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Abstract: Muscular dystrophies constitute a broad group of genetic disorders leading to muscle
wasting. We have previously demonstrated that treating a muscular atrophy mouse model with
growth factors resulted in increased muscle mass. In the present study, we treated the Duchenne
mouse model mdx for 12 weeks with myogenic growth factors peri- and post-onset of muscular
degeneration to explore the effects in the oxidative muscle soleus and the glycolytic muscle extensor
digitorum longus (EDL). We found no overall beneficial effect in the peri-onset group at the conclusion
of the study. In the post-onset group, the functional improvement by means of electrophysiological
examinations ex vivo was mostly confined to the soleus. EDL benefitted from the treatment on a
molecular level but did not improve functionally. Histopathology revealed signs of inflammation
at the end of treatment. In conclusion, the growth factor cocktail failed to improve the mdx on a
functional level.

Keywords: mdx; DMD; muscular regeneration; hepatocyte growth factor; leukemia inhibitory factor

1. Introduction

Duchenne muscular dystrophy (OMIM, 300377: DMD) is a fatal, X-linked disease,
which affects nearly 1 in 5000 newborn boys [1]. The disease is caused by absence of
dystrophin, which in the healthy muscle fiber functions as a link between the sarcolemma-
associated dystrophin-associated glycoprotein complex and the actin cytoskeleton ap-
paratus of the skeletal muscle fiber, thereby connecting the contractile apparatus to the
membrane [2]. Disturbances of this relationship lead to loss of sarcolemmal integrity, ele-
vated levels of plasma creatine kinase (CK), muscular wasting, and fibro-fatty replacement
of the muscle tissue [3,4]. While therapeutic strategies to rescue muscle function in DMD
have been numerous, including stem cell therapy, utrophin replacement, growth factors,
antisense-mediated exon-skipping, and viral reintroduction of mini/micro-dystrophins, a
cure has yet to emerge.

We previously treated a hypoxia-induced muscular atrophy mouse model with growth
factors (hepatocyte growth factor (HGF) and leukemia inhibitory factor (LIF)) to activate
satellite cells and increase myoblast proliferation and differentiation, thus boosting what is
known as the regenerative response to muscle degeneration [5]. In the muscular atrophy
model, this led to a significant increase in muscle mass compared to untreated animals.
This result would make the growth factor cocktail, which should be considered a potential
general treatment to muscle wasting, a candidate treatment for the mdx mouse model of
DMD, which–as patients–lacks dystrophin. Unlike other treatments that are meant to result
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in larger muscles, the concept of the growth factor treatment was to address both muscle
wasting by increasing muscle mass and reinforce the sarcolemma, as membrane-associated
proteins are upregulated as part of the maturation process of the regenerating/treated
muscle fiber, by boosting the existing regenerative process. In this study, we tested if
the findings from the hypoxia-induced atrophy model could be reproduced and lead
to improved muscle function in the mdx. HGF stimulates satellite cell activation and
differentiation through the cMet receptor [6–8] while LIF enhances myoblast survival and
maintains proliferation [9–11]. We also introduce L-arginine, as it has been demonstrated
to ameliorate the mdx phenotype in different distinct ways by decreasing inflammation,
increasing regeneration and improving membrane integrity by upregulating utrophin [12].
Utrophin is an autosomal homolog of dystrophin which serves as a dystrophin precursor
during the first 4–5 weeks of age in mice [12,13] after which it is only found in the mature
muscle fiber near the neuromuscular junction [14]. However, it maintains the ability to
prevent the development of muscular dystrophy [15]. In general, myofiber regeneration
leads to upregulation of several membrane-associated proteins that reinforce the membrane
and bind to the extra-cellular membrane.

As utrophin expression is extra-synaptic until the mdx is 4 to 5 weeks old, this pro-
vides an opportunity to initiate treatment peri- and post-onset of muscular degeneration,
which occurs when the animals are 3–4 weeks old. Thus, to elude the possible effects of
endogenous utrophin, we initiated our treatment in the mdx at the age of 4 and 8 weeks
to determine if peri-onset treatment had a different impact from that of treating the mice
post-onset. We were not able to commence treatment earlier than 4 weeks of age due to
animal welfare protocols. All animals were treated for 12 weeks for the sake of comparison
to previous studies [16–18]. We were looking for a positive effect of the treatment in ex vivo
electrophysiological muscle performance-tests, since specific force production and stretch
resistance are hallmarks of a translatable improvement in muscle function of the mdx [19].
While our approach was not designed to cure DMD by attempting to re-express dystrophin
per se, we hypothesized that the treatment with growth factors would improve muscle
function and that peri-onset treatment would improve muscle function more than post-
onset treatment and delay or attenuate the compensatory hypertrophy, affecting specific
force generation positively. This could make the combined molecular approach attractive
to a larger number of myopathies with muscle wasting, where the regeneration mechanism
is unaffected by the disease.

2. Experimental Section
2.1. Animals

Only male mice were used for this study. Cohorts of mdx (C57BL/10ScSn Dmdmdx/J)
were treated and age-matched C57BL/10ScSn (wt) mice were used as the background strain,
all were bred at the University of Copenhagen. Animals had access to food and water ad
libitum and three to six mice were typically housed together in individually ventilated cages
under a 12 h/12 h light/dark cycle at the animal facility of the University of Copenhagen
Department of Experimental Medicine.

2.2. Treatment

Mdx mice were randomized to receive the HGF/LIF/L-arginine growth factor cocktail
(GF) or placebo (PBS). The treatment would commence when mice were either 4 (4W) or
8 weeks (8W) of age and last for 12 weeks, with the entire study consisting of six groups
including wild-type mice, each with 12 male mice. Sample size of each group was based
on cohort sizes previously used [16]. The treatment was given as weekly intraperitoneal
injections of HGF (20 ng/g body mass, 2207HG/CF, R&D Systems, Minneapolis, MN,
USA) and L-arginine (200 µg/g body mass, 11009 Sigma-Aldrich, St. Louis, MO, USA)
followed by LIF (10 ng/g body mass, AMSBIO, Cambridge, MA, USA) three-to-four days
later. Doses were based on previous works [5,12,13]. Body mass was recorded weekly at
the time of the HGF/L-arginine injection.
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2.3. Physiological Experiments

After receiving 12 weeks of treatment, mice were anaesthetized using Hypnorm/
midazolam 0.5 mg/g body mass (Department of Experimental Medicine, University of
Copenhagen, Copenhagen, Denmark) and kept on a heating pad for the dissecting proce-
dure. Hindlimb muscles tibialis anterior (TA), extensor digitorum longus (EDL), soleus,
gastrocnemius, and quadriceps were removed. The mass of all muscles was determined,
and length was measured for EDL and soleus. Dissected EDL and soleus were immediately
mounted on pins in the organ bath in oxygenated Krebs/Ringer solution at room temper-
ature using 4-0 Vicryl surgical suture and left to equilibrate in oxygenated Krebs/Ringer
solution at room temperature for 5 min. The electrophysiology setup consisted of an
840MD organ bath setup with force transducers and motors (DMT A/S, Aarhus, Denmark).
Muscles were stimulated with 20 V·cm−1 using a DMT CS8 stimulator (DMT A/S). Analog
signals were converted using an AD Instruments PowerLab 4/35 A/D converter and
recorded using Chart 7.0 (AD Instruments, Oxford, UK). Stimulation with 5 ms square
pulses for isometric twitches were used to determine the optimal base tension and base
tension length, L0. After this, maximum isometric tetani were determined by stimulating
the muscle with 5 ms pulses at 100 Hz for EDL and 80 Hz for soleus for 695 ms (EDL) or
705 ms (soleus) with 60 s between five trains. Muscles were then stimulated at a 50% duty
cycle using 5 ms pulses for EDL and 6.5 ms pulses for soleus. Following a resting period
of 5 min, the muscle was subjected to a stretch protocol, with stimulation for 700 ms of
100 Hz (EDL) or 80 Hz (soleus). After 500 ms of isometric contraction, stretch was applied
to induce an eccentric contraction for the remaining 200 ms by stretching the muscle 10%
of the base tension length, L0. The stretch protocol was repeated four times with a 60 s
resting period in between, as previously described [16,17,20]. The maximal contraction of
the five performed was used in the results. The person operating and recording muscular
function of mdx mice was blinded to treatment. Muscles were flash-frozen in isopentane
cooled by liquid nitrogen and stored at −80 ◦C. Physiological cross-sectional area (CSA)
was determined by dividing the mass of the muscle (EDL and soleus) with the density of
mammalian muscle (1.056 g·cm−3) and resting length, lo. Specific force was obtained by
dividing the measured absolute force with the CSA. If both had been recorded, muscle
mass as well as CSA for an individual animal was recorded as the average of both right
and left side muscles. All results are presented as mean with standard deviations unless
otherwise stated. The primary outcome of the treatment was change in specific force and
stretch resistance whereas secondary outcomes such as changes in body mass, absolute
force, muscle mass and CSA, and molecular markers of muscular regeneration were to
support the primary findings.

2.4. Western Blot Analyses

TA, EDL, and soleus muscles from animals were sectioned on a cryostat and dis-
solved in lysis buffer (10 mM Tris, pH7.4, 0.1% Triton-X 100, 0.5% sodium deoxycholate,
0.07 U/mL aprotinin, 20 µM leupeptin, 20 µM pepstatin, 1 mM phenylmethanesulfonyl
fluoride (PMSF), 1 mM ethylenediaminetetraacetic acid (EDTA), 1 mM ethylene glycol-
bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA), 1 mM dithiothreitol (DTT),
5 mM β-glycerophosphate, 1 mM sodium fluoride, 1.15 mM sodium molybdate, 2 mM
sodium pyrophosphate decahydrate, 1 mM sodium orthovanadate, 4 mM sodium tartrate,
2 mM imidazole, 10 nM calyculin, and 5 µM cantharidin, (all Sigma-Aldrich) using a
Bullet Blender tissue homogenizer at 4 ◦C (Next Advance Inc., Averill, NY, USA). Samples
were mixed with 4× sample buffer (12.5% glycerol, 0.2 g/mL sodium dodecyl sulfate,
0.08 M bromophenol-blue, and 20% β-mercaptoethanol). Equal amounts of extracted
muscle proteins were separated on 4–15% and 7.5% TGX polyacrylamide gels (Bio-Rad
Laboratories Inc., Hercules, CA, USA) at 200V for 60 min (4–15% gels) and 80 min (7%
gels). Proteins were blotted to polyvinylidene difluoride membranes (Bio-Rad Laboratories
Inc.) at 2.5 A for 7 min using a Trans-Blot Turbo (Bio-Rad Laboratories Inc.), and 18 h
at 0.6 A using a Criterion tank blotting chamber, cooled at 4 ◦C. Membranes were then
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blocked using Baileys Irish Cream (Baileys, Dublin, Ireland). After washing excess Bailey’s
with TBS-T, membranes were incubated overnight in 0.5% skimmed milk with antibodies
against vinculin at 1:2000 (ab73412) from Abcam (Cambridge, UK), myogenin at 1:500
(F5D) from Developmental Studies Hybridoma Bank (Iowa City, IA, USA), and myoD1 at
1:500 (clone 5.8A, MA1-41017) from Vector Laboratories (Burlingame, CA, USA). Secondary
antibodies (goat anti-rabbit and goat anti-mouse) coupled with horseradish peroxidase
from DAKO (Glostrup, Denmark) were diluted at 1:10,000 and used to detect primary
antibodies. Immuno-reactive bands were detected using SuperSignal West Dura Extended
Duration Substrate kit (Thermo Scientific, Rockford, IL, USA) and Clarity Max Western
ECL substrate (Bio-Rad Laboratories Inc.). Quantification took place using a ChemiDoc™
MP Imaging system and Image Lab™-software (Bio-Rad Laboratories Inc.) was used to
measure the intensities of immune-reactive bands on 16-bit digital photos. All immuno-
reactive band intensities were normalized to the intensity of the vinculin bands for each
subject to correct for differences in total muscle protein loaded on the gel. Subsequently,
all normalized values from the group of a treatment regime were again normalized to the
average of soleus or PBS in order to compare the groups and muscles, separately. Results
are presented as the fold change of exercised animals from the average of soleus or PBS.
All results are presented with standard deviations.

2.5. Histochemical Analysis

Cryo-sections of TA were stained with hematoxylin and eosin (H&E) for general
histopathological evaluation. Wheat germ agglutinin (WGA) Alexa Fluor™ 647stain (Ther-
moFisher, Waltham, MA, USA) was diluted 1:200 in Hanks Balanced Salt Solution and
applied to muscle sections to visualize fibrosis [21].

2.6. Immunohistochemistry

For immunohistochemistry (IHC), sections were fixed in 10% normal phosphate
buffered formalin and subsequently blocked in 5% fetal bovine serum in PBS prior to
staining. To assess the number of satellite cells undergoing divisions, sections were incu-
bated with Pax7 (DSHB) diluted 1:50 and Ki67 (#15580, Abcam, Cambridge, UK) antibodies
diluted 1:500. Positive nuclei were confirmed by DAPI nuclear stain (ThermoFisher).
Secondary goat anti-mouse and anti-rabbit Alexa Fluor antibodies were used at a 1:500
dilution in PBS buffer (ThermoFisher). For muscle-fiber-type analysis, we used antibodies
against MHC type I (MHC I) (clone BA-D5 at 1:50, DSHB), MHC IIA and IIB (clones SC-71
at 1:10 and BF-F3 at 1:50, DSHB), and MHC IIX at 1:100 (SAB2104768, Sigma-Aldrich).
Secondary antibodies were Alexa Flour. At least 300 fibers per section were counted man-
ually, by random selections of each muscle cross-section. All sections were observed at
room temperature using a Nikon 10x Plan Apo or a 20× Plan Apo VC N/A 0.75 mounted
on a Nikon Eclipse 80i or a Nikon Ti-E epi-fluorescence microscope (Nikon Instruments,
Melville, NY, USA). Images were acquired with a 5M pixel Nikon DS-5Mc (brightfield) and
5Mpixel Andor Neo (epi-fluorescence) cameras (Andor, Belfast, Northern Ireland) using
NIS-Elements Basic Research and Advanced Research (BR/AR) software and merged in
software (Nikon).

2.7. Statistical Analysis

Two-way analysis of variance (ANOVA) was performed on data using XLSTAT (Ad-
dionsoft (2020), New York, USA. https://www.xlstat.com, accessed on 2 November 2020)
with Tukey’s HSD post-test to show differences between variables. A p-value of <0.05 was
considered significant.

3. Results
3.1. Body Mass

In order to assess the influence of the different treatment regimens on the growth of
the mice, we followed the body mass of the mice during the 12-week period of treatment

https://www.xlstat.com
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(Figure 1). In the 4W group, we observed an accelerated growth in GF-treated animals, with
a significantly increased body mass compared to PBS mice in weeks 4 and 5 of treatment.
During the second half of the treatment period, the two curves of GF- and PBS-mice
approached each other. In the 8W group, there was no effect on body mass between GF-
and PBS-treated animals. The growth curves of mdx mice from both age-groups flattened
out at the conclusion of the treatment period. WT mice did not increase mass as rapidly
as any mdx cohort, corresponding to compensatory muscular hypertrophy in mdx [22,23].
After 12 weeks of treatment, there was no significant difference in body mass between the
treated and untreated cohorts of mdx mice.
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Figure 1. Growth curves of the different treatment cohorts. The growth pattern of the six groups in
the 4W cohort (A) and the 8W cohort (B). Lack of data point in 4W PBS is due to accidental loss of
measurements. GF, growth factor; PBS, phosphate-buffered saline; WT, wild-type strain. Vertical bars
are SEM. Two-way ANOVAs were performed with subsequent Tukey HSD post-hoc tests to assess
significance. Symbols indicate p < 0.05: ‡; GF vs. PBS, #; PBS vs. WT. The number N of each group
was 12.

3.2. Muscle Morphology

As there was no difference in body mass between treated mice and PBS controls at
the conclusion of the 3-month treatment period, we were interested in observing if various
muscles had responded differently to the growth-factor treatment. First, we looked at the
absolute weight gain. We observed an effect of age in both EDL and soleus, as GF-treated
8W animals had a higher EDL mass (21.3 ± 5.0 mg (8W) vs. 18.7 ± 2.3 mg (4W)) but lower
mass of soleus (18.7 ± 2.4 (8W) vs. 22.4 ± 3.1 (4W)) compared to 4W mice (Figure 2A).
Soleus of 8W animals had a lower mass in the GF cohort compared to PBS-treated mice
(18.7 ± 6.00 mg (GF) vs. 22.2 ± 6.09 mg (PBS)). There was no effect of treatment on CSA
(Figure 2B). When measuring the mass of dissected hind-limb muscles m. tibialis anterior
(TA), m. gastrocnemius, and m. quadriceps, no muscles in any age-group increased the
mass with GF-treatment (Supplementary Materials Figure S1).
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Figure 2. Muscle mass (A) and CSA (B) of hind-limb muscles of young (4W) and adolescent (8W)
mdx mice treated for 12 weeks with growth factors. N for 4W animals: PBS, 12; GF, 11; WT, 11. N for
8W animals: PBS, 12; GF, 9; WT, 12. CSA, cross-sectional area; EDL, m. extensor digitorum longus;
GF, growth factor; PBS, phosphate-buffered saline; WT, wild-type strain. Data presented as mean
and vertical bars representing SD. Two-way ANOVAs were performed with subsequent Tukey HSD
post-hoc tests to assess significance. Horizontal bars indicate significance: * p < 0.05, # p < 0.05 vs.
4W animals.

Second, as there was no difference between mdx body mass in each age group at the
conclusion of treatment, we investigated how muscle mass related to body mass (Figure 3).
In both age groups, EDL, TA, and quadriceps revealed that in untreated mdx mice, these
muscles were relatively larger than in WT animals. In 4W mdx, TA and quadriceps treated
with GF had a relatively lower mass than in untreated mice. In 8W mdx, only TA had a
lower relative mass than PBS.



Biomedicines 2022, 10, 304 7 of 16Biomedicines 2022, 9, x FOR PEER REVIEW 7 of 15 
 

 
Figure 3. Muscle mass related to body weight. Muscle mass of EDL, soleus, TA, gastrocnemius, and 
quadriceps related to body mass at the conclusion of 12-week treatment period. 4W + 8W PBS; 8W 

Figure 3. Muscle mass related to body weight. Muscle mass of EDL, soleus, TA, gastrocnemius, and



Biomedicines 2022, 10, 304 8 of 16

quadriceps related to body mass at the conclusion of 12-week treatment period. 4W + 8W PBS;
8W WT: N = 12; 4W GF, 4W WT: N = 11; 8W GF: N = 9. EDL, m. extensor digitorum longus;
Gas, m. gastrocnemius; GF, growth factor; PBS, phosphate-buffered saline; Quad, m. quadriceps;
Sol, m. soleus; TA, m. tibialis anterior. Data presented as mean and vertical bars representing SD.
Two-way ANOVAs were performed with subsequent Tukey HSD post-hoc tests to assess significance.
Horizontal bars indicate significance: *: p < 0.05, #: p < 0.05 vs. 4W.

3.3. The Effect of Treatment on Muscle Mass across Hind-Limb Muscles and Effect on
Fiber-Type Composition

To further assess a muscle-specific response to the treatment, we related the mass
of dissected hind-limb muscles to that of PBS controls to tell if any muscles experienced
a differentiated growth in response to treatment. This may be of interest, as we believe
that muscle-fiber-type composition, which varies across the investigated muscles [24],
modulates the effect of growth factors. We found, that compared to remaining muscles of
the 4W group, soleus had a larger response to GF treatment than the others (Figure 4A).
There was no significant variation amongst the muscles in the 8W group. Treatment did not
evoke any fiber-type shift in TA which mainly consists of IIX- and IIB fibers (Figure 4B,C).

3.4. Physiological Studies

We tested EDL and soleus to determine if differences in fiber-type composition between
soleus and EDL (soleus is more oxidative than EDL) would show in functional ex-vivo
force measurements. An effect of age was observed in both muscles treated with GF
(Figure 5A). The absolute force of EDL was surprisingly decreased by 44% (Supplementary
Materials Figure S2) and specific force by 48% in GF-treated mice of the 4W group. In
soleus, the treatment induced a 42% increase in specific force in 8W mice compared to PBS.
We then looked at the force drop during an eccentric contraction protocol as an indicator of
resistance to mechanical stress and fiber reinforcement (Figure 5B). The treatment did not
significantly improve stretch resistance when comparing across treatment or age. Soleus
muscles of mdx-mice showed better stretch resistance with an absolute force drop of 25% to
8% compared to the 62% to 86% seen in EDL.

3.5. Expression of Markers of Cell Division and Myogenic Signaling Proteins

As the GF treatments either depend on or regulate the myogenic program, the level
of myoD and myogenin protein expression was determined in TA, EDL, and soleus of
the 8W cohort by Western blotting. MyoD and myogenin were used to assess the level of
regeneration on a molecular level [25], as these markers are upregulated during stimulation
with growth factors activating satellite cells [5]. Treating 8W mdx with GF did not yield
any significant effect on either myoD or myogenin compared to PBS (Figure 6A). We
then compared the expression levels across the different muscles, normalized to soleus, to
examine how each muscle reacted to each treatment. Soleus was chosen as baseline since it
is an oxidative muscle and has a fiber type composition that most resembles that of humans
(58% type I-fibers in the mdx [26] and 30% in wild-type mice [24]). MyoD was significantly
increased in EDL from the GF group when normalized to soleus (Figure 6B). GF treatment
increased myogenin in not only EDL but also in TA compared to soleus (Figure 6C).
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Figure 4. Muscle mass of treatment groups in relation to PBS and fiber-type composition. (A) Muscle
mass of various muscles treated with growth factors compared to PBS in the two age-groups. N = 11
for 4W group, N = 9 for 8W group. (B) Percentage of each fiber-type present in TA in treated (N = 7)
versus untreated (N = 6) 8W mice. The total distribution exceeded 100% since mixed fibers were
counted twice. (C) Representative stains of fiber-types MHC I, IIA, IIX, and IIB. Bar represent 50 µm.
EDL, m. extensor digitorum longus; Gas, m. gastrocnemius; PBS, phosphate-buffered saline; Quad,
m. quadriceps; Sol, m. soleus; TA, m. tibialis anterior. Data presented as mean and vertical bars
representing SD. Two-way ANOVAs were performed with subsequent Tukey HSD post-hoc tests to
assess significance. Bars: p < 0.05, #: p < 0.05 vs. PBS.
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Figure 5. Ex vivo specific tetanic force and force drop in EDL and soleus of mdx treated for 12 weeks
with growth factors. (A) Specific force of tetanic contraction in EDL and soleus of 4W and 8W mdx.
(B) Force drop in muscles subjected to a stretch protocol. N is showed in the table in parentheses and
may vary due to non-responsiveness to stimuli or loss of connection to the force transducer during
the protocol. EDL, m. extensor digitorum longus; GF, growth factor; PBS, phosphate-buffered saline;
WT, wild-type strain. Data presented as mean and vertical bars representing SD. Two-way ANOVAs
were performed with subsequent Tukey HSD post-hoc tests to assess significance. Horizontal bars
indicate significance: *: p < 0.05, #: p < 0.05 vs. 4W animals.



Biomedicines 2022, 10, 304 11 of 16

Biomedicines 2022, 9, x FOR PEER REVIEW 10 of 15 
 

and may vary due to non-responsiveness to stimuli or loss of connection to the force transducer 
during the protocol. EDL, m. extensor digitorum longus; GF, growth factor; PBS, phosphate-buff-
ered saline; WT, wild-type strain. Data presented as mean and vertical bars representing SD. Two-
way ANOVAs were performed with subsequent Tukey HSD post-hoc tests to assess significance. 
Horizontal bars indicate significance: *: p < 0.05, #: p < 0.05 vs. 4W animals. 

3.5. Expression of Markers of Cell Division and Myogenic Signaling Proteins 
As the GF treatments either depend on or regulate the myogenic program, the level 

of myoD and myogenin protein expression was determined in TA, EDL, and soleus of the 
8W cohort by Western blotting. MyoD and myogenin were used to assess the level of re-
generation on a molecular level [25], as these markers are upregulated during stimulation 
with growth factors activating satellite cells [5]. Treating 8W mdx with GF did not yield 
any significant effect on either myoD or myogenin compared to PBS (Figure 6A). We then 
compared the expression levels across the different muscles, normalized to soleus, to ex-
amine how each muscle reacted to each treatment. Soleus was chosen as baseline since it 
is an oxidative muscle and has a fiber type composition that most resembles that of hu-
mans (58% type I-fibers in the mdx [26] and 30% in wild-type mice [24]). MyoD was sig-
nificantly increased in EDL from the GF group when normalized to soleus (Figure 6B). GF 
treatment increased myogenin in not only EDL but also in TA compared to soleus (Figure 
6C). 

 
Figure 6. Western blotting of myogenic transcription factors in relation to PBS or soleus in adoles-
cent (8W) mdx treated for 12 weeks at the conclusion of treatment. Representative bands are shown 
(all bands can be seen in Supplementary Materials Figure S3). (A) Levels of myoD and myogenin in 
EDL, TA, and soleus in response to GF treatment relative to PBS. (B,C) Levels of myoD (B) and 
myogenin (C) in various muscles relative to soleus. A: N = 6 for all groups. B and C: N = 6 for all 
groups except EDL of PBS group (n = 5). EDL, m. extensor digitorum longus; GF, growth factor; 
PBS, phosphate-buffered saline; Sol, m. soleus; TA, m. tibialis anterior. Data presented as bars with 
the respective mean and SD as vertical bar. Two-way ANOVAs were performed with subsequent 
Tukey HSD post-hoc tests to assess significance. Horizontal bars indicate significance: *: p < 0.05. 

3.6. Histochemical Analysis of General Histology, Fibrosis, and Satellite-Cell Activation 
To assess the effect of treatment on histopathology in the 8W muscles, we made a 

qualitative analysis of H&E-stained muscle sections for general histology, and WGA stain 
for assessment of fibrosis. We saw extensive focal cellular infiltration and inflammation 
and fiber necrosis (Figure 7A) and increased fibrosis (Figure 7B) in the TA of GF-treated 

Figure 6. Western blotting of myogenic transcription factors in relation to PBS or soleus in adolescent
(8W) mdx treated for 12 weeks at the conclusion of treatment. Representative bands are shown (all
bands can be seen in Supplementary Materials Figure S3). (A) Levels of myoD and myogenin in
EDL, TA, and soleus in response to GF treatment relative to PBS. (B,C) Levels of myoD (B) and
myogenin (C) in various muscles relative to soleus. A: N = 6 for all groups. B and C: N = 6 for all
groups except EDL of PBS group (n = 5). EDL, m. extensor digitorum longus; GF, growth factor; PBS,
phosphate-buffered saline; Sol, m. soleus; TA, m. tibialis anterior. Data presented as bars with the
respective mean and SD as vertical bar. Two-way ANOVAs were performed with subsequent Tukey
HSD post-hoc tests to assess significance. Horizontal bars indicate significance: *: p < 0.05.

3.6. Histochemical Analysis of General Histology, Fibrosis, and Satellite-Cell Activation

To assess the effect of treatment on histopathology in the 8W muscles, we made a
qualitative analysis of H&E-stained muscle sections for general histology, and WGA stain
for assessment of fibrosis. We saw extensive focal cellular infiltration and inflammation and
fiber necrosis (Figure 7A) and increased fibrosis (Figure 7B) in the TA of GF-treated mdx
animals. In addition, we found increased amounts of activated satellite cells as visualized
by co-expression of Pax7 and Ki67 (Figure 7C).
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Figure 7. Effect of treatment on histopathology. H&E, WGA, and IHC stains of treated (GF) versus
controls (PBS) mdx animals. (A) H&E stains demonstrate fiber size variation, focal inflammation, and
necrotic fibers in treated animals compared to controls. (B) WGA showed increased fibrosis (arrows)
in treated animals. (C) DAPI (blue), Pax7 (green), and Ki67 (red) showed activation of satellite cells.
Bars represent 50 mm.

4. Discussion

We have previously found that administration of myogenic factors to a mouse model
of muscular atrophy led to a gain of muscle mass. The aim of this study was to test the
hypothesis that administration of the same myogenic growth factors would ameliorate the
dystrophic phenotype of the mdx mouse and, if so, whether there would be a difference in
outcome between peri- and post-onset treatment of disease. The important findings of this
study are that the greatest effect on body mass in the 4W group was seen from 4 to 5 weeks
into the treatment period and that soleus of this animal group showed the greatest relative
increase in mass of any muscle. Treatment induced decreased force production in EDL of
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young animals while the 8W group show improved force production in EDL and soleus
compared to 4W mice. Changes on the molecular level in 8W animals did not translate into
enhanced stress resistance, most likely due to a proinflammatory response evoked by the
treatment. We found no overall advantage of peri-onset treatment compared to post-onset
treatment with the growth-factor cocktail.

This is the first published study with a combination of myotrophic compounds HGF,
LIF, and L-arginine specifically targeting regeneration and satellite cell proliferation in vivo
in the mdx mouse. The effect of the treatment was immediately visualized in the devel-
opment of body mass, as the 4W group treated with GF experienced accelerated growth
during weeks 4 to 5 of treatment, while both curves were approaching each other at the
conclusion of the study (Figure 1A). We suspected that the differences in body mass–which
were absent in the 8W growth curve–would indicate that initiation of treatment around
the debut of the degenerative cycles is crucial and that positive effects of this relationship
would come to show in the following tests and examinations. Unfortunately, we did not
find coherent improvements with regards to muscle mass, CSA or ex vivo muscle function
in the 4W group.

Both HGF and LIF have been shown to regulate inflammation, and in the case if
LIF both pro- and anti-inflammatory effects have been observed [27,28], which may be
a relevant property to investigate if the growth factor cocktail were to be used to treat
animal models less affected than the mdx model [29,30]. However, our study shows that
either ongoing regeneration, as in the mdx, or prolonged treatment for 12 weeks tilts the
effect towards proinflammation as visualized histologically (Figure 7A,B). This was an
unexpected finding considering the beneficial effects in atrophy mice where the treatment
was the same but shorter. Other, milder mouse models such as the novel L276I limb-girdle
muscular dystrophy 2I mouse [31] could be of interest in a similar experimental setup
including evaluation of inflammation.

In the 8W group, growth curves were basically identical during the 12-week treatment
period and flattened out in the end of the treatment period (Figure 1B). This indicates that
the regenerative and myogenic processes in developing mdx mice post-onset of disease,
are already working at maximum level. We suspect that muscular regeneration versus
degeneration has reached steady state and that any additional effect is under the control
of negative regulators of muscle mass, such as myostatin [5] as demonstrated in previous
works [32] or inhibited by the molecular response of inflammation. This is also in direct
contrast to the similar but beneficial GF treatment of a mouse model of muscular atrophy,
where the potential to increase the regenerative capacity was substantially larger since
there was no ongoing degeneration–regeneration cycle [5].

In general, mdx mice have increased absolute force but lower specific force compared
to wild-type animals [16,33]. The biggest beneficial effect of treatment was surprisingly
seen in the functional studies of soleus of 8W animals (Figure 5A) compared to what
was expected from the morphometrical analyses. The higher specific-force generation in
soleus of GF-treated 8W-animals compared to PBS with no apparent change in CSA, seems
counterintuitive, unless the sarcolemma was reinforced in the treated animals (Figure 2B).
Mdx muscles compensate for the dystrophic properties of the myofiber by undergoing
hypertrophy, explaining the greater body- and muscle mass of mdx compared to wild-type
mice [22,23].

Western blotting was used to investigate if the functional improvement in soleus
corresponded to changes in expression of myogenic factors in the 8W cohort, which is why
this was done solely for this cohort. Growth factors had a positive effect on pro-myogenic
transcription factors at the molecular level (Figure 6B,C), which we have previously shown
in a similar study treating a muscular-atrophy model [5]. That study also demonstrated that
treatment increased the ratio of Ki67- to pax7-positive nuclei and thereby the number of
activated/dividing satellite cells, which we also observe in this study (Figure 7C). However,
in the present study this, unfortunately, did not translate into mechanical stress resistance
in EDL of 8W animals (Figure 5B) and the greater force production in soleus did not
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extend down to increased myoD and myogenin. This indicates that fiber reinforcement
on the molecular level was insufficient to translate into amelioration of the disconnected
link between the dystrophin-associated glycoprotein complex and actin, as previously
noted [34–36] or that fiber function was hampered by inflammation. Improved resistance
to mechanical stress in mdx animals has only been demonstrated in very few previous
works [16,37,38]. The minor force-drop in soleus compared to EDL (Figure 5B) most likely
reflects a combination of lower force generation, thus less stretch on the single fiber, and
better endurance considering its oxidative-fiber-type composition.

The growth-factor treatment did not shift the fiber-type distribution, which was not
surprising considering the overall negative findings of the study. Had there been an effect
of the treatment on the MHC fiber-type composition in the mdx, this would most likely
have shifted the isotype pattern towards those previously described in healthy mice [24], as
compensatory changes would be resolved. The TA was chosen, as this muscle is composed
almost entirely of IIX fibers, allowing changes towards either a more oxidative (IIA) or a
more glycolytic (IIB) phenotype.

To conclude, this study failed to show overall consistent improvements in the mdx and
did not demonstrate a coherent difference in commencing treatment peri- versus post-onset
of disease. However, we have shown a potential for accelerating growth and muscular
regeneration early in the disease process of the mdx and demonstrate a differentiated
response in EDL versus soleus but also a potentially toxic effect of the treatment regime.
The findings in this study add to the application of growth factors in future studies of
myopathies, as additional acceleration of regeneration by a combination of myostatin
inhibitors and growth factors should be examined further.
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