidney, skeletal muscle, and heart. Tissue samples were homogenized in a CPT
medium (0.05 M Tris-HCl, 0.15 M KCl, pH 7.5) at 1100 rpm in a glass Teflon homogenizer.
Homogenates were sonicated and centrifuged at 600× g for 20 min at 4 ◦C, and the ob-
tained supernatants were used to measure the CoQ-dependent respiratory chain activities
(CI + III and CII + III), as previously described [22].
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2.9. Metabolic Assays in Tissues

Phosphofructokinase enzyme activity was measured using a kit from Merck Life
Science S.L.U. (Madrid, Spain) (Phosphofructokinase Activity Colorimetric Assay Kit
MAK093) according to the manufacturer’s instructions. The enzyme activity was expressed
in micromoles per minute per milligram of protein.

Pyruvate kinase enzyme activity was measured using a kit from Merck Life Science
S.L.U. (Madrid, Spain) (Pyruvate kinase Activity Colorimetric Assay Kit MAK072) accord-
ing to the manufacturer’s instructions. The enzyme activity was expressed in picomoles
per minute per milligram of protein.

The G3P concentration was quantified using the Glycerol-3-Phosphate Assay Kit
(MAK207) according to the technical bulletin (Merck Life Science S.L.U, Madrid, Spain).
The concentration of G3P was expressed in nanograms per microgram of protein.

The BHB concentration was quantified using the Beta-Hydroxybutyrate Assay Kit
(MAK041) according to the technical bulletin (Merck Life Science S.L.U, Madrid, Spain).
The concentration of BHB was expressed in nanograms per microgram of protein.

2.10. Mitochondrial Respiration

Mitochondrial isolation from the brain and the kidneys was performed as previously
described [22,29]. To isolate fresh mitochondria, mice were sacrificed and the organs were
extracted rapidly and put on ice. Brain was homogenized (1:10, w/v) in a respiration buffer
C (0.32 M sucrose, 1 mM EDTA-K+, 10 mM Tris-HCl, pH 7.4) at 500 rpm at 4 ◦C in a glass
Teflon homogenizer. The homogenate was centrifuged at 13,000× g for 3 min at 4 ◦C. The
supernatant (s1) was kept on ice and the pellet was re-suspended in 5 mL of buffer A and
centrifuged at 13,000× g for 3 min at 4 ◦C. The subsequent supernatant (s2) was combined
with s1 and centrifuged at 21,200× g for 10 min at 4 ◦C. The mitochondrial pellet of this
step was re-suspended in a 0.85 mL extraction buffer A containing 15% Percoll, poured into
ultracentrifuge tubes containing a Percoll gradient formed by 1 mL 40% Percoll and 1 mL
23% Percoll in buffer A, and centrifuged at 63,000× g for 30 min at 4 ◦C. Pure mitochondria,
corresponding to a fraction between 23 and 40% Percoll, were collected and washed twice
with 1 mL of buffer A at 10,300× g for 10 min at 4 ◦C. The mitochondrial pellets were
suspended in MAS 1× medium. Kidney was homogenized (1:10, w/v) in a respiration
buffer A (250 mM sucrose, 0.5 mM Na2EDTA, 10 mM Tris, and 1 % free fatty acid albumin)
at 800 rpm in a glass Teflon homogenizer. Then, the homogenate was centrifuged at 500× g
for 7 min at 4 ◦C and the supernatant was centrifuged at 7800× g for 10 min at 4 ◦C. The
pellet was then resuspended in respiration buffer B (250 mM sucrose, 0.5 mM Na2EDTA,
and 10 mM Tris) and an aliquot was used for the protein determination. The remaining
sample was then centrifuged at 6000× g for 10 min at 4 ◦C. The pellet was resuspended in
buffer A and centrifuged again at 6000× g for 10 min at 4 ◦C. The final crude mitochondrial
pellet was re-suspended in MAS 1×medium [70 mM sucrose, 220 mM mannitol, 10 mM
KH2PO4, 5 mM MgCl2, 2 mM HEPES, 1 mM EGTA and 0.2% (w/v) fatty acid-free BSA,
pH 7.2, all from Merck Life Science S.L.U, Madrid, Spain].

Mitochondrial respiration was measured with an XFe24 Extracellular Flux Analyzer
(Seahorse Bioscience, Agilent Technologies, Madrid, Spain) [22,29,30]. The mitochondria
were first diluted in cold MAS 1× for plating (3.5 µg/well in brain; 2 µg/well in kidney).
Next, 50 µL of mitochondrial suspension was delivered to each well (except for background
correction wells) while the plate was on ice. The plate was then centrifuged at 2000× g
for 10 min at 4 ◦C. After centrifugation, 450 µL of MAS 1× + substrate (10 mM succinate,
2 mM malate, 2 mM glutamate, and 10 mM pyruvate) was added to each well. Respiration
by the mitochondria was sequentially measured in a coupled state with the substrate
present (basal respiration or state 2) followed by state 3o (phosphorylating respiration, in
the presence of ADP and substrates). State 4 (non-phosphorylating or resting respiration)
was measured after the addition of oligomycin when all the ADP was consumed, and then
the maximal uncoupler-stimulated respiration was measured using carbonyl cyanide-p-
trifluoromethoxyphenylhydrazone (FCCP) (state 3u). Injections were as follows: port A,
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50 µL of 40 mM ADP (4 mM final); port B, 55 µL of 30 µg/mL oligomycin (3 µg/mL final);
port C, 60 µL of 40 µM FCCP (4 µM final); and port D, 65 µL of 40 µM antimycin A (4 µM
final). All data were expressed in picomoles per minute per milligram of protein. The
respiratory control ratio (RCR) was calculated using the highest OCR point in state 3o and
the lowest point in state 4 Merck Life Science S.L.U. (Madrid, Spain) was the manufacturer
of the succinate, malate, glutamate, pyruvate, ADP, oligomycin, FCCP, and antimycin

2.11. Quantification of β-RA and 4-HB Levels in Mice Tissues

Tissues from the mice were homogenized in water. The homogenate samples were
then treated with a solution of methanol/water (80:20, v/v), shook for 1 min, sonicated for
15 min, and then centrifuged at 5000× g for 25 min at 4 ◦C.

The supernatants were analyzed using a Thermo Scientific™ UltiMate™ 3000 UHPLC
system (Waltham, MA, USA), consisting of an UltiMate™ 3000 UHPLC RS binary pump
and an UltiMate™ 3000 UHPLC sample manager coupled to a Thermo Scientific™ Q
Exactive™ Focus Hybrid Quadrupole-Orbitrap™ detector of a mass spectrometer (MS/MS)
with electrospray ionization in negative mode (Waltham, Massachusetts, United States).
The analytical separation column was a Hypersil GOLD™ C18, 3 µm, 4.6 mm × 150 mm
column (Thermo Scientific, Madrid, Spain) and the flow rate was 0.6 mL/min. The mobile
phase consisted of two solutions: eluent A (H2O + 0.1% formic acid, MS grade, Thermo
Scientific, Madrid, Spain) and eluent B (acetonitrile + 0.1% formic acid, MS grade, Thermo
Scientific, Madrid, Spain). Samples were eluted over 30 min with the following gradient:
0 min, 95% eluent A; 0–25 min, 70% eluent A; 25–25.1 min, 95% eluent A; 25.1–30 min,
95% eluent A. The capillary and auxiliary gas temperatures were set at 275 and 450 ◦C,
respectively. The sheath gas flow rate used was at 55 arbitrary units, the auxiliary gas flow
rate used was at 15 arbitrary units, and the sweep gas flow was used at 3 arbitrary units.
Mass spectrometry analyses were carried out in full scan mode between 110 and 190 uma.
To quantify the levels of 4-HB (Merck Life Science S.L.U, Madrid, Spain) and β-RA, we
used a standard curve with both compounds at concentrations of 100, 10, and 1 ng/mL.

2.12. Statistical Analysis

The number of animals in each group was calculated in order to detect gross ~60%
changes in the biomarker measurements (based upon alpha = 0.05 and power of beta = 0.8).
We used the application available at http://www.biomath.info/power/index.htm accessed
on 14 September 2021. Animals were genotyped and randomly assigned to experimental
groups in separate cages by the technician of the animal facility. Most statistical analyses
were performed using the Prism 9 scientific software. Data are expressed as the mean
± SD of five to ten experiments per group. A one-way ANOVA with Tukey’s post hoc
test was used to compare the differences between the three experimental groups. Studies
with two experimental groups were evaluated using the Mann–Whitney (nonparametric)
test. A p-value of <0.05 was considered to be statistically significant. The survival curve
was analyzed using log-rank (Mantel–Cox) and the Gehan–Breslow–Wilcoxon tests. The
statistical tests that were used for the transcriptomics and proteomics analyses are described
in their respective sections.

3. Results
3.1. β-RA Induced Phenotypic and Morphological Benefits against Both Age-Related Obesity and
Mitochondrial Encephalopathy Due to CoQ Deficiency

β-RA was incorporated into the chow of both wild-type and Coq9R239X mice at a
concentration of 0.33% (w/w), which gave a dose of 0.4–0.7 g/kg b.w./day, considering the
animal food intake, which was similar in all groups (Figure 1A–C). This low dose of β-RA
improved the survival of Coq9+/+ mice at the old stage of life (Figure 1D,E), where 87% of
the treated Coq9+/+ mice survived compared with 62% of the untreated mice. However, the
survival curve became similar to the survival curve of untreated animals after 28 months
of age. Similarly, the low-dose treatment of β-RA also improved the survival of Coq9R239X

http://www.biomath.info/power/index.htm
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mice (Figure 1D), and we even observed a maximal lifespan higher than the maximal
lifespan reported when Coq9R239X mice were treated with a high dose of β-RA [22].

Figure 1. Survival and phenotypic characterization of Coq9+/+ and Coq9R239X mice during the supplementation with 0.33%
β-RA. (A) Schematic figure of the β-RA treatment in Coq9+/+ and Coq9R239X mice. (B,C) Daily food intake in male and female
Coq9+/+ and Coq9R239X mice. (D) Survival curve of the Coq9+/+ mice, Coq9+/+ mice given 0.33% β-RA supplementation,
Coq9R239X mice, and Coq9R239X mice given 0.33% β-RA supplementation. The treatments started at 1 month of age (log-rank
(Mantel–Cox) test or Gehan–Breslow–Wilcoxon test; Coq9+/+ mice, n = 13; Coq9+/+ mice under 0.33% β-RA supplementation,
n = 15; Coq9R239X mice, n = 21; Coq9R239X mice under 0.33% β-RA supplementation, n = 14). (E) Percentage of mice alive at
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24 months of age. (F,G) Rotarod test of male and female Coq9+/+ mice, Coq9+/+ mice given 0.33% β-RA supplementation,
Coq9R239X mice, and Coq9R239X mice given 0.33% β-RA supplementation. (H,I) Body weight of male and female Coq9+/+ mice,
Coq9+/+ mice given 0.33% β-RA supplementation, Coq9R239X mice, and Coq9R239X mice given 0.33% β-RA supplementation.
(J–M) Weight of the epididymal, mesenteric, and inguinal white adipose tissue (WAT) (J,K) and hind legs skeletal muscle
(SKM) (L,M) relative to the total body weight in male and female Coq9+/+ mice, and Coq9+/+ mice given 0.33% β-RA
supplementation at 18 months of age. (N,O) Representative images of male (N) and female (O) mice and their tissues
at 18 months of age, both untreated and treated. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001,
differences versus Coq9+/+; + p < 0.05, ++ p < 0.01, +++ p < 0.001, Coq9+/+ mice given 0.33% β-RA supplementation (one-way
ANOVA with Tukey’s post hoc test or Mann–Whitney (nonparametric) test; n = 5–34 for each group).

The encephalopathic features of Coq9R239X mice result in characteristics of lower loco-
motor activity and increased uncoordination. However, the Coq9R239X mice improved after
β-RA administration compared to the untreated Coq9R239X mice. The treatment did not
significantly affect the results of the rotarod test in wild-type animals (Figure 1F,G). Both the
Coq9+/+ and Coq9R239X mice treated with β-RA had a healthy appearance (Movies S1 and S2).

The body weights were significantly reduced in both male and female Coq9+/+ mice
after one month of treatment, reaching a maximal weight of about 28 g in males and 23 g
in females at seven months of age. These weights were then maintained throughout the
remaining life of the animals (Figure 1H,I) (Movie S3). Curiously, the treatment with β-RA
slightly increased the body weights of the Coq9R239X mice, which usually weighed less than
their untreated Coq9+/+ littermates (Figure 1H,I). Consequently, both treated Coq9+/+ and
treated Coq9R239X mice had similar body weights. The reduced body weight in Coq9+/+ mice
after the β-RA treatment was mainly caused by the prevention of accumulation of WAT
(Figure 1J,K,N,O) while still preserving the content, weight, and strength of the skeletal
muscle (Figures 1L–O and S1).

The most notable histopathological features of CoQ10 deficiency in the Coq9R239X mice
were cerebral spongiosis and reactive astrogliosis (Figure 2(A1–D1)), together with the re-
duced body weight due to, at least in part, to the decreased content in WAT (Figure S2(A1,B1)).
Low-dose β-RA supplementation in the Coq9R239X mice for two months decreased the char-
acteristic spongiosis (marked by an arrow, Figure 2(E1,F1)) and reactive astrogliosis, de-
termined using the GFAP-positive cells (marked by an arrow, Figure 2(G1,H1)), with no
changes in the liver (Figure S2(C1–J1)). These results were similar to the therapeutic effect
that was previously reported with a higher dose [22]. In Coq9+/+ mice, β-RA supplemen-
tation for two months did not produce significant morphological alterations in the brain
(Figure 2(I1–P1)), liver (Figure S2(K1–M1) and (Q1–S1)), kidneys (Figure S2(N1–P1) and
(T1–V1), spleen (Figure S(2V1–X1) and (C2,D2)), heart (Figure (S2Y1,Z1) and (E2,F2)), or
small intestine (Figure S2(A2,B2) and (G2,H2)), and the blood and urine markers of the renal
and hepatic functions did not reveal any abnormality (Table S1).



Biomedicines 2021, 9, 1457 11 of 27

Figure 2. Morphological evaluation of symptomatic tissues from Coq9R239X and Coq9+/+ mice under the supplementation
with 0.33% β-RA. (A1–P1) H&E stain and anti-GFAP immunohistochemistry in sections of the diencephalon from Coq9R239X
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mice (A1–D1), Coq9R239X mice given 0.33% β-RA supplementation (E1–H1), Coq9+/+ mice (I1–L1), Coq9+/+ mice given 0.33%
β-RA supplementation (M1–P1) at 3 months of age. Scale bars: 1000 µm left, 100 µm right. Black arrows show areas of
spongiosis and astrogliosis. (Q1–F2) H&E and Oil Red stains in sections of the liver at 18 months of age from male (Q1–T1)
and female (U1–X1) Coq9+/+ mice and male (Y1–B2) and female (C2–F2) Coq9+/+ mice given 0.33% β-RA supplementation.
Scale bars: 100 µm left, 50 µm right. (G2–H2) Percentage of the area corresponding to the Oil Red O stains in sections
of the liver at 18 months of age from Coq9+/+ mice and Coq9+/+ mice given 0.33% β-RA supplementation. (I2–P2) H&E
stains in sections of the epididymal WAT at 18 months of age from male (G2,H2) and female (I2,J2) Coq9+/+ mice and male
(K2,L2) and female (M2,N2) Coq9+/+ mice given 0.33% β-RA supplementation. Scale bars: 100 µm left, 50 µm right. (Q2–T2)
Average of the area of each adipocyte and the adipocytes density in sections of the epididymal WAT at 18 months of age
from Coq9+/+ mice and Coq9+/+ mice given 0.33% β-RA supplementation. Data are expressed as mean ± SD. *p < 0.05,
differences versus Coq9+/+ (Mann–Whitney (nonparametric) test; n = 4–6 for each group).

At 18 months of age, the livers of both male and female wild-type mice showed
features of steatosis (Figure 2(Q1–X1) and Figure 2(G2,H2)). Chronic supplementation
with β-RA dramatically reduced the signs of hepatic steatosis (Figure 2(Y1–F2) and
Figure 2(G2,H2)). Non-alcoholic hepatic steatosis is frequently associated with fat accu-
mulation. Consequently, the epididymal WAT showed characteristics of hypertrophy
in both the male and female Coq9+/+ mice at 18 months of age (Figure 2(I2–L2) and
Figure 2(Q2–T2)), with adipocytes that were bigger in size and lower in number per area.
β-RA supplementation suppressed the epididymal WAT hypertrophy in both the male
and female Coq9+/+ mice at 18 months of age (Figure 2(M2–P2) and Figure 2(Q2–T2)). At
18 months of age, no major alterations were found in the brains or kidneys (Figure S2).

3.2. β-RA Led to Bioenergetics Improvement in Coq9R239X Mice through Its Direct Participation
in the CoQ Biosynthetic Pathway

The decrease in DMQ9 was previously reported as the main therapeutic mechanism
of a high dose of β-RA in the treatment in Coq9R239X mice, although the effects in the
CoQ biosynthetic pathway in wild-type animals were not evaluated [22]. Thus, we eval-
uated whether a lower dose of β-RA interferes with CoQ biosynthesis in both Coq9+/+

and Coq9R239X mice. In Coq9+/+ mice, β-RA induced very mild changes in the tissue levels
of CoQ9, CoQ10, and DMQ9 (Figures 3(A1–L1), S3A, S4A–D and S5A–B). The levels of
CoQ9 were similar in the brain, kidneys, liver heart, and WAT of untreated and treated
wild-type mice, whilst in skeletal muscle, the β-RA induced a mild reduction in the lev-
els of CoQ9 (Figures 3(A1–D1), S4A and S5A). DMQ9 was undetectable in the tissues of
untreated wild-type mice, and β-RA supplementation induced the accumulation of very
low levels of DMQ9 in the kidneys, liver, skeletal muscle, and WAT, but not in the brain
or heart (Figures 3(I1–L1), S4C and S5B). Consequently, the ratio DMQ9/CoQ9 was not
significantly altered in Coq9+/+ mice treated with β-RA, as it was observed in the untreated
Coq9R239X mice (Figure 3(M1–P1)). In Coq9R239X mice, β-RA administration induced a
mild increase in CoQ9 in the kidneys (Figures 3(B1) and S3B) compared with untreated
Coq9R239X mice. However, the levels of CoQ9 did not change in the brain, liver, skeletal
muscle, or heart of Coq9R239X mice after the β-RA treatment (Figures 3A1,C1,D1 and S4A).
Remarkably, the levels of DMQ9 and, consequently, the DMQ9/CoQ9 ratio, were signifi-
cantly decreased in the kidneys (Figures 3(J1,N1) and S3B), liver (Figure 3(K1,O1)), skeletal
muscle (Figure 3L1,P1), and heart (Figure S4C,D) of the Coq9R239X mice treated with β-RA
compared with the untreated Coq9R239X mice. However, β-RA did not reduce the levels of
DMQ9 or the DMQ9/CoQ9 ratio in the brain of the Coq9R239X mice (Figure 3(I1,M1)), as it
was also reported in the treatment with the higher dose of β-RA [22]. Therefore, the effect
of β-RA on CoQ metabolism in the Coq9R239X mice in this study was similar to the effect
previously reported with a higher dose of β-RA, i.e., a decrease in the DMQ/CoQ ratio in
peripheral tissues [22].



Biomedicines 2021, 9, 1457 13 of 27

Figure 3. CoQ metabolism and mitochondrial function in the tissues from the Coq9+/+ mice, Coq9+/+ mice given supplemen-
tation with 0.33% β-RA, Coq9R239X mice, and Coq9R239X mice given supplementation with 0.33% β-RA. (A1–D1) Levels of
CoQ9 in the brain (A1), kidneys (B1), liver (C1), and hind legs skeletal muscle (D1) from the Coq9+/+ mice, Coq9+/+ mice given
the 0.33% β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.33% β-RA treatment. (E1–H1) Levels of CoQ10

in the brain (E1), kidneys (F1), liver (G1) and hind legs skeletal muscle (H1) from the Coq9+/+ mice, Coq9+/+ mice given the
0.33% β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.33% β-RA treatment. (I1–L1) Levels of DMQ9 in the
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brain (I1), kidneys (J1), liver (K1), and hind legs skeletal muscle (L1) from Coq9+/+ mice, Coq9+/+ mice given the 0.33%
β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.33% β-RA treatment. Note that DMQ9 was not detected
in samples from the Coq9+/+ mice. (M1–P1) DMQ9/CoQ9 ratio in the brain (M1), kidneys (N1), liver (O1), and hind legs
skeletal muscle (P1) from the Coq9+/+ mice, Coq9+/+ mice given the 0.33% β-RA treatment, Coq9R239X mice, and Coq9R239X

mice given the 0.33% β-RA treatment. (Q1–X1) Levels of β-RA in the brain (Q1), kidneys (R1), liver (S1), and hind legs
skeletal muscle (T1) from the Coq9+/+ mice given the 0.33% β-RA treatment and Coq9R239X mice given the 0.33% β-RA
treatment. β-RA was undetectable in the Coq9+/+ mice and Coq9R239X mice. (U1–X1) Levels of 4-HB in the brain (U1),
kidneys (V1), liver (W1), and hind legs skeletal muscle (X1) from the Coq9+/+ mice given the 0.33% β-RA treatment and
Coq9R239X mice given the 0.33% β-RA treatment. (Y1–B2) Complex I + III (CI + III) activities in the brain (Y1), kidneys
(Z1), liver (A2), and hind legs skeletal muscle (B2) from the Coq9+/+ mice, Coq9+/+ mice given the 0.33% β-RA treatment,
Coq9R239X mice, and Coq9R239X mice given the 0.33% β-RA treatment. (C2–G2) Complex II + III (CII + III) activities in the
brain (C2), kidneys (D2), liver (F2), and hind legs skeletal muscle (G2) from the Coq9+/+ mice, Coq9+/+ mice given the 0.33%
β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.33% β-RA treatment. Tissues from the mice at 3 months
of age. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, *** p < 0.001, differences versus Coq9+/+. + p < 0.05, ++ p
< 0.01, +++ p < 0.001, differences versus the Coq9+/+ mice given the 0.33% β-RA treatment. && p < 0.01, &&& p < 0.001,
differences versus Coq9R239X. One-way ANOVA with Tukey’s post hoc test or Mann–Whitney (nonparametric) test; n = 5–8
for each group.

The tissue-specific reduction in the levels of DMQ9 in Coq9R239X mice seemed to
correlate with the increase in β-RA since the levels of β-RA were higher in the kidneys
(Figure 3R1), liver (Figure 3(S1)), skeletal muscle (Figure 3(T1)), and heart (Figure S4E) than
in the brain (Figure 3Q1) of Coq9R239X mice. The levels of 4-HB, the natural precursor for
CoQ biosynthesis, did not increase in response to the treatment with β-RA in any tissue of
either the Coq9+/+ or Coq9R239X mice (Figures 3U1–X1 and S4F).

Bioenergetically, the treatment with β-RA did not produce any changes in the brain in
either the Coq9+/+ or Coq9R239X mice (Figures 3(Y1,C2) and S6A,C), but it did increase the
activities of complexes I + III and II + III (Figure 3(Z1,D2)) and mitochondrial respiration
(Figure S6B,D) in the kidneys of the treated Coq9R239X mice compared to the untreated
Coq9R239X mice. These data are comparable to those reported for the treatment with the high
dose of β-RA [22], suggesting that the decrease in the DMQ/CoQ ratio was responsible
for the bioenergetics improvement. Other tissues did not experience major changes in
mitochondrial bioenergetics in Coq9+/+ or Coq9R239X mice (Figures 3(Y1–G2) and S4G–H).

Because β-RA is an analog of 4-HB, its effects at reducing DMQ9 in Coq9R239X mice
were most likely due to its competition with 4-HB when entering the CoQ biosynthetic
pathway through the activity of COQ2. To investigate this hypothesis, we supplemented
the Coq9+/+ and Coq9R239X mice with an equal amount of 4-HB and β-RA incorporated into
the chow. Because COQ2 has more of an affinity for 4-HB than for β-RA, in conditions
of equal amounts of both compounds, COQ2 will preferably use 4-HB. Accordingly, the
co-administration of 4-HB and β-RA suppressed the mild inhibitory effect of β-RA over
CoQ9 biosynthesis in the skeletal muscle (Figure 4D) and CoQ10 biosynthesis in the brain,
kidneys, and liver (Figure 4F–H) of the Coq9+/+ mice (compare with Figure 3). Moreover,
CoQ9 increased in the brain (Figure 4A) and the kidneys (Figure 4B) of the Coq9+/+ mice
treated with the combination of 4-HB and β-RA compared to the untreated Coq9+/+ mice.
In the Coq9R239X mice, the untreated and treated groups showed similar levels of both
CoQ9 (Figure 4A–E) and CoQ10 (Figure 4F–J) in all tissues. Importantly, the reduction in
the levels of DMQ9 and the DMQ9/CoQ9 ratio induced by β-RA (Figures 3, S3 and S4) in
the Coq9R239X mice seemed to be suppressed by the co-administration of 4-HB and β-RA
(Figure 4K–T). Consequently, the co-administration of 4-HB and β-RA suppressed the
increase in survival of the Coq9R239X mice that was found after the treatment with β-RA
alone (Figure 4U). Together, these data demonstrated that β-RA acted therapeutically in
the Coq9R239X mice by entering the CoQ biosynthetic pathway, leading to a reduction in the
levels of DMQ9.
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Figure 4. Co-administration of 4-HB suppressed the effects of the β-RA treatment in the Coq9+/+ and Coq9R239X mice. (A–E)
Levels of CoQ9 in the brain (A), kidneys (B), liver (C), skeletal muscle (D), and heart (E) from the Coq9+/+ mice, Coq9+/+

mice given the 0.5% 4-HB + 0.5% β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.5% 4-HB + 0.5% β-RA
treatment. (F–J) Levels of CoQ10 in the brain (F), kidneys (G), liver (H), skeletal muscle (I), and heart (J) from the Coq9+/+

mice, Coq9+/+ mice given the 0.5% 4-HB + 0.5% β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the 0.5% 4-HB +
0.5% β-RA treatment. (K–O) Levels of DMQ9 in the brain (K), kidneys (L), liver (M), skeletal muscle (N), and heart (O) from
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the Coq9+/+ mice, Coq9+/+ mice given the 0.5% 4-HB + 0.5% β-RA treatment, Coq9R239X mice, and Coq9R239X mice given the
0.5% 4-HB + 0.5% β-RA treatment. (P–T) The DMQ9/CoQ9 ratio in the brain (P), kidneys (Q), liver (R), skeletal muscle
(S), and heart (T) from the Coq9+/+ mice, Coq9+/+ mice given the 0.5% 4-HB + 0.5% β-RA treatment, Coq9R239X mice, and
Coq9R239X mice given the 0.5% 4-HB + 0.5% β-RA treatment. (U) Survival curve of the Coq9R239X mice given the 0.5% 4-HB
+ 0.5% β-RA treatment. Tissues from mice at 3 months of age. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01,
*** p < 0.001, differences versus Coq9+/+. + p < 0.05, ++ p < 0.01, +++ p < 0.001, differences versus Coq9+/+ after the 0.5% 4-HB
and 0.5% β-RA treatment. & p < 0.05, && p < 0.01, differences versus Coq9R239X. One-way ANOVA with Tukey’s post hoc
test or Mann–Whitney (nonparametric) test; n = 5–10 for each group.

3.3. A Metabolic Switch in Wild-Type Animals Contributed to the Effects of β-RA
in Reducing WAT

Since the interference of β-RA in CoQ metabolism in wild-type mice was very mild,
the profound reduction in WAT was not likely attributed to CoQ metabolism. Thus, we
investigated whether β-RA can target other mitochondrial pathways by performing quan-
titative proteomics on mitochondrial fractions of kidneys from wild-type mice treated
with 1% β-RA for only two months and compare the results to those of kidneys from the
untreated wild-type mice (Data File S1). We chose a higher dose to ensure that the effects
of the β-RA supplementation were evident. Furthermore, the analysis was done in the
kidneys because this tissue maintained the highest levels of β-RA after the supplemen-
tation. In the kidneys of the wild-type mice treated with β-RA compared to kidneys of
the untreated wild-type mice, 442 mitochondrial proteins were differentially expressed
(Data File S2), with 300 proteins being overexpressed and 142 proteins being underex-
pressed. Canonical metabolic analysis showed enrichment (top 10) of the pathways of
fatty acid β-oxidation, acetyl-CoA biosynthesis, the tricarboxylic acid (TCA) cycle, and the
2-ketoglutarate dehydrogenase complex, as well as enrichment of the related branched-
chain α-keto acid dehydrogenase complex (Figure 5A). Importantly, the prediction z-score
revealed an inhibition of fatty acid β-oxidation and activation of acetyl-CoA biosynthe-
sis and the TCA cycle (Figure 5A), which was consistent with the changes found in the
levels of key proteins in these pathways (Figure 5B). Western blotting for the proteins
ALDH1B1, GSK3β, EHHADH, and ACADM from the mice fed at 1 or 0.33% β-RA in the
diet (Figure 5C,D) validated these findings in the kidneys. Taken together, the results of the
mitochondrial proteome analysis suggested that β-RA treatment stimulates the production
and use of acetyl-CoA in the kidneys while repressing fatty acid β-oxidation in the kidneys
(Figure 5E). Thus, we hypothesized that β-RA supplementation induces glycolysis at the
expense of fatty acid β-oxidation. For this, lipolysis may induce an increase in glycerol-3-P
(G3P), which may stimulate glycolysis to provide the substrate for acetyl-CoA biosyn-
thesis. Accordingly, the activities of the glycolytic enzymes phosphofructokinase (PFK)
and pyruvate kinase (PK) were partially increased with the β-RA treatment (Figure 5F,G).
Moreover, G3P were increased with the β-RA treatment (Figure 5H), while the levels of
β-hydroxybutyrate (BHB) showed a notable but statistically insignificant increase with the
β-RA treatment (Figure 5I).
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Figure 5. Adaptation of the mitochondrial proteome to the treatment with β-RA in the kidneys of the Coq9+/+ mice. (A)
Top enriched metabolic canonical pathways in the renal mitochondrial proteome from the Coq9+/+ mice after two months
of 1% β-RA supplementation. Dotted line: Adjusted p = 0.05. Blue signifies that the category was expected to be activated
according to the z-score; red signifies that the category was expected to be inhibited according to the z-score. (B) Fold change



Biomedicines 2021, 9, 1457 18 of 27

(treated/untreated) of the proteins involved in the identified enriched metabolic canonical pathways in the renal mitochon-
drial proteome. Purple signifies proteins that were downregulated; red signifies proteins that were downregulated with
a fold change > 1.5; blue signifies proteins that were upregulated with a fold change > 1.5; green signifies proteins that
were upregulated. * p < 0.05. Mitochondrial proteomics was performed in isolated mitochondria. (C,D) Western blot of
some key proteins identified in the proteomics analysis to validate the changes observed with the treatment of β-RA. The
validation was performed with the treatment of β-RA at 1% and extended to the treatment of β-RA at 0.33%. The selected
proteins were ALDH1B1, GS3Kβ, EHHADH, and ACADM. VDAC1 was used as a loading control. The experiments were
performed in tissue homogenate. (E) Schematic figure of the most important changes in the mitochondrial proteomes from
the kidneys of the Coq9+/+ mice after the β-RA treatment. (F,G) Activities of the glycolytic enzymes phosphofructokinase
(PFK) (F) and pyruvate kinase (PK) (G) in the kidneys of the Coq9+/+ mice treated with β-RA at 1 and 0.33%. (H,I) Levels of
glycerol-3-phosphate (G3P) (H) and β-hydroxybutyrate (BHP) (I) in the kidneys of the Coq9+/+ mice treated with β-RA at 1
and 0.33%. Tissues from mice at 3 months of age. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01, differences versus
Coq9+/+. One-way ANOVA with Tukey’s post hoc test or Mann–Whitney (nonparametric) test; n = 5–7 for each group.

We performed similar analyses in the liver and skeletal muscle, which are two rel-
evant tissues in the regulation of systemic energy metabolism, to check whether this
metabolic switch was a common phenomenon. The levels of the proteins ALDH1B1,
GSK3β, EHHADH, and ACADM in the liver and skeletal muscle did not change like
the changes observed in the kidneys (Figures 6A–F and S7A–F). However, PFK activ-
ity increased with the β-RA treatment in both tissues (Figures 6G and S7G), suggesting
the activation of glycolysis despite a lack of change of PK activity from the treatment
(Figures 6H and S7H). Moreover, G3P increased in the liver with the treatment of 1% β-RA,
although these levels did not change at the low dose nor in the skeletal muscle with both
doses (Figures 6I and S7I). In the liver, the levels of BHB showed an observable but statisti-
cally insignificant increase with the β-RA treatment (Figure 6J). The levels of Fgf21, which
is a secretory endocrine factor that can affect systemic glucose and lipid metabolism [31],
trended upward with the β-RA treatment (Figure 6K). An increase in BHB levels was also
observed in the blood plasma with the treatment of 1% β-RA (Figure 6L). However, the
levels of non-esterified fatty acids (NEFA), which are products of lipolysis, were similar
in the treated and untreated animals (Figure 6M). Furthermore, the levels of glucagon,
insulin, and the insulin/glucagon ratio were similar in the treated and untreated animals,
which most likely reflected a homeostatic status with the chronic administration of β-RA
(Figure 6N–P). These results suggest that metabolism in the kidneys and, to a lesser extent,
the liver contributed to the reduced WAT that was induced by β-RA in wild-type animals.
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Figure 6. Metabolic characterization of liver and plasma after the treatment with β-RA in the Coq9+/+ mice. (A–F) Levels of
the proteins ALDH1B1 (A,E), GSK3β (B,E), EHHADH (C,F), and ACADM (D,F) in the liver of the Coq9+/+ mice treated
with β-RA at 1 and 0.33%. VDAC1 was used as a loading control. The experiments were performed in tissue homogenate.
(G–J) Activities of the glycolytic enzymes phosphofructokinase (PFK) (G) and pyruvate kinase (PK) (H) in the liver; levels
of glycerol-3-phosphate (G3P) in the liver (I); levels of β-hydroxybutyrate (BHP) in the liver (J). (K) Levels of the FGF21
mRNA in the liver. (L–P) Levels of β-hydroxybutyrate (BHP) (L), non-esterified fatty acids (NEFA) (M), glucagon (N), and
insulin (O) in the plasma of the Coq9+/+ mice treated with β-RA; glucagon/insulin ratio (P) in the plasma of the Coq9+/+

mice treated with β-RA. Tissues from mice at 3 months of age. Data are expressed as mean ± SD. * p < 0.05, ** p < 0.01,
differences versus Coq9+/+. + p < 0.05, ++ p < 0.01, differences versus Coq9+/+ after 1% β-RA treatment. One-way ANOVA
with Tukey’s post hoc test or Mann–Whitney (nonparametric) test; n = 5–7 for each group.
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3.4. β-RA Directly Inhibited Adipogenesis

While the metabolic switch in the kidneys and, to a lesser extent, the liver may con-
tribute to the utilization of energetic substrates that prevent the accumulation of WAT, we
also wondered whether β-RA directly affects adipocytes. This is important because mito-
chondrial metabolism was related to the inhibition of preadipocytes proliferation [32,33].
Thus, we treated 3T3-L1 preadipocytes with β-RA. In proliferative conditions, β-RA de-
creased cell proliferation (Figure 7A,D), most likely due to an increase in p27 (Figure 7B),
which is a protein that inhibits the cell cycle progression at G1 [34,35]. We also observed
a decrease in CYCA2, which is a protein that promotes the division of the cells [35]
(Figure 7B). These changes in p27 and CYCA2 were not observed in differentiated 3T3-L1
cells (Figure 7C) nor in C2C12 myoblasts under both proliferative and differentiative condi-
tions (Figure S8), indicating a specific cell-type effect. Consistently, the 3T3-L1 cells treated
with β-RA produced less fat (Figure 7E,F), which was a phenomenon that may have been
mediated by the decrease in PPARγ levels (Figure 7G) and the upward trend of PPARδ lev-
els (Figure 7H), which are two receptors that regulate adipogenesis [36,37]. The decreased
levels of CoQ9 (Figure 7I,J) due to the competitive inhibition of CoQ biosynthesis induced
by β-RA in the control cells, which is a fact that was previously reported [1,38], could also
contribute to the decreased proliferation and fat production of 3T3-L1 cells [32,39].

Because other HBAs, e.g., salicylic acid or vanillic acid, can activate AMPK [40,41],
which is an enzyme that plays a key role in cellular energy homeostasis [42,43], we in-
vestigated whether the observed effects of β-RA in WAT were due to the activation of
AMPK through its phosphorylation. Thus, we quantified the levels of AMPK and p-AMPK,
as well as two of its target proteins, ULK1/p-ULK1 and ACC/p-ACC, in the WAT of
wild-type mice at 18 months of age. Both the phosphorylated and unphosphorylated forms
of the three proteins were increased, although the p-AMPK/AMPK, p-ULK1/ULK, and
p-ACC/ACC ratios were similar in the untreated and treated animals (Figure S9A–C),
suggesting that AMPK was not a direct target of β-RA. Moreover, the 3T3-L1 cells treated
with β-RA did not experience changes in the p-AMPK/AMPK ratio, with p-AMPK being
almost undetectable in both the treated and untreated cells (Figure S9D,E).
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Figure 7. Direct effects of β-RA on adipogenesis. (A) Percentage of 3TL1 cells after seven days of treatment with 1 mM
β-RA relative to the number of untreated 3TL1 cells. Cells cultured in proliferative conditions. (B) Levels of the proteins
SKP2, p27, and CYCA2, which were involved in the control of the cell cycle. The 3TL1 cells were treated for seven days with
1 mM β-RA in proliferative conditions. (C) Levels of the proteins SKP2, p27, and CYCA2, which were involved in cell cycle
control. The 3TL1 cells were treated for seven days with 1 mM β-RA in differentiative conditions. (D,E) Oil Red O staining
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in 3TL1 cells cultured under proliferative (D) and proliferative + differentiative (F) conditions. The 3TL1 cells were treated
with 1 mM β-RA from day 0 in both conditions and the stains were performed on three different days (2, 4, and 7). (F)
Percentage of the area corresponding to the Oil Red O stains in the 3TL1 cells in differentiative conditions after days 4 and 7
of treatment with 1 mM β-RA. (G,H) Levels of PPARγ and PPARδ in the 3TL1 cells cultured in proliferative + differentiative
(F) conditions and treated with 1 mM β-RA. The results in non-differentiated cells are shown in line one as the negative
control. (I,J) Levels of CoQ9 in the 3TL1 cells cultured in proliferative conditions (I) and differentiative conditions (J) and
treated with 1 mM β-RA. Data are expressed as mean ± SD. * p < 0.05, *** p < 0.001, differences versus untreated cells
(Mann–Whitney (nonparametric) test; n = 6 for each group).

4. Discussion

β-RA is an HBA that shows powerful therapeutic benefits in CoQ deficiency mouse
models caused by mutations in Coq6, Coq7, Coq8b, or Coq9 [21,22,24,25]. Those studies
administered high doses of oral β-RA, but the mechanisms have not been clearly elucidated
in podocyte-specific Coq6 or Coq8b knockout mice [24,25]. Moreover, chronic β-RA supple-
mentation maintains a lower body weight in wild-type mice than untreated mice [21], but
the causes and mechanisms of this effect were completely unknown. In our current work,
we demonstrated that the therapeutic mechanism of β-RA in Coq9R239X mice was based on
the capability of this molecule to enter the CoQ biosynthetic pathway and compete with
4-HB, resulting in a reduction of the levels of DMQ, an intermediate metabolite that is
detrimental for mitochondrial function [44]. Moreover, our study revealed that β-RA pre-
vented the accumulation of WAT during animal development and aging, thus preventing
age-related hepatic steatosis. This powerful effect was due to an inhibition of preadipocyte
proliferation and fat production, as well as the stimulation of lipolysis, gluconeogenesis,
and glucose and acetyl-CoA utilization, mainly in the kidneys.

The fundamental rationale for the treatment with β-RA in primary CoQ deficiency
is the induction of a bypass effect since β-RA has the hydroxyl group that is normally
incorporated into the benzoquinone ring by the hydroxylase COQ7. Because COQ9 is
essential for the stability and function of COQ7 [6], defects in either Coq7 or Coq9 are
susceptible to be effectively treated by β-RA [1,21–23,45]. Surprisingly, β-RA treatment
was also successful in podocyte-specific Coq6 or Coq8b knockout mice, yet the mechanisms
in those cases were apparently not related to a bypass effect, suggesting that the β-RA
may induce additional therapeutic mechanisms. However, our results confirmed that
the therapeutic mechanism of β-RA in the Coq9R239X mice was due to its action in CoQ
metabolism, as demonstrated by (1) the decrease in the levels of DMQ, with the effect
being more intense in the kidneys (the tissue that accumulated more β-RA), and (2) the
suppression of the therapeutic effect of β-RA due to the co-administration of 4-HB, which
attenuated the decrease of DMQ9, thus supporting the theory of competition between the
molecules when trying to enter the CoQ biosynthetic pathway in vivo [38]. The results
obtained with the co-administration of 4HB and β-RA also suggest that the KM for β-RA
was higher than the KM for 4-HB in the prenylation reaction catalyzed by COQ2 [22,38].
Moreover, the therapeutic effects observed in this study were achieved with a third of
the dose that was previously used [22]. Thus, the effects in this study were also similar
to the results published in the Coq7 conditional KO mice [23] despite the phenotypes of
both models being substantially different [6,21]. This is important because animal studies
that use lower doses of a drug could potentially be translatable to the human situation,
decreasing the cost of the treatment and being more feasible regarding its administration,
especially in the pediatric population. However, our results in the Coq9R239X mice showed
that β-RA had limitations regarding inducing an increase in the levels of CoQ, suggesting
that the co-supplementation of β-RA and CoQ10 could result in improved therapeutic
outcomes [46]. Moreover, β-RA is not able to be modified the DMQ/CoQ ratio in the brain,
suggesting that β-RA may have additional mechanisms that reduce the astrogliosis or that
the effects on CoQ metabolism are happening in specific cells types or areas in the brain.

In wild-type animals, chronic β-RA supplementation prevented the accumulation of
WAT. The in vitro experiments in this study demonstrated that β-RA inhibited preadipocytes
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proliferation, which is a result that was also achieved by other phenolic acids [47,48],
including p-coumaric [47], which was reported to serve as a benzoquinone precursor for
CoQ biosynthesis in humans and mice [49]. Whether the alteration on CoQ biosynthesis
that was induced by β-RA, i.e., the decrease in CoQ levels or the mild accumulation of
DMQ, may contribute to the accumulation of WAT remains to be elucidated. The anti-
proliferative effect of β-RA in preadipocytes induces the downregulation of PPARγ, which
seems to be critical for the suppression of adipocyte differentiation and the development of
mature adipocytes [50]. Consequently, β-RA may act by preventing WAT hyperplasia and
hypertrophy, both of which contribute to avoiding overweight and obesity in children and
adults [51–53].

In addition to the direct effects of β-RA in adipocytes, in vivo experiments utilizing
hypotheses that were generated by proteomic profiling, and following these observations
up with focused validation experiments, showed a tissue metabolic switch, mainly in the
kidneys. This tissue could account for up to 40% of the overall gluconeogenesis of the body
under certain conditions, e.g., the post-absorptive phase [54,55], during which glycerol is
one of the gluconeogenic renal precursors [54]. Although renal gluconeogenesis mainly
serves to produce glucose only for its own utilization in the kidneys, this metabolic pro-
cess can also participate in the regulation of systemic glucose metabolism [55]. Therefore,
our results suggest that the β-RA induces renal gluconeogenesis from glycerol, and the
resulting glucose is used in glycolysis to produce pyruvate and then acetyl-CoA, which is
ultimately funneled into the TCA cycle. Acetyl-CoA may not only be produced through the
classical pathway but also through an alternative pathway that involves α-ketoglutarate
dehydrogenase and aldehyde dehydrogenase and uses acetaldehyde as an intermediate
metabolite [56]. Interestingly, the production and use of acetyl-CoA in mitochondria were
postulated as a metabolic signal of survival in organisms [57], which is consistent with a
reduction in the WAT content [57,58], the stimulation of ketogenesis [57,59], the limitation
of fatty acid synthesis, and the prevention of hepatic steatosis [57–59]. Nevertheless, it is
unclear whether the metabolic effects in the kidneys and, to a lesser extent, in the liver
are due to β-RA itself or whether they are the consequences of having a low amount of
WAT. This second option could explain the downregulation of fatty acid β-oxidation in
the kidneys and the subsequent preference for glucose metabolism. A potential regulator
for all these metabolic changes is GSK3β, which is highly increased in the mitochondria
of the treated wild-type animals. GSK3β regulates a variety of cellular processes, includ-
ing glucose metabolism. In fact, its upregulation was associated with an amelioration
of diabetes-induced kidney injury [60]. Consequently, these metabolic adaptations in
the kidneys in response to chronic supplementation of β-RA could explain, at least in
part, the positive therapeutic outcomes achieved in the podocyte-specific Coq6 or Coq8b
knockout mice [24,25] and open the potential application of β-RA in treating other renal
metabolic diseases.

To conclude, the results reported here demonstrate that chronic supplementation with
β-RA in mice induces different metabolic effects with relevant therapeutic implications
for the treatment of primary CoQ deficiency and the prevention of age-related overweight
and associated hepatic steatosis. The first application is based on the ability of β-RA
to enter the CoQ biosynthetic pathway, compete with a lower affinity with the natural
substrate 4-HB, and, consequently, reduce the levels of DMQ in cases of defects in Coq9
or Coq7. The second application is based on a combination of direct influences over WAT,
ultimately preventing the hyperplasia and hypertrophy of adipocytes, and to indirect
systemic mechanisms, mainly by the adaptations of renal metabolism. Nevertheless, this
study has some limitations: (1) although β-RA can prevent the accumulation of WAT
during aging, it is unknown whether it can reduce WAT in already obese animals; (2)
although this long-term study showed convincing therapeutic actions of β-RA, the effects
of β-RA administration should be evaluated in mice with different genetic backgrounds
and models of both diet-induced obesity and genetic-induced obesity; and (3) a minimal
effective dose and potential dose-dependent specific effects must be defined for both
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therapeutic applications. Nevertheless, the data gathered in the present work are relevant
for the future translation of the treatment with β-RA into the clinic, especially considering
that we have shown the effects of the long-term administration of β-RA in a mouse model
of age-related overweight and mitochondrial encephalopathy due to CoQ deficiency.
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