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Abstract: Bone defects can occur from many causes, including disease or trauma. Bone graft materials
(BGMs) have been used to fill damaged areas for the reconstruction of diseased bone tissues since
they are cost effective and readily available. However, BGMs quickly disperse around the tissue
area, which ultimately leads to it migrating away from the defect after transplantation. We tested
chitosan hydrogels as a useful carrier to hold BGMs in the transplantation area. In this study,
we synthesized succinylated chitosan (SCS)-based hydrogels with a high decomposition rate and
excellent biocompatibility. We confirmed that BGMs were well distributed inside the SCS hydrogel.
The SCS-B hydrogel showed a decrease in mechanical properties, such as compressive strength and
Young’s modulus, as the succinylation rate increased. SCS-B hydrogels also exhibited a high cell
growth rate and bone differentiation rate. Moreover, the in vivo results showed that the SCS hydrogel
resorbed into the surrounding tissues while maintaining the BGMs in the transplantation area for up
to 6 weeks. These data support the idea that SCS hydrogel can be useful as a bioactive drug carrier
for a broad range of biomedical applications.

Keywords: natural polymer-based hydrogel; chitosan; bone graft; succinylation; bone tissue engineering

1. Introduction

Major bone defects commonly occur in clinical settings due to traumatic accidents,
metabolic diseases, osteoclastic tumors, or cancer resection [1]. These bone defects often
lead to serious subsequent infections, complications, and sequelae that can lead to long-
term gait disturbance [2]. In the majority of cases, bone grafts are performed either using
the patient’s own or donor’s bone [3]. However, donor bone extraction is difficult and
is often accompanied by donor site damage that requires secondary surgery to repair.
Demineralized bone matrix (DBM) is a popular bone substitute that is widely used as one
of the most common allografts. DBM is a part of the freeze-dried allogeneic bone that is
composed of insoluble collagen and protein. It also contains a low concentration of bone
morphogenetic protein [4]. However, it is not easy to obtain raw materials. Furthermore,
some clinicians and patients are still wary of antigenicity and infection due to human
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immunodeficiency virus (HIV) or other pathogens. There is also a problem of wide
variation depending on the manufacturing method and the tissue banks [5]. As compared
with DBM, synthetic bone graft materials (BGMs) are safer and have more consistent
results. Additionally, BGMs provide for osteoconduction and are safe against disease
and viruses. Moreover, these materials have a long shelf life and remain stable providing
for bone ingrowth. The latest trend in clinical usage is to apply lower HA and higher
β-TCP ratios, due to beneficial cell proliferation and differentiation in the early stages [6].
Nevertheless, excessive absorption of β-TCP during bone defect repair adversely affects
bone regeneration. BGMs also commonly migrate within a short time period after being
deposited [7] and act to break the original bone pore structure during implantation and
regrowth. This can lead to functional impairment. To prevent BGMs from escaping the
defect site, many researchers have developed biomaterial-based scaffolds to hold the BGMs
in place [8].

Of the various kinds of scaffolds, hydrogel types are the most suitable form to protect
encapsulated biological materials in large quantities and physically hold them firmly
together [9]. Hydrogel-type scaffolds are difficult to sterilize due to their soft nature, 3D
network structure, and water content. Conversely, sponge-type scaffolds can be stored for a
long time and do not present problems for sterilization [10]. Within a few seconds of placing
the scaffold in blood or water, sponge-type scaffolds will rehydrate and become hydrogels.
With respect to materials used in common hydrogels, chitosan is a promising biocompatible
material that has great protein adsorption [11–13]. Despite these advantages, chitosan
by itself has poor solubility, weak mechanical properties, and lacks bioactivity. These
properties reduce its usefulness for bone tissue engineering. However, the incorporation of
BGMs into the chitosan hydrogel provides for a scaffold in which the components act in a
manner that each other to mechanical properties, bone regeneration ability, and control of
degradation rate. Succinylated modifications can be utilized to improve chitosan solubility.
In our previous study, succinylated chitosan (SCS) was ion-crosslinked using glucose-
6-phosphate (G6P) [14]. We hypothesized that, because SCS hydrogel-based sponges
have a rapid degradation, they would be good delivery materials to specifically locate
BGMs into the bone defect areas. The major aim of this study was to fabricate a complex
complimentary sponge composed of SCS and BGMs (SCS-B) containing potent osteogenic
activity. We believe that our approach of BGMs delivery using SCS-B will demonstrate
potential efficacy for repairing bone defects by promoting bone regeneration.

2. Materials and Methods
2.1. Materials

Low-molecular-weight chitosan (MW: 50,000–190,000 Da), 4-dimethylaminopyridine
(>98%), D-glucose 6-phosphate sodium salt (G6P), and succinic anhydride (>99%) were
purchased from Sigma Aldrich (St Louis, MO, USA). Acetic acid was purchased from
Junsei Chemical Co. (Ltd., Japan). Human adipose tissue-derived mesenchymal stem cells
(hAT-MSCs), CEFOgroTM ADMSC human adipose tissue-derived MSC growth medium
(GM), Osteo-differentiation medium (OM), and supplement (10% FBS, 0.02% Penicillin
and Streptomycin) were purchased from CEFO CO (Seoul, Korea). Synthetic bone graft
(Q-Oss+) was purchased from Osstem (Seoul, Korea). All reagents and solvents were used
as received without further purification.

2.2. Preparation of Bone Graft Materials (BGMs) Loaded with Succinylated Chitosan (SCS)-Based
Hydrogel (SCS-B)

SCS was synthesized as previously reported, and varying degrees of succinylation
were created by adjusting the An/Am ratio [14]. SCS was prepared at three levels of
succinylation based on An/Am ratios of 0.35 (SCS-L), 0.5 (SCS-M), and 0.7 (SCS-H). These
were all prepared as 2.5% w/v solutions in deionized water (DW). The G6P solution
(2 mg/uL) was prepared at room temperature overnight using DW. BGMs were placed
in each SCS solution and dispersed evenly. Then, the G6P solution was added to each
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SCS solution at a volume ratio of 2:1 (SCS solution:G6P solution) to crosslink the gel. The
hydrogels were prepared as a film with a thickness of 1 mm and shaped into an 8 mm
diameter disk using a biopsy punch. The hydrogels were subsequently freeze-dried.

2.3. Characterizations of Synthesized SCS-B

SCS-B was observed using a scanning electron microscope (SEM, S-4700, Hitachi,
Japan) at an acceleration voltage of 15 kV. All samples were dried at room temperature, and
then sputter-coated with gold using an IB-3 coater (Eiko, Japan) for 10 min. The images
were evaluated using Eyeview-Analyzer (Digiplus, Korea). The various SCS-B sample
disks were evaluated using a rotating rheometer (Anton Paar, Graz, Austria) in oscillation
mode with a plate–plate geometry of 8 mm diameter and a 1 mm gap. The samples were
measured for storage elastic modulus (G′) and loss modulus (G”) to determine viscoelastic
behavior. A frequency sweep was carried out in the range of 0.1–10 Hz, at a constant strain
of 1%. The calculation formula of G′ and G” is as follows:

G′ =
σ0

ε0
cos δ, G′′ =

σ0

ε0
sin δ

To measure compressive strength, SCS-B samples were prepared in the form of a
cylinder with 10 mm diameter and 10 mm height. These were tested using a mechanical
tester at a compression rate of 1 mm/min. The anatase and rutile phases were characterized
by X-ray diffraction (XRD) (D8 Advance, Bruker, Billerica, MA, USA). The XRD analysis of
SCS-L, BGMs, and SCS-LB was performed at 40 kV and 40 mA in the range of 10–70◦ x.

2.4. Cell Viability and Proliferation

In all experiments, hydrogels were placed in 48-well plates, washed with sterilized
phosphate-buffered saline (PBS), and placed in a culture medium, which was changed
every 2 days. To evaluate biocompatibility, hAT-MSCs were seeded at a density of 1 × 104

on the hydrogels. To evaluate the cell viability, all groups were treated with a calcein-
AM/ethidium homodimer-1 (EthD-1) LIVE/DEAD assay kit (Invitrogen, CA, USA) at
24 and 48 h. The stained cells were observed and imaged using an EVOS® FL Auto Cell
Imaging System (Thermo Fisher Scientific, Waltham, MA, USA). ImageJ (National Institutes
of Health, Bethesda, MD, USA) was used to quantify the total number of live and dead cells
within samples. Cell proliferation was evaluated after 1, 3, and 5 days of culture at 37 ◦C in
a 5% CO2 atmosphere. For this, 100 µL of CCK (Dojindo Laboratories, Kumamoto, Japan)
solution was added to each well, and the plate was incubated for 1.5 h. The absorbance was
measured at 450 nm using a Benchmark Plus microplate spectrophotometer (BR170-6930,
Bio-Rad, Hercules, CA, USA).

2.5. In Vitro Osteogenic Differentiation

After 1 day of culture by GM, the medium was changed to OM. Cell culture continued
with samples drawn at 5, 10, and 15 days. The total cellular protein was extracted using
cell lysis buffer, and protein concentration was determined by the Bradford method using
bovine serum albumin (BSA) as a standard (Bradford, 1976). The concentration of protein
(in mg/mL) was standardized using the equation y = 0.0235 x + 0.2829 with an R2 value
of 0.9946, where y is absorbance and x is concentration. In a standard reaction, 50 µL of
each BSA concentration and the sample were mixed with 1.5 mL of Bradford reagent and
allowed to stand at RT for 5 min, and then absorbance was measured at 595 nm. Alkaline
phosphatase (ALP) activity was determined for hAT-MSCs cultured at pre-determined
time periods. At each time period, the cells were washed with PBS and lysed with 3× RIPA
buffer at 4 ◦C for 1 h. The lysed hAT-MSCs were centrifuged at 10,000 rpm for 10 min, and
the supernatant was reacted with p-nitrophenol phosphate (pNPP, Sigma Aldrich) in a
37 ◦C incubator for 30 min. The level of p-nitrophenol production was measured using a
plate reader at 405 nm wavelength. For the alizarin red staining (ARS), the mineralized
matrix nodules formed by hAT-MSCs were evaluated. On days 10 and 15, the cells were
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washed 3 times with PBS, fixed in 4% paraformaldehyde for 30 min, and incubated with
alizarin red for 10 min at room temperature. After that, the non-bound alizarin red stain was
removed by washing 3 times with distilled water. For quantification of the mineralization,
the mineralized matrix nodules were dissolved in 10% (w/v) cetylpyridinium chloride
(Aladdin), and absorbance was measured at 540 nm using a microplate reader. The
concentration of ARS (mM) was determined using the equation y = 0.4508 x + 0.0067 with
an R2 value of 0.9989, where y is absorbance and x is concentration.

2.6. In Vivo Study

Male 8-week-old Sprague Dawley rats (n = 36), weighing an average of 200 g each,
were purchased from Orient Bio (Seongnam, Gyeonggi-do, Korea). The animals were
housed under a controlled temperature of 23 ◦C ± 2 ◦C, 50% ± 5% humidity, and a
12 h light–dark cycle. All experimental procedures were performed in compliance with
protocols approved by the Institutional Animal Care and Use Committee of Konkuk
University. (KU19061; approved date, 8 October 2018). For implantation of hydrogel
scaffold, the surgical area was clipped and aseptically prepared with povidone-iodine.
General anesthesia was induced by intramuscular injection of xylazine HCL (Bayer Korea,
Gyeonggi-do, Korea) and maintained with inhalation of 1.5–2% isoflurane (Hana Pharm,
Gyeonggi-do, Korea) and oxygen. A critical-sized calvarial defect with a diameter of
6 mm was created using a trephine bur. The animals were randomly allocated into six
groups as follows: negative control group with calvarial defect only without implantation
(control); Bone graft group with implantation of bone powder (BGMs); low succinylation
(the An/Am ratio of 0.35; SCS-L); the An/Am ratio of succinylation of 0.35 (SCS-LB);
0.5 (SCS-MB); 0.7 (SCS-HB) with an equivalent amount of BGMs. For implantation, 40 mg
of β-TCP was grafted, and SCS-L and SCS-B samples were prepared in the form of disks
with a diameter of 6 mm and a thickness of 1 mm. The animals were sacrificed at 6 weeks
after implantation. The calvaria tissues were harvested and fixed in 10% neutralized
formalin for further analysis.

2.7. Micro-Computed Tomography (µ-CT) Analysis

Six weeks after implantation, calvariae were harvested for µ-CT examination. Exami-
nations were carried out by using a SkyScan1173 (Bruker, Kontich, Belgium) at 13.85 µm
resolution with a source voltage of 130 kVp, current of 60 µA, and an exposure time of
500 ms. The degree of bone density based on µ-CT was quantified using mean gray values
and standard deviation of the region of interest. The reconstruction was performed by
NRecon software (Bruker, Kontich, Belgium). For quantitative analysis, new bone volume
(mm3) and percent bone volume ratio (bone volume/tissue volume, %) were measured.
For histologic analysis, the calvaria samples were decalcified with 10% EDTA solution.
After a routine processing procedure, samples were embedded in paraffin and cut into
4 µm sections. The sections were stained with hematoxylin and eosin (H&E), toluidine
blue, and Masson’s trichrome for microscopic examination.

2.8. Statistical Analyses

All tests were performed in triplicate and statistical analysis was performed using
GraphPad® Prism (GraphPad Software, San Diego, CA, USA). Statistical comparisons
were made by one-way analysis of variance, with post hoc comparisons by Tukey’s test as
appropriate or two-way analysis. Statistically significant values are defined as * p < 0.05,
** p < 0.01, *** p < 0.001.
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3. Results and Discussion
3.1. Preparation and Characterization of SCS-B

Figure 1 shows a schematic representation of the entire process for forming BGMs-loaded
SCS (SCS-B). SCS was fabricated by mixing glucose-6-phosphate (G6P) as a cross-linker [15]
with SCS hydrogels containing different chitosan succinylation rates: low-succinylated chi-
tosan (SCS-L), medium-succinylated chitosan (SCS-M), and high-succinylated chitosan (SCS-
H). At the same time, an equivalent amount of BGMs was added to the mixed solution
with SCS and G6P to make a homogeneous composite. In this study, these are designated
as SCS-LB (BGMs-loaded SCS-L), SCS-MB (BGMs-loaded SCS-M), and SCS-HB (BGMs-
loaded SCS-H) for different succinylation rates of SCS. The developed SCS-based hydrogels
provide mechanisms for controlled biomolecules delivery applications with the potential
for temperature and pH sensitivity [14]. In this study, BGMs were encapsulated in SCS
hydrogels with various levels of succinylation. Additionally, this scaffold was made in
the form of a compartmentalized sponge for easy implantation. The important point in
the SCS-B process is that SCS plays a role in preventing damage to the intrinsic pores of
BGMs in the initial state, as well as bringing together the hydrogel with the BGMs. Here,
the lyophilized sponge maintains its own intrinsic shape and swells to restore its original,
hydrated state within a few seconds as soon as it is transplanted. SEM analysis showed
porous, sponge-like structures in the SCS-B after freeze drying (Figure 2A). The porosity of
the SCS-B hydrogels was reduced, suggesting BGMs were homogeneously mixed in with
the SCS. The SCS-L had intrinsic pores, while SCS-LB, SCS-MB, and SCS-HB pores were
filled with equal proportions of BGMs and were determined to have pore size differences.
In the case of SCS-LB, it was confirmed that the pores were smaller than that of SCS-MB
and SCS-HB (Figure 2B). This is because of the many remaining amine groups that act to in-
crease ionic bonding. Furthermore, this hydrogel sponge has been shown to keep its shape
intact. This has a decisive effect on final mechanical and material properties. The effects of
temperature on mechanical properties are shown in Figure 3. We measured viscoelasticity
at room temperature (RT) and 37 ◦C (human body temperature). Both G′ and G” at 37 ◦C
were decreased, as compared with RT, suggesting a lower mechanical stiffness. This is most
likely because an increase in temperature causes an increase in the molecular motion of the
solution. Subsequently, the intramolecular networks increased the mobility of charged ions
and accelerated the electrostatic interactions [16]. From lowest to highest, the mechanical
stiffness increased in the order of SCS-HB, SCS-MB, SCS-LB, and SCS-L. Among these,
SCS-LB exhibited the highest storage modulus, suggesting the highest mechanical stiffness.
This trend suggests cross-linking density and stiffness are associated. Indeed, SCS-LB,
with a higher amount of amine groups, showed significantly higher cross-linking efficiency
than the other groups. The rheological measurements are related to the porous structure
and mechanical properties of the hydrogel as well [17]. In addition, these data are fully
consistent with previous SEM micrographs of microstructure morphology (Figure 2). The
chemical composition of each specimen was analyzed using X-ray diffraction (XRD). As
shown in Figure 4, the major proportion of BGM peaks was observed at 17◦, 25◦, 27◦, 31◦,
and the 34◦. The SCS-L peak was observed at 20◦. Furthermore, all peaks related to BGMs
and SCS-L appeared in the SCS-LB sample together. These results suggest that SCS-LB
was evenly blended with SCS-L and BGMs. Moreover, these data confirm that the gel and
BGMs were well dispersed from the previous microstructure morphology (Figure 2). Next,
we compared the mechanical properties of SCS-L, SCS-LB, SCS-MB, and SCS-HB (Figure 5).
As the succinylation rate increased, the hydrogel compressive stress and Young’s modulus
decreased. This is likely due to the decreased SCS hydrogel cross-linking density. The
increased chitosan succinylation rate increases SCS solubility with decreased polymer
chain length, which diminishes the physical entanglement between chitosan molecules [16].
Overall, these results demonstrate the success of SCS-B to load BGMs.
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3.2. In Vitro SCS-B Cell Viability and Osteogenic Differentiation

To evaluate hydrogel cytotoxicity, hAT-MSCs were seeded on the surface of SCS-L,
SCS-LB, SCS-MB, and SCS-HB for direct cell-to-materials contact. This is similar to SCS-B
located in a defective area of the bone. First, live/dead staining was performed to assess
the biocompatibility (Figure 6A). Most of the hAT-MSCs were bright green, indicating no
distinct dead cells. hAT-MSCs in all groups exhibited more than 99% viability after 24 h
and 48 h. SCS-LB cell viability (99.95%) was slightly higher than SCS-L (99.94%), SCS-MB
(99.94%) and SCS-HB (99.91%) after 48 h (Figure 6B). Therefore, all the experimental groups
had no apparent cytotoxicity or problems with cell adhesion and proliferation during
the initial period. In addition, the proliferation rate was evaluated in relationship to the
different succinylation rates. No cytotoxicity was observed in all groups during the cell pro-
liferation study (Figure 6C). All three hydrogels increased cell proliferation over the course
of time. However, SCS-HB, SCS-MB, and SCS-L had a lower proliferation rate than SCS-LB
at all time points. This effect in cell viability is likely due to the number of carboxyl groups
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in the hydrogel. In the case of increased succinylation and pH oscillations, the remaining
few cations of chitosan were difficult to bind to the anionic macromolecules that regulate
the activity of cytokines and growth factors, such as glycosaminoglycans (GAGs) [18].
These points can also affect osteogenic differentiation. Accordingly, the appropriate rate of
succinylation should be selected to ensure good cellular compatibility [19].
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Chitosan is a preferred material for bone tissue repair due to its physicochemical
and biological properties [20]. Chitosan enhances cell adhesion, proliferation, as well as
osteogenic differentiation and mineralization [21,22]. The porous structure of chitosan has
an effect on osteoconduction [23], and its intrinsic cationic property allows the connection of
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growth factors [21]. Therefore, we further evaluated the ability of osteogenic differentiation
of hAT-MSCs with exclusively SCS hydrogel using alkaline phosphatase (ALP) activity as
an early indicator of osteogenic differentiation (Figure 7A). As compared with control, a
significant increase in ALP production was observed in SCS-L after 5 and 10 days of culture.
ALP activity has been known to decrease after reaching its peak at about 10–14 days. After
this, calcium minerals start to accumulate in the ECM [24]. The hAT-MSCs of ALP activity
level was significantly increased in the order of SCS-H, SCS-M, and SCS-L. This gradient
effect may be attributed to the number of remaining carboxyl groups after degradation due
to acidification, which increases cell cytotoxicity and lowers cell differentiation [25]. When
the gels were loaded with BGMs, all of SCS-B had higher ALP expressions, as compared
with the SCS-L hydrogel after 5 days (Figure 7B). Interestingly, all groups showed higher
ALP expression after 10 days of culture, as compared with the control. At this time, the
hydrogel had already attained bone matrix maturation and mineralization after induction
of osteogenic differentiation. In response to rapid ALP expression, both mineralization and
ECM protein production are induced during bone development. Subsequently, calcium
deposition in the ECM is important to the final stage of bone formation or differentiation
into bone cells. Two weeks after the induction of bone formation, calcium content was
quantified after 10 and 15 days by alizarin red staining (Figure 7C). When compared with
the control group, all SCS-B groups formed higher amounts of calcium deposits for up to
15 days. The increase in calcium was elevated more significantly in the SCS-LB group than
in other groups. As shown in Figure 7D, the ALP and ARS staining results are similar to
our prior evaluation. There is a difference in the concentration of succinylation, but the
amount of BGMs is the same. In the case of SCS-HB, it is expected that decomposition
has begun. However, this is attributed to only a difference as compared with control cells
on the plate, not on the SCS-L in ARS staining. The succinylation rate also influenced the
biological response of the cells and had a greater effect on osteogenic differentiation. These
data suggest that SCS-B is an attractive material to construct bone scaffolds from as it has
excellent biocompatibility and acts to preserve differentiated bone phenotypes.
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3.3. In Vivo Bone Regeneration of SCS-B

Lyophilized SCS-B was implanted in a rat calvaria defect model for treating bone
defects in vivo. Figure 8A displays the sponge-type scaffold after implantation. The scaffold
mixed well with blood with good wettability. With its porous structure, lyophilized SCS-L
and SCS-B could be quickly reswelled to their original shape and filled the adequate area
rapidly. Defect reconstruction images were taken using micro-computed tomography
(µCT) imaging at 6 weeks after implantation (Figure 8A). With the results of multiple
micro-CTs in Figure S1, it is easy to understand the findings at a glance. All SCS-B groups
showed increased bone formation, as compared with the control. However, bone formation
was not complete. In SCS-L and SCS-B groups, new bones started to form around the
edges of the defect and gradually regenerated toward the center. Bone healing is usually
accomplished from the edge of the defect and at the periosteum. When a defect occurs,
both the dura mater, which helps bone formation, and the periosteum, which aids blood
supply, are severely damaged. Therefore, it is important to start the healing from the
edges [26]. Accordingly, in the early stages, a selection of materials and shapes is crucial
to provide for a large contact area with the edge of the defect [27]. However, there is
almost no bone formation in the target area in the control and BGMs groups. In the
BGMs groups, the majority of BGMs had migrated away from the defect and could not be
readily located. Most SCS-B groups, which use the hydrogel to prevent BGMs migration,
presented regenerated bone by 6 weeks. Both SCS-LB and SCS-MB were similar to each
other in their ability to maintain BGMs and regenerate new bone. SCS-HB had BGMs
migration due to its low crosslinking and relatively rapid degradation. Bone formation
was further confirmed by examining the amount of new bone volume (NBV), the ratio of
bone surface density to total tissue volume (BV/TV), and the amount of new bone surface.
As shown in Figure 8B, SCS-LB exhibited the highest NBV in the groups, about a twofold
increase in comparison with the control groups. BV/TV in the all SCS-B groups was higher
than in the control groups (8.25% ± 3.30% and 14.95% ± 2.51% in the control and BGMs,
respectively) (Figure 8C). For the new bone surface, the SCS-LB group showed significantly
higher healing of the defect area among the SCS-B groups (Figure 8D). This is attributed to
the osteogenic differentiation binding capacity with SCS hydrogel for new bone surfaces.
Therefore, we concluded that SCS-L is an effective scaffold to help bone regeneration.
Histologic analysis was conducted to confirm µCT data on calvarial bone regeneration.
The original bone and newly formed bone were differentiated and highlighted using three
staining methods, hematoxylin and eosin (H&E), toluidine blue, and Masson's trichrome
(Figure 9). In the control group, only a small amount of new bone, resembling periosteal
reaction, was found on the edge of the defect. The amount of new bone seemed elevated
by bone powder in the BGMs group; however, the BGMs were not located between the
defect edges and had moved around. This causes osteogenesis in unwanted locations and
also leads to reduced original bone integrity. In the SCS-L group, however, newly formed
bone was sprouting out from the edge. This is attributed to the osteoconduction ability of
the hydrogels. Unlike the BGMs group, the bone powder of SCS-B groups remained in the
intended location in the middle of the defect, and the original calvarial bone showed an
intact lamellated appearance. The immature bone in the SCS-B groups was formed around
the defect edges and scattered across the bone graft. This was confirmed by histological
analysis that bone regeneration of SCS-B groups was well controlled in the defect area
alone and not conflicting with other, normal tissue.
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Bone allograft is the golden standard biomaterial for bone regeneration [28]. How-
ever, autologous bone graft has limitations because of its restricted supply and donor
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site complications. Patients who need a bone graft may not have healthy tissue due to
underlying conditions such as diabetes. Furthermore, the harvesting process causes the
patient to suffer from collateral damage, which limits the procedure’s utility. For these
reasons, a demineralized bone matrix can be a suitable alternative. However, histologic
images show that peri-implant osteolysis can occur due to the unintended distribution
of bone particles [29]. The results from this in vivo study showed that SCS-B can be a
solution for successful implantation of bone powder, holding the bone particles in the area
of the defect and restricting unwanted side effects of bone powder. In the absence of BGMs,
SCS-L does not readily maintain the initial volume until the bone regenerates. However,
BGMs in SCS-B are not quickly decomposed and maintain their structure for up to 6 weeks.
This improves SCS-B’s ability to aid bone regeneration in the later stages of healing. Con-
sequently, chitosan combined with BGMs provides for stable mechanical properties and
sufficient bone-bonding ability. Additionally, chitosan has an innate antibacterial activity
that prevents infections that can lead to implant failure. In addition, BGMs both protect
the chitosan polymer from enzymatic degradation and neutralize acidification caused
by chitosan degradation. This allows the scaffold to last longer and provides for better
ingrowth of the bone and eventual formation of hard tissue [30,31]. There is an increasing
clinical need for injectable biomaterials. These can be adapted to various platforms and
can enable minimally invasive surgery [32]. SCS-B has flexibility for use as a carrier for pre-
cisely locating bone powder where it is desired. It also provides for a sponge that quickly
hydrates to its original state when it encounters bodily fluid. As it has osteoinductive and
osteoconductive properties, it is a suitable biomaterial for bone regeneration.

4. Conclusions

We have successfully fabricated a biocompatible chitosan-based hydrogel composed
of SCS and BGMs. SCS-B exhibited a porous structure, enhanced mechanical properties,
and controllable release rate in accordance with the succinylation rate. Furthermore, SCS-B
had remarkable osteogenic differentiation in vitro. After implanting into a calvarial bone
defect, SCS-B was able to maintain the proper shape and provide for bone regeneration.
The results from this study indicate that SCS-based hydrogels will expand the biomedical
tool kit and contribute to tissue engineering development in the future.
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sponges: representative µCT images of each group after 6 weeks of implantation.
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Abbreviations

BGMs Synthetic bone materials
SCS-L Low-succinlyated chitosan
SCS-LB BGMs-loaded SCS-L
SCS-MB BGMs-loaded SCS-M
SCS-HB BGMs-loaded SCS-H
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