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Abstract: Brain tumors are a pernicious cancerwith one of the lowest five‑year survival rates. Neurol‑
ogists often use magnetic resonance imaging (MRI) to diagnose the type of brain tumor. Automated
computer‑assisted tools can help them speed up the diagnosis process and reduce the burden on
the health care systems. Recent advances in deep learning for medical imaging have shown remark‑
able results, especially in the automatic and instant diagnosis of various cancers. However, we need
a large amount of data (images) to train the deep learning models in order to obtain good results.
Large public datasets are rare in medicine. This paper proposes a framework based on unsuper‑
vised deep generative neural networks to solve this limitation. We combine two generative models
in the proposed framework: variational autoencoders (VAEs) and generative adversarial networks
(GANs). We swap the encoder–decoder network after initially training it on the training set of avail‑
able MR images. The output of this swapped network is a noise vector that has information of the
image manifold, and the cascaded generative adversarial network samples the input from this in‑
formative noise vector instead of random Gaussian noise. The proposed method helps the GAN to
avoid mode collapse and generate realistic‑looking brain tumor magnetic resonance images. These
artificially generated images could solve the limitation of small medical datasets up to a reasonable
extent and help the deep learning models perform acceptably. We used the ResNet50 as a classifier,
and the artificially generated brain tumor images are used to augment the real and available images
during the classifier training. We compared the classification resultswith several existing studies and
state‑of‑the‑art machine learning models. Our proposed methodology noticeably achieved better re‑
sults. By using brain tumor images generated artificially by our proposed method, the classification
average accuracy improved from 72.63% to 96.25%. For the most severe class of brain tumor, glioma,
we achieved 0.769, 0.837, 0.833, and 0.80 values for recall, specificity, precision, and F1‑score, respec‑
tively. The proposed generative model framework could be used to generate medical images in any
domain, including PET (positron emission tomography) and MRI scans of various parts of the body,
and the results show that it could be a useful clinical tool for medical experts.

Keywords: variational autoencoder; generative adversarial networks; brain tumor classification;
cancer classification; glioma; pituitary; meningioma; deep learning; convolutional neural networks;
MRI; PET; radiolabeled PET

1. Introduction
With all the wonderful progress of medicine over the last decades, some diseases are

still life‑threatening and, among them, brain cancer is the most aggressive [1]. Uncon‑
trolled irregular growth of protein inside and around the brain tissues is known as a brain
tumor. A brain tumor can be malignant or benign, malignant being the most aggressive
type. In layman’s terms, the malignant type of brain tumor is called brain cancer. If a
tumor breaches the covering and spreads into other parts, it is considered cancer [2]. Pitu‑
itary, meningioma, and glioma tumors are the three basic categories of brain tumors. The
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pituitary is a gland located at the base of the brain, and any abnormal growth of protein
around this gland is known as a pituitary brain tumor [3]. Meningioma is a benign tumor
that develops slowly and is found on the brain’s outer coverings beneath the skull [3]. The
last and most aggressive one is glioma, with the highest mortality rate worldwide among
all brain tumors [4]. It is commonly found in the cerebral hemispheres and the supporting
tissue cells of the brain. Because of the location of the various brain tumors, pituitary and
meningioma tumors are easy to detect, but gliomas are difficult to detect and analyze [3].
Sample images of glioma, meningioma, and pituitary from the dataset used in this research
are presented in Figure 1.

Figure 1. Sample images from the dataset. The first, second, and third rows of images represent
glioma, meningioma, and pituitary brain tumors.

Early symptoms of both benign and cancerous tumors are rare. The increased intracra‑
nial pressure is one of the initial symptoms. The skull bone restricts the amount of space
available for growth. As a result, any new growth will raise intracranial pressure. Symp‑
toms depend upon the site of the tumor; headache, vomiting, numbness of the hand or leg,
or fits are a few symptoms [5].

Benign tumors, including meningioma and pituitary tumors, are slow‑growing and
typically cause no symptoms. However, neuropsychiatric symptoms such as anxiety, psy‑
chosis, personality changes, memory disturbances, or anorexia nervosa are common in pa‑
tients withmeningioma [6]. When only psychiatric symptoms are present, the diagnosis of
meningioma could be delayed. Meningioma and almost all benign tumors are more likely
to cause psychiatric symptoms and behavioral manifestations in individuals [7]. Gyawali
et al. in [6] emphasize the need for neurological evaluation and neuroimaging in psy‑
chiatric patients, particularly those with unusual symptoms. Similarly, fatigue, seizures,
edema, endocrinopathy, and psychiatric disorders are symptoms commonly found in pa‑
tientswith glioma tumors [8]. Because these symptoms are generic andnot disease‑specific,
medical imaging is frequently used for brain tumor diagnosis.

Computed axial tomography (CT), positron emission tomography (PET), and mag‑
netic resonance imaging (MRI) are a few common medical imaging techniques that are
frequently used in medicine, including the diagnosis of brain tumors. In the clinical prac‑
tice for the initial brain tumor diagnosis, computed axial tomography (CT) and magnetic
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resonance imaging (MRI) are the most widely used imaging techniques. Both CT andMRI
have some advantages over each other. CT takes less time for imaging and offers high
spatial resolution compared to MRI [9]. This property of CT makes it ideal for chest and
bone‑related diagnosis. However, the contrast of CT for soft tissue imaging is not high
compared to MRI [9]. So, MRI is the most popular because of its high‑resolution imaging
capability.

In simple MRI scans, benign and malignant tumors look similar, and it is compulsory
to differentiate among them at the initial stage of diagnosis. Contrast‑enhanced MRI is
the first choice of medical experts because of its ease of availability and better soft tissue
resolution.

Although magnetic resonance imaging (MRI) has become the gold standard for di‑
agnosing patients with tumors in any part of the body, classic MRI scans have two main
limitations. It neither distinguishes neoplastic tissue from nonspecific, treatment‑related
changes after chemotherapy or surgery, nor does it show the tumor to the full extent [10].
Several modern MRI techniques, such as perfusion‑weighted imaging and magnetic reso‑
nance spectroscopic imaging, are being tested recently in clinical practices to address the
same diagnostic issues. Perfusion‑weighted imaging highlights the fluidsmoving through
the arteries, and diffusion‑weighted imaging weights the MRI signal by the diffusion rate
of water molecules [10].

Contrast‑enhanced MRI plays a critical role in identifying, characterizing, and plan‑
ning surgical tumor resection in patients with glioma. Any sign of contrast enhancement
in early postoperative MRI (within 24–72 h) indicates incomplete resection [11]. A consid‑
erable number of patients could be misjudged with contrast‑enhanced MRI, especially the
patients with IDH‑wildtype anaplastic glioma [12]. IDH (isocitrate dehydrogenase) is an
important enzyme in the tricarboxylic acid cycle, and the tumors with normal IDH genes
are referred to as “IDH wild‑type” or “IDH negative” [13]. These IDH wild‑type tumors
are considered the most aggressive ones and lack contrast enhancement on MRI, so it may
not be the best option for resection guidance [11]. Positron emission tomography (PET)
scans have been considered recently in some clinical facilities to overcome the deficiency
of contrast‑enhanced MRI, particularly for the group of patients with IDH wild‑type [11].

PET employs a range of radioactive tracers to target various metabolic and molecu‑
lar processes. It can provide valuable extra information that enables medical experts to
diagnose more precisely, particularly in ambiguous clinical scenarios [10]. For the diag‑
nosis of most peripheral tumors in oncology, the most widely used PET tracer is 2‑18F‑
fluorodeoxyglucose (18F‑FDG) [10]. However, in the case of a brain tumor, the use of
18F‑FDGPET is limited due to the high levels of glucosemetabolism in normal brain tissues.

In cerebral gliomas, the proliferation marker 18F‑3′‑deoxy‑3′‑fluorothymidine (18F‑
FLT) accumulates in proportion to malignancy grade [14]. Nevertheless, 18F‑FLT is unable
to detect the full extent of a glioma because it cannot pass through the intact blood–brain
barrier (BBB) and accumulates in portions of the tumor where the BBB has been disrupted.

The uptake of radiolabeled amino acids is poor in normal brain tissue, in contrast to
the widely used 18F‑FDG PET tracer, due to which tumors can be displayed with a strong
tumor to background contrast. The ability of common amino acid tracers to penetrate
through the intact BBB is one of their key characteristics, allowing for the depiction of
the tumor that makes PET superior to contrast‑enhanced MRI [11]. So, PET with radiola‑
beled amino acids is used as an alternative to the contrast‑enhancedMRI for more exact tu‑
mor delineation [15]. The radiolabeled amino acid O‑(2‑[18F]fuoroethyl)‑L‑tyrosine (FET)
is currently the most widely used tracer, particularly in Europe [10]. The fundamental ad‑
vantage of PET employing radiolabeled amino acids is that their uptake is not affected by
blood–brain barrier disruption, allowing it to detect tumor portions that are not visible on
MRI [10,16].

Despite numerous technological advances in medical imaging and treatment, brain
tumor patients’ survival rates remain extremely low [17]. Nodoubt, PET, radiolabeled PET,
MRI, CT, and contrast‑enhanced MRI help medical experts diagnose and classify brain
tumors; however, accuracy is vulnerable to human subjectivity. Observing an enormous
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amount of medical data (MRI/CT images) is time‑consuming for humans, and chances of
human error are always there. The detection of a brain tumor at an early stage is crucial
and depends upon the expertise of neurologists [18]. It is necessary to build computer‑
aided‑diagnostic (CAD) systems that could help radiologists and other medical experts.

Researchers have shown great interest in developing automated AI‑based intelligent
systems. Traditional machine learning algorithms and methods for classifying brain tu‑
mors involve several steps, includingheavypreprocessing,manual feature extraction,man‑
ual feature selection, classification, etc. Feature extraction and selection is a difficult pro‑
cess that requires prior domain knowledge, as the classification accuracy depends on good
features being identified [19].

The problem of manual feature selection is eliminated with the arrival of deep learn‑
ing. Image processing and deep learning methods have shown outstanding performance
in various image‑based tasks in various fields, including medicine [20–23].

Synthesized MRI/CT pictures can be extremely useful for training machine learning
models when real MRI/CT images are prohibitively expensive to obtain from patients
when considering time constraints and patient privacy [24].

Deep learning models feature hundreds of layers and millions of parameters. The
more complex the model, the more data we need to train it. Overfitting is a prevalent
problem when deep networks with a large number of parameters are trained on small
datasets. The beauty of supervised deep learning lies in the quality and quantity of labeled
data that is extremely difficult to acquire in the medical field.

In 2014, ground‑breaking work in the field of generative models was proposed by
Goodfellow et al., called generative adversarial networks (GANs) [25]. A GAN is made
up of two components: a generator and a discriminator. The generator attempts to fool
the discriminator by producing realistic‑looking images, while the discriminator attempts
to distinguish the created images as real or fake. They are alternately trained to reach
final convergence. One significant difference between conventional generativemodels and
GANs is that GAN learns the input distribution as a whole image instead of generating the
image pixel by pixel.

So, researchers usedGANs and tried to generate artificialmedical images to overcome
this problem. In the case of brain tumor magnetic resonance (MR) images, most GAN‑
based works are conducted to generate super‑resolution brain MR images [26], some re‑
searchers used GANs for brain tumor segmentation [27,28], and very few used it for brain
tumor classification [29].

In GANs and all its proposed extensions, there are a few things in common. First, all
of them are the tools to generate those samples for which hundreds of thousands of images
are available for training, e.g., MNIST. For medical image generation, we do not have that
much training data generally.

Secondly, all these generative models use randomGaussian noise to sample the input
vector. Because random Gaussian noise is a low‑tailed distribution, the generator gen‑
erates blurry and non‑diverse images. Such image generation may not be helpful in the
medical imaging field, as blurry images do not offer any realistic features to learn for the
classifier.

In this paper, we tried to solve this problem by proposing a framework to generate
brain tumor medical images artificially. This framework is the combination of two genera‑
tive models, variational autoencoder (VAEs) and generative adversarial networks (GANs).
We cascaded a GAN model with an encoder–decoder network trained separately on the
training set and produced a noise vector with the image manifold information.

Our proposed method can generate realistic‑looking sharp brain tumor images that
improve the classification results significantly.

The rest of this paper is organized as follows. Section 1.1 reviews previous work
related to brain tumor classification based on variousmachine learningmethods, including
GANs and its applications in medical imaging. Section 2 reports the proposed ED‑GAN
method in detail including experiment settings. Results & discussion, and conclusion are
presented in Sections 3 and 4, respectively.
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1.1. Related Work
In the process of developing a machine learning‑based intelligent system for the clas‑

sification of brain tumors, researchers usually first perform segmentation of brain tumors
by using various methods and then classify them [30]. This method improves the accu‑
racy, but it is time consuming and takes one extra step before putting the network into the
training. However, many researchers used CNNs to classify brain tumors directly without
segmentation.

Justin et al. [31] used three classifiers (i.e., random forest (RF), a fully connected neural
network (FCNN), and a CNN) to improve the classification accuracy. The CNN attained
the highest rate of accuracy, i.e., 90.26%. Tahir et al. [30] investigated various preprocess‑
ing techniques in order to improve the classification results. They used three preprocessing
techniques: noise reduction, contrast enhancement, and edge detection. The various com‑
binations of these preprocessing techniques are tested on various test sets. They assert
that employing a variety of such schemes is more advantageous than relying on any single
preprocessing scheme. They used the Figshare dataset and tested the SVM classifier on it,
which achieved 86% accuracy.

Ismael et al. [32] combined statistical features with neural networks. They extracted
statistical features from the MR images for classification and used 2D discrete wavelet
transforms (DWT) and Gabor filters for feature selection. They feed the segmented MR
images to their proposed algorithm and obtain an average accuracy of 91.9%.

Another project that sought to categorize multi‑grade brain tumors can be found
in [33]. A previously trained CNN model is utilized along with segmented images to im‑
plement themethod. They use three different datasets to validate themodel. Data augmen‑
tation was performed using various techniques to handle the class imbalance and improve
accuracy. Original and augmented datasets are tested on the proposed technique. In com‑
parison to previous works, the presented results are convincing.

Nayoman et al. [34] investigated the use of CNNs and constructed seven different
neural networks. One of the lightweight models performed best. Without any prior seg‑
mentation, this simple model achieves a test accuracy of 84.19%.

Guo et al. [35] propose an Alzheimer’s disease classifier. In Alzheimer’s disease, ab‑
normal protein grows in and around the brain cells. The author uses graph convolutional
neural networks (GCNNs) to classify Alzheimer’s disease into 2 and 3 categories. They
used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset. The proposed
graph nets achieved 93% for 2 class classification compared to 95% for ResNet architecture
and 69% for SVM classifier. The proposed graph CNN achieved 77% in the three‑class
classification, ResNet 65%, and SVM 57%.

Ayadi et al. [36] used two different datasets, Figshare and Radiopaedia. One is used
to classify brain tumor class, and the other is related to the classification of the stage of
the brain tumor. For the classification of the main class of the tumor, they used a simple,
lightweight CNN architecture.

Zhou et al. [37] used only axial slices from the dataset to classify the brain tumor. They
also used a simple CNN classifier.

Pashaei et al. [38] proposed a method based on extreme learning machines in their
study to classify the brain tumor. First, they extracted the features using CNN and used
them in a kernel extreme learning machine (KELM) to build a classifier. KELM is famous
for increasing the robustness of the classification task.

GAN‑based networks for producing synthetic medical images have gained popular‑
ity in recent years due to their exceptional performance. A variation of Cycle GAN is
proposed by Liu et al. [39] that generates Computed Tomography (CT) images using the
domain control module (DCM) and Pseudo Cycle Consistent module (PCCM). The DCM
adds additional domain information, while the PCCMmaintains the consistency of created
images. Shen et al. created mass images using GANs and then filled them with contex‑
tual information by incorporating the synthetic lesions into healthy mammograms. They
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asserted that their suggested network can learn real‑world images’ shape, context, and
distribution [40].

Chenjie et al. proposed a multi‑stream CNN architecture for glioma tumor grad‑
ing/subcategory grading that captures and integrates data from several sensors [41].

Navid et al. [29] proposed a new model for brain tumor classification using CNN on
the Figshare dataset. They extracted the features by using themodel as a discriminator of a
GAN. Then a SoftMax classifier was added to the last fully connected layer to classify three
tumors. They used data augmentation to improve the results and achieve 93.01% accuracy
on the random split.

Other researchers have applied GANs to a variety of problems frommedicine, includ‑
ing Shin et al. [42], who utilized a two‑step GAN to generateMR images of brain parts with
and without tumors [43], Ahmad used TED‑GAN [44] to classify skin cancer images, and
Nie [45] generated pelvic CT images.

GANs have gained the attention of researchers and are extensively used in a variety
of medical imaging fields these days. Researchers attempt to improve results by utiliz‑
ing complex and deep architectures. All these GAN‑based studies contribute in various
ways, but all of them used the random Gaussian noise as an input to the generator of the
GAN. In the generative medical imaging field, manipulating the input noise of GANs is
still un‑explored.

2. Materials and Methods
2.1. Proposed Methodology

This section details our proposed framework. It combines two generative techniques,
variational autoencoder andgenerative adversarial network, sowename it ED‑GAN,where
ED represents the encoder–decoder network. The variational autoencoder (VAE) consists
of an encoder–decoder network. We first train a variational autoencoder (VAE) on our
training set. After training the VAE, we swapped the encoder–decoder network into a
decoder–encoder network. This swapping was inspired by [36]. Now the decoder will
take the image as an input to generate the latent vector. The encoder will take this latent
vector as an input and produce the noise. This noise is no longer random and has the in‑
formation of the image manifold. After swapping, the decoder–encoder network follows
the same process as the encoder–decoder networks but in the opposite direction.

In the next step, we used a generative adversarial network (GAN) that samples the
noise vectors from the output of VAE (from the informative noise) instead of sampling
from random Gaussian noise.

The proposed method, sampling the input noise from the trained decoder–encoder
network, would avoid the GAN frommode collapse. Mode collapse is a common problem
in GANs that occurs when GANs have limited training data, and GAN produces blurry
and non‑diverse images. The loss function keeps fluctuating with high variance in this sit‑
uation. In our proposed method, there are negligible chances of mode collapse. Moreover,
it readily adapts domain knowledge because its input is sampled from a latent vector of
the trained VAE rather than random noise. Additionally, we added two conditional layers
to ensure the proposed GAN produces images from all three classes of brain tumors.

The whole framework is composed of a decoder–encoder network, one generative
adversarial network, and a separate classifier (ResNet50) that uses the images generated by
the proposed framework ED‑GAN. for classification. The block diagram of the proposed
framework is presented in Figure 2.



Biomedicines 2022, 10, 223 7 of 19

Figure 2. The main framework of the proposed methodology.

2.1.1. VAE
The variational autoencoders (VAEs) consist of two parts, the encoder, and the de‑

coder. The encoder consists of a separate network that takes the samples from the data
{𝔁𝑖}

𝑁
𝑖=1 and tries to map it to the latent variables i.e., 𝑧. On the other hand, the decoder

attempts to reproduce the input {�̃�}
𝑁
𝑖=1 with the help of learned distribution 𝑧. Input 𝑥 and

reconstructed data samples �̃� are in high dimensional space, whereas the latent variable
𝑧 is low dimensional comparatively. As the encoder and decoder are separate networks,
their weights and biases are represented by 𝜗 and 𝜑, respectively. Variational autoen‑
coders have the same structure as deep autoencoders. However, variational autoencoders
are based on the assumption that data (image) is generated by a directed model 𝒫 (𝑥|𝑧 ).
Encoder learns the approximation q(𝑧|𝑥) to the posterior distribution 𝒫𝜗(𝑧|𝑥). In train‑
ing variational autoencoders, we are interested in minimizing the loss function given in
Equation (1) [46].

ℒ = −E𝑧 ∼ q(𝑧|𝑥)[log𝒫𝜗(𝑥|𝑧)] + 𝐷𝑘𝑙[q(𝑧|𝑥)||𝒫𝜗(𝑧) ] (1)

Equation (1) represents the objective function of variational autoencoders, where the
first termE𝑧 ∼ q(𝑧|𝑥)[log𝒫𝜗(𝑥|𝑧 )] represents the reconstruction likelihood,whereas the other
term 𝐷𝑘𝑙[q(𝑧|𝑥)||𝒫𝜗(𝑧)] ensures that a learned distribution q is similar to the prior distri‑
bution 𝒫 . The architecture of VAE used for this study is shown in Figure 3.



Biomedicines 2022, 10, 223 8 of 19

Figure 3. Variational autoencoder architecture used in this study.

2.1.2. Encoder–Decoder Swapping
Let us say that ℱ1 and ℱ2 are the mapping functions of the encoder and decoder and

𝜗 and 𝜑 represents their mapping parameters, respectively. Then

ℱ1 : 𝔁𝑖 → 𝔃𝑖 , 𝔁𝑖 ∼ 𝒫 (𝔁), 𝔃𝑖 ∼ 𝒩 (0, I), 𝑖 = 1, 2, 3, … 𝑁

ℱ2 : 𝔃𝑖 →
˜

𝔁𝑖 ,
˜

𝔁𝑖 ∼ 𝒫 (𝔁|𝔃)
From Equation (1)

ℱ1, ℱ2 = 𝑎𝑟𝑔𝑚𝑖𝑛
ℱ1,ℱ2 ∑

𝐷𝑘𝑙[q(𝔃𝑖|𝔁𝑖)||𝒫𝜗(𝔃𝑖) ]
−E𝑧 ∼ q(𝔃|𝔁)[log𝒫𝜗(𝔁𝑖|𝔃𝑖)]

(2)

After swapping the encoder–decoder network into the decoder–encoder, we have:

ℱ1 : 𝔃𝑖 →
˜

𝔁𝑖 , 𝔃𝑖 ∼ 𝒩 (0, I),
˜

𝔁𝑖 ∼ 𝒫 (𝔁|𝔃)

ℱ2 :
˜

𝔁𝑖 →
˜

𝔃𝑖 ,
˜

𝔃𝑖 ∼ 𝒩 (0, I)

where
˜

𝔃𝑖 is the noise distribution that contains the image manifold information, and the
generative adversarial network would sample the input noise vector from this informative
noise.

2.1.3. Generative Adversarial Networks
Generative adversarial networks (GANs) have been one of the most impressive ad‑

vancements in generative approaches. They are composed of two parts: a generative
model (G) that approximates the data distribution and a discriminative model (D) that
predicts whether the input sample came from the generative model or training data. Both
discriminator and generator may be non‑linear mapping functions, for example, a multi‑
layer perceptron. In our proposed method, the generator is forced to sample the noise
vector from the noise generated by the pre‑trained decoder–encoder network. It helps the
generator to adopt the domain distribution quickly and avoid the mode collapse. The ar‑
chitecture of the generator anddiscriminator used for the generation of brain tumor images
is shown in Table 1.
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Table 1. Generator and discriminator architectures used in this research.

Generator Discriminator

Layer type Output Shape Par. Layer type Output Shape Par.

Dense 1310720 132382720 Input 256x256

LReLU 1310720 0 Con2D 128, 128, 128 1280

Reshape 32, 32, 1280 0 LReLU 128, 128, 128

Con2DT 64, 64, 1280 26215680 Con2D 64, 64, 64 73792

LReLU 64, 64, 1280 0 LReLU 64, 64, 64

Con2DT 128, 128, 1280 26215680 Con2D 32, 32, 32 18464

LReLU 128, 128, 1280 0 LReLU 32, 32, 32 0

Con2DT 256, 256, 1280 26215680 Dropout 32, 32, 32 0

LReLU 256, 256, 1280 0 Flatten 32768

Con2d 256, 256, 1 1310721 Dense None, 1 32769

Total params: 212,340,481 Total params: 126,305

Trainable params: 212,340,481 Trainable params: 126,305
LreLu = LeakyReLU  Par. = Parameters Con2DTr = Conv2DTranspose.

Generator 𝐺 and discriminator 𝒟 are trained concurrently: the parameters for gen‑
erator 𝐺 are adjusted to minimize log(1 − 𝐷(𝐺(𝑧))) and the parameters for 𝒟 are adjusted
to minimize log(𝐷(𝑥)), as though they were playing a two‑player min–max game with a
value function

𝑉 (𝐺, 𝐷):

𝑀𝑖𝑛𝐺 − 𝑀𝑎𝑥𝐷 𝑉 (𝐺, 𝐷) = E𝑥 ∼ 𝒫𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥)] + E𝑧 ∼ 𝒫𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧)))]] (3)

2.1.4. Adding Condition to the GAN
If both the generator 𝐺 and discriminator 𝒟 are provided with some additional in‑

formation, such as class labels or input from other modalities, GANs can be expanded to
a conditional model. Conditioning can be accomplished by feeding class labels into the
discriminator and generator as additional input layers.

To ensure that the proposed network, ED‑GAN, generates the images from a specific
category, we provide additional information, the category label to the generator 𝐺 and
discriminator𝒟 . Wedenote the generator’s output as 𝐺(𝑧|𝐶𝑙𝑎𝑏) , where “𝐶‶

𝑙𝑎𝑏 is the category
label, auxiliary information provided to generator 𝐺 and discriminator 𝒟 as additional
information. So, the loss function of the GAN with conditional information is presented
in Equation (4).

𝑀𝑖𝑛.𝐺 − 𝑀𝑎𝑥.𝐷 𝑉 (𝐺, 𝐷) = E𝑥 ∼ 𝒫𝑑𝑎𝑡𝑎(𝑥)[log𝐷(𝑥|𝐶𝑙𝑎𝑏)] + E𝑧 ∼ 𝒫𝑧(𝑧)[log(1 − 𝐷(𝐺(𝑧|𝐶𝑙𝑎𝑏)))]] (4)

2.2. Experiment Settings
2.2.1. Dataset

In this study, we used the public dataset proposed by Cheng [47]. It contains 3064
CE‑MR images of three types of brain tumor (glioma, pituitary, and meningioma) from
233 patients. The images in this dataset are two‑dimensional (2D‑slices), not 3D volume
images. This study included all three planes (axial, coronal, and sagittal) images from this
dataset. A few sample images are depicted in Figure 1. Further details about the dataset
and the training‑test split are presented in Table 2.
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Table 2. Dataset division into training, validation, and test sets.

Tumor Type
Number of Slices Tran. Set Val. Set Test Set

View
Slices

60% 20% 20%
Total

Glioma

Sagittal 495

1426 855 285 286Coronal 437

Axial 494

Meningioma
Sagittal 231

708 424 142 142Coronal 268

Axial 209

Pituitary
Sagittal 320

930 558 186 186Coronal 319

Axial 291
Tran. = Training Val. = Validation.

2.2.2. Hardware and Software
We used Ubuntu 18.04.2 LTS operating system supported by GeForce Nvidia GTX

1080 GPU (California, USA) and i7‑6850 processor (California, USA). The code was written
in PyCharm in python v3.8.0 with some external libraries, including Keras, TensorFlow
v2.0, NumPy, Sci‑Kit‑learn, and Matplotlib.

2.2.3. Performance Measures
We used precision, specificity, recall (sensitivity), average accuracy, and F1‑score for

performance measures. Among all, the most robust performance measure is F1‑score in
the classification tasks. Mathematically, sensitivity, specificity, precision, accuracy, and
F1‑score can be written as

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (5)

𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇 𝑁
𝑇 𝑁 + 𝐹 𝑃 (6)

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (7)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (8)

𝐹 1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗ (
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦) (9)

where

TP = True Positive   FP= False Positive
FN = False Negative   TN = True Negative

Inception score [48] is one of the most widely used performance measures to evaluate
the performance of GAN‑based studies. It uses the Kullback‑Leibler (KL) divergence that
measures the difference between two probability distributions. We used some other gen‑
erative models, GAN [25], DeliGAN [49], to compare the results. We use their public code
with standard parameter values.

2.2.4. Preprocessing and Hyperparameters
This section discusses preprocessing, including augmentation, pre‑training of GAN,

different optimizers, and learning rates.
Resizing the images, removing the duplicates, normalization, and augmenting the

dataset are a few basic preprocessing steps that almost every machine learning engineer
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frequently performs in every task. Data augmentation is very crucial among them as it
helps the deep learning models to prevent over‑fitting. For instance, consider the AlexNet,
the Image‑Net Large Scale Visual Recognition Challenge (ILSVRC)winner in 2012; it could
not achieve its reported maximum accuracy without augmentation for the ImageNet data‑
set [50]. On the other hand, Paul et al. [31] obtained better results comparatively without
preprocessing and augmentation. In one task, it played a very important role; on the other
hand, in another task, augmentationwas just another preprocessing stepwithout any effect
on the results. So, we took the augmentation as a hyperparameter and observed its effect
on various experiment settings. We used only two kinds of augmentation in preprocessing,
i.e., randomly rotating at different angles between 0–3590 and scaling the input images.

The ResNet50 architecture is used as the final classifier in this study. It has moderate
depth, and due to its skip connection, it performs much better than the simple architecture
of the same depth. We did not try other famous architectures for comparison as our main
objective was to check whether the proposed method of GAN could improve the classifi‑
cation results. So, the training of GAN to produce better MR images of brain tumors was
our main concern.

We trained ResNet50 on the images generated by the proposed generative network
ED‑GAN plus the training set (60% of the dataset). Before the final selection of hyperpa‑
rameter values, we tested various values of several hyperparameters such as an optimizer,
batch size, dropout rate and epoch, etc. Test results are discussed in the discussion section.
Finally, we used Adam as an optimizer, with a learning rate of 0.0001, batch size 50, and
with categorical cross‑entropy.

3. Results and Discussion
In this study, we proposed the combination of two different generative models (VAEs

and GANs) to generate artificial MR brain tumor MR images. Generating medical images
using any generative model is time‑consuming and more difficult compared to generat‑
ing images of other species such as dogs, cats, and digits, where GANs are mostly used.
Additionally, using these synthetic medical images to train the classifier for tumor identifi‑
cation is evenmore critical and requires a lot of strict evaluation beforemaking any opinion
about it. The dataset used in this study was somewhat small. We attempted to capitalize
on the use of variational autoencoders in conjunction with GANs to handle the problem
of the limited availability of data. We used the Figshare public dataset of brain tumor MR
images [47]. The details of the dataset split are discussed in Section 2.2.1.

Before training the ResNet50 for a reasonable number of epochs, we trained it for
30 epochs under different values of hyperparameters, including different optimizers, batch
size, and dropout rates. Table 3 summarizes the average accuracy for various optimizers
under different optimizer learning rates. We chose the Adam optimizer to observe the
effect of the dropout rate, as it performed better comparatively during the testing of the
optimizer learning rate. Table 4 shows the effect of various dropout rates. To check the
effect of the dropout rate, we fixed the epochs, learning rate, and optimizer to 30, Adam,
and 0.0001, respectively. No generative images or augmentation was used for testing the
hyperparameters; only the training set (60% of the dataset) was used. Augmentation of
data plays a vital role in overcoming the class imbalance in the dataset and improving the
results. We used plenty of generative images for augmentation; apart from this, we used
the classic augmentation technique (rotation and scaling) to observe its effect on the results.
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Table 3. Effect of various learning rates on different optimizers.

Various ML Optimizers and Their LR

1 0.5 0.1 0.01 0.001 0.0001

SGD 30.45 43.2 62.49 65.25 69.7 70.15

Adagrad 45.12 51.46 65.23 65.5 69.15 68.75

RMSprop 55.27 56.7 60.61 61.45 65.28 63.32

Adam 53.5 60.3 65.8 66.1 69.36 72.45
ML = Machine Learning, LR = Learning Rates.

Table 4. Effect of dropout rate on average accuracy.

Droupout Rate 0.1 0.25 0.5 0.75 0.9

Accuracy % 71.10 71.52 69.75 45.78 30.15

We observed an improvement of around 5% in the average accuracy when ResNet50
was trained on the training set with classic augmentation, without using generative images
in the training set. Table 5 summarizes the results with and without augmentation.

Table 5. The classification results of brain tumors under various experiment settings.

Without Classic Augmentation and Generative Images

Glioma Meningioma Pituitary Average. Accuracy

Recall 0.7692308 0.7394366 0.6505376

72.63%
Specificity 0.837037 0.8216867 0.8666667

Precision 0.8333333 0.5865922 0.7076023

F1‑Score 0.8001 0.6542056 0.6778711

With Classic Augmentation and Without Generative Images

Recall 0.828671 0.767606 0.698925

77.52
Specificity 0.844523 0.875895 0.891753

Precision 0.843416 0.677019 0.755814

F1‑Score 0.835979 0.719472 0.726257

Without Classic Augmentation and With Generative Images

Recall 0.961538 0.922535 0.865591

92.3
Specificity 0.932907 0.962472 0.978313

Precision 0.929054 0.885135 0.947059

F1‑Score 0.945017 0.903448 0.904494

With Generative Images and With Classic Augmentation

Recall 0.965035 0.964789 0.956989

96.25
Specificity 0.975232 0.980562 0.98568

Precision 0.971831 0.938356 0.967391

F1‑Score 0.968421 0.951389 0.962162
Classic augmentation includes rotation and scaling. “With Generative Images” means images artificially gener‑
ated from the proposed framework ED‑GAN are included in the training set of the classifier (ResNet50).

In general, most past studies have relied solely on accuracy performance measures to
compare the results with their proposed technique. However, using just accuracy for com‑
parative purposes can be deceptive because it ignores other performancemeasures such as
sensitivity, specificity, and precision. In the situation of imbalanced data, the accuracy of
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the classifier could be better for one class than the others. F1‑score is a performance mea‑
sure that includes all aspects (sensitivity and precision) of evaluations. This study used
various performance metrics, including recall/sensitivity, specificity, precision, F1‑score,
and average accuracy.

Glioma is themost dangerous type of brain cancer. Neurologists are always interested
in its sensitivity, specificity, and precision. ResNet50 trained on the Figshare dataset im‑
ages only, without any generative images, achieved 82.86% sensitivity (recall) and 84.45%
specificity for brain tumor class glioma. In contrast, the sensitivity and specificity im‑
proved to 96.50% and 97.52% for the same glioma class, respectively, when ResNet50 was
trainedwith the images generated by the proposedmethod ED‑GAN. All the hyperparam‑
eters values were the same, and the classifier was trained for 500 epochs. The training and
validation accuracy graph of the classifier for 500 epochs is shown in Figure 4. A detailed
quantitative comparison of sensitivity, specificity, precision, and F1‑score for various ex‑
periments are summarized in Table 5.

Figure 4. The training and validation accuracy of the classifier when the training set includes the
images generated by ED‑GAN.

Figure 5 shows the confusion matrices of various experiments. A confusion matrix
(CM) is a great way to see the behavior of the classifier visually. In a single glance, one can
observe whether the classifier is biased to some dominant class or not.

Let us consider Figure 5A; the vertical and horizontal axis represents the true and pre‑
dicted labels, respectively. If we consider a class glioma (test images of glioma = 286) and
observe the matrix horizontally, the classifier predicted 220 images correctly as glioma.
It incorrectly classified the remaining 66 images of glioma: 36 as meningioma and 30
as pituitary.
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Figure 5. Confusion matrices of various experiments. (A): without classic augmentation and
generative images, (B): with classic augmentation and without generative images, (C): without
classic augmentation and with generative images, and (D): with generative images and with
classic augmentation.

We used some other generative models, GAN [25], DeliGAN [49], to compare the per‑
formance of the proposed framework. The performance measure inception score [48] was
used tomeasure the quality of generated images. We used the inceptionmodel to calculate
the inception score, though it is not compulsory to use only this architecture. The inception
score uses the KL divergence, which is a good performancemeasure for generativemodels.
It measures the difference between two probability distributions instead of considering the
image pixels only. To compare the classification results with these generative models, we
used the ResNet50 as a classifier. ResNet50 is trained with the training set along with im‑
ages generated by generative models GAN and DeLiGAN. We used generative images as
augmentation, and did not use any other classic augmentation such as scaling, cropping or
rotation, etc. Tables 6 and 7 represent the comparison of inception score and classification
performance measures for the proposed method with state‑of‑the‑art generative models.

Table 6. Inception score obtained by DeLiGAN, GAN, and ED‑GAN.

Generative Models Inception Score

GAN [25] 1.845 ± 0.084

DeLiGAN [49] 2.102 ± 0.091

ED‑GAN (proposed) 2.457 ± 0.012
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Table 7. The comparison of classification results of the proposed model with GAN and DeLiGAN.

Glioma Meningioma Pituitary Average Accuracy

GAN [25]

Recall 0.839160 0.866197 0.801075

83.3%Specificity 0.894736 0.919621 0.909774

Precision 0.882352 0.783439 0.805405

F1‑Score 0.860215 0.822742 0.803234

DeLiGAN [49]

Recall 0.870629 0.908450 0.811827

86.15%Specificity 0.927152 0.915331 0.935643

Precision 0.918819 0.777108 0.853107

F1‑Score 0.894075 0.837662 0.831955

ED‑GAN (Proposed)

Recall 0.961538 0.922535 0.865591

92.3%Specificity 0.932907 0.962472 0.978313

Precision 0.929054 0.885135 0.947059

F1‑Score 0.945017 0.903448 0.904494

Apart from comparing with other image generative methods, we compare our classi‑
fication results with several other studies published in various journals within the last five
years. We selected 11 studies for comparison. They all used the samepublic dataset of brain
tumorMR images. Out of the 11 studies, 9 reported an average accuracy of more than 90%.
The average accuracy of the proposed framework is better, around 2–7%. The comparative
classification results and other insightful information are summarized in Table 8.

Table 8. Comparison of the proposed methodology results with several existing studies that used
the same dataset.

Method Year No of
Images

Manual
Segmentation Best Average. Accuracy

Bayesian Approach [51] 2020 3064 Yes 73.9

Capsule Network [52] 2019 3064 Boundary Box 90.89

Features Extraction [47] 2015 3064 Yes 91.28

CNN [31] 2017 3064 Yes 72.13%

CNN [36] 2020 3064 No 94.7%

SVM [30] 2019 3064 No 86.0%

DWT‑GABOR‑NN [32] 2018 3064 Yes 91.9%

CNN [37] 2018 989 No 92.13%

Ensemble CNN [38] 2018 3064 Not mentioned 93.68

GAN‑Based (Random
Split) [29] 2019 3064 No 95.6

GAN‑Based [29] 2019 3064 No 93.01

ED‑GAN (Proposed) 2021 3064 No Without Aug. = 92.3%’
With Aug. = 96.25%

GAN‑based generativemodels can easily learn the outer features, such as the shape of
the skull, but it is quite challenging to generate fine features by using GAN, such as tumors
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inside the skull. We can observe this situation in Figure 6B. This Figure is taken from [29],
where they used the GAN for the pre‑training of brain tumor classifier and achieved an av‑
erage accuracy of around 95%. Figure 6A represents the images generated by the proposed
ED‑GAN. Here, we can clearly observe the quality difference of generated images of brain
tumors. Our proposed extension of GAN, ED‑GAN, could generate better images because
it samples the noise from the informative noise vector instead of random Gaussian noise.
Furthermore, this is the quality of generated images that ensured the proposed framework
achieved a better average accuracy of 96.25% on the test set.

Figure 6. Artificially generated brain tumor MR images. (A) MR images of brain tumor generated
by proposed ED‑GAN. The top and the bottom rows represent the images generated by the pro‑
posed method after 100 and 20,000 training steps, respectively. (B) Brain tumor images generated
by Ghassemi et al. [29]. They used the same public dataset as ours for the training of their proposed
generative model. They reported an average accuracy of around 95%, only 2% less than we achieved
in this study. However, there is much quality difference in the generated images of both methods.

4. Conclusions
This paper proposed a framework that is the combination of two distinct generative

models, an encoder–decoder network and a generative adversarial network. We trained
the encoder–decoder network separately and swapped it to a decoder–encoder network.
The output of this swapped network is a noise, not a reconstructed image. This output
noise has the information of the domain, and we let the generative adversarial network
sample the input noise vector from this informative noise instead of random Gaussian
noise. Because of the use of the information noise in the GAN, there were very small
chances of mode collapse, and it generated realistic‑looking brain tumor images from all
three classes. We used these generated images and the original training set in the ResNet50
classifier training.

The use of generated images by our proposed method ED‑GAN improved the av‑
erage accuracy from 72.63% to 96.25%. Other performance measures, sensitivity (recall),
specificity, precision, and F1‑score, also improved. Moreover, we compared the results
with several existing studies related to brain tumor classification. Results proved that the
proposed framework could be used as a clinical tool for neurologists and various other
medical experts, as the proposed method can be used to generate medical images in other
domains, not only for brain tumors.
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