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Abstract: Sepsis may lead to kidney function decline in patients with chronic kidney disease (CKD),
and the deleterious effect may persist in patients who survive sepsis. We used a machine learning ap-
proach to predict the risk of end-stage renal disease (ESRD) in sepsis survivors. A total of 11,661 sepsis
survivors were identified from a single-center database of 112,628 CKD patients between 2010 and
2018. During a median follow-up of 3.5 years, a total of 1366 (11.7%) sepsis survivors developed
ESRD after hospital discharge. We adopted the random forest, extra trees, extreme gradient boosting,
light gradient boosting machine (LGBM), and gradient boosting decision tree (GBDT) algorithms
to predict the risk of ESRD development among these patients. GBDT yielded the highest area
under the receiver operating characteristic curve of 0.879, followed by LGBM (0.868), and extra
trees (0.865). The GBDT model revealed the strong effect of estimated glomerular filtration rates
<25 mL/min/1.73 m2 at discharge in predicting ESRD development. In addition, hemoglobin and
proteinuria were also essential predictors. Based on a large-scale dataset, we established a machine
learning model computing the risk for ESRD occurrence among sepsis survivors with CKD. External
validation is required to evaluate the generalizability of this model.

Keywords: sepsis; chronic kidney disease; machine learning; artificial intelligence; end-stage renal disease

1. Introduction

Sepsis refers to a syndrome of physiological dysregulation caused by infection. With-
out prompt treatment, the syndrome may lead to life-threatening organ failure. According
to population-level epidemiologic data, 31.5 million patients experience sepsis worldwide
each year, with a mortality rate as high as 16.8% [1]. Studies have shown that approximately
55% of septic patients have severe underlying disorders [2,3]. Chronic kidney disease (CKD)
is a critical risk factor for severe sepsis because of the associated complications, such as
malnutrition, endothelial dysfunction, and immunodeficiency [4,5]. Moreover, even after
receiving treatment for infection, septic patients exhibit a high mortality rate and risk of
renal function deterioration in the long term [6,7]. Therefore, clinical practice guidelines
recommend regular follow-up of adult survivors of sepsis or septic shock, particularly
those with preexisting kidney disease [8].

Sepsis is the predominant cause of hospital-acquired acute kidney injury (AKI) [9]. In
one large multicenter study involving 120,123 critically ill patients, 27.8% (~30,000) had a
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primary diagnosis of sepsis; among them, the incidence of AKI was 42.1% [10]. Sepsis causes
hemodynamic instability, leading to ischemic nephropathy. Cytokines have been shown
to aggravate endothelial dysfunction and subsequent microvascular inflammation [11].
Moreover, patients with sepsis-associated AKI had a higher risk of CKD and end-stage renal
disease (ESRD) than nonseptic patients with AKI [12,13]. Studies have shown the diagnostic
and prognostic value of novel biomarkers other than creatinine for AKI [14,15]. However,
the application of these biomarkers is limited by cost and low accuracy when confounders—
such as old age, severe inflammation, advanced kidney disease, or liver cirrhosis—are
not adjusted [16]. The application of artificial intelligence (AI) in the early prediction and
risk stratification of AKI has attracted considerable research attention. Previous studies
have demonstrated the use of machine learning algorithms for the early prediction of AKI
48 h after intensive care unit (ICU) admission and for distinguishing between transient
and persistent AKI in patients following sepsis or cardiac surgery [17–19]. Nevertheless,
these algorithms could not predict subsequent ESRD development. To this end, we used
a large-scale CKD cohort and machine learning methods to develop a prediction model
for renal function decline after sepsis to identify sepsis survivors at a high risk of CKD
progression and ESRD.

2. Materials and Methods
2.1. Study Design and Data Source

We established a cohort of sepsis survivors based on data extracted from the Taipei
Veterans General Hospital (VGH) Big Data Center; the data included detailed patient demo-
graphic and clinical information, diagnostic/procedural information, drug prescriptions,
procedural codes, and laboratory data from 2010 to 2018. By using diagnostic codes from
the International Classification of Diseases, Ninth and Tenth Revision (ICD-9-CM and
ICD-10-CM, respectively), we identified 112,628 CKD patients (ICD-9: 585 and ICD-10:
N18) aged ≥20 years from the database. We collected the data of individuals discharged
alive with diagnostic codes involving sepsis (ICD codes 038, 995.91, A40, and A41), severe
sepsis (ICD codes 995.92 and R65.20), and septic shock (ICD codes 785.52 and R65.21). We
excluded patients with estimated glomerular filtration rate (eGFR) <15 mL/min/1.73 m2

at discharge, those requiring maintenance dialysis or kidney transplantation, and those
younger than 20 years of age. We also excluded those with less than two serum creatinine
measurement values to assess the decline in eGFR. Finally, we enrolled 11,661 eligible
sepsis survivors with a history of CKD (Figure 1). Our study protocol fulfilled the ethical
guidelines of the Declaration of Helsinki and was approved by the Institutional Review
Board of Taipei VGH (2021-03-012AC).

2.2. Input Features

Input features comprised the demographic characteristics of age, sex, smoking status,
and alcohol consumption; the presence of the comorbidities of hypertension (HTN), diabetes
mellitus (DM), coronary artery disease (CAD), congestive heart failure, peptic ulcer disease,
chronic obstructive pulmonary disease, malignancy; Charlson Comorbidity Index (CCI)
scores; laboratory data, including hemoglobin (HGB), total cholesterol, glycohemoglobin,
eGFR, and the spot urine protein/creatinine ratio (UPCR); and medication prescriptions at
discharge, including calcium channel blockers (CCBs), beta-blockers, alpha-blockers, renin–
angiotensin system (RAS) inhibitors, antiplatelets, warfarin, statins, diuretics, nonsteroidal
anti-inflammatory drugs (NSAIDs)/cyclooxygenase (COX)-2 inhibitors, miscellaneous oral
hypoglycemic agents, and insulin. The eGFR was determined using the chronic kidney disease
epidemiology collaboration (CKD-EPI) creatinine equation.
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 Figure 1. Study flowchart. This retrospective cohort consisted of 142,624 adults who received a diag-
nosis of chronic kidney disease between 2010 and 2018—a total of 14,234 patients with concomitant
sepsis were treated in the hospital. After excluding patients who died during admission and those
with insufficient data, we finally enrolled 11,661 patients who survived sepsis to discharge. Abbrevia-
tions: CKD—chronic kidney disease; eGFR—estimated glomerular filtration rate; ESRD—end-stage
renal disease.

2.3. Outcomes and Class Definition

The endpoint was ESRD development defined by an eGFR < 15 mL/min/1.73 m2 and
initiation of long-term hemodialysis/peritoneal dialysis or kidney transplantation during
the follow-up period. CKD patients were followed up until death or the end of the study
period. In the machine learning algorithm, we annotated the class as 1 for sepsis survivors
who developed ESRD; otherwise, the class was 0 if no event occurred.

2.4. Construction of Machine Learning Models

In data preprocessing, we imputed the missing values of the variables by the k nearest
neighbors algorithm [20]. The data were randomly divided into a training dataset and a
validation dataset with a ratio of 70:30. We adopted various machine learning algorithms
to construct the models, namely logistic regression, random forest, extra trees, extreme gra-
dient boosting (XGBoost), light gradient boosting machine (LGBM), and gradient boosting
decision tree (GBDT), to predict ESRD after surviving sepsis. We examined the predictive
power based on the area under the receiver operating characteristics curve (AUC) and the
precision–recall curve to optimize the models with the best performance. The machine
learning model with the highest AUC was then compared with the kidney failure risk
equation (KFRE), predicting the 2- and 5-year risk of progression to ESRD among the sepsis
survivors [21]. The variables in KFRE include age, sex, eGFR, and albuminuria, defined
by urine albumin/creatinine ratio (UACR). Using a validated conversion formula, we
converted the UPCR to UACR for use in KFRE equation [22]. We used Shapley additive
explanation (SHAP) values to evaluate the importance of each input features contributing
to the model. Statistical analysis and mapping were performed using Python (version 3.7.6,
available at http://www.python.org. Accessed 16 February 2022).

3. Results
3.1. Study Population

A total of 11,661 sepsis survivors from 2010 to 2018 were included in our final cohort,
and their clinical features are presented in Table 1. The participants were predominantly
male and aged around 75 years, and 30% had a smoking and alcohol consumption history.
The CCI score was 4, and 64.7% of the patients had underlying HTN, 51.8% had DM, and
30.7% had CAD. Regarding renal function, the patients had a median baseline creatinine
level of 1.1 mg/dL and an eGFR of 59.3 mL/min/1.73 m2 at hospital discharge. CCBs
(55.0%) were the most commonly used concomitant medications, followed by angiotensin-
converting enzyme inhibitors and angiotensin II receptor antagonists (49.0%). Although
sodium/glucose cotransporter 2 (SGLT2) inhibitors have been proven beneficial in the

http://www.python.org
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deceleration of CKD progression, and less than 1% of patients were prescribed this class
of drugs. Genitourinary and respiratory infections were the two most common etiologies
of sepsis in this cohort. During the follow-up period, we recorded 2573 (22.1%) death,
3031 (26.0%) patients encountered re-hospitalization, and 1366 (11.7%) of them developed
ESRD. We divided the sepsis survivors randomly into 2 groups and allocated 70% of them
to the training set and the remaining 30% to the validation set.

Table 1. Clinical features of the patients in the training and validation sets used in machine learn-
ing models.

All Training Set Validation Set

(n = 11,661) (n = 8162) (n = 3499)

Demographic and Clinical Characteristics
Age, years 76.7 (63.3, 85.5) 76.7 (63.3, 85.5) 76.7 (63.1, 85.6)

Male sex, n (%) 6927 (59.4) 4865 (59.6) 2062 (58.9)
Smoking, n (%) 4289 (36.8) 3009 (36.9) 1280 (36.6)

Alcohol consumption, n (%) 3291 (28.2) 2318 (28.4) 973 (27.8)
ICU admission, n (%) 6367 (54.6) 4457 (54.6) 1910 (54.6)

Use of mechanical ventilators, n (%) 4291 (36.8) 3004 (36.8) 1287 (36.8)
Use of inotropic agents, n (%) 5562 (47.7) 3893 (47.7) 1669 (47.7)

Underlying Comorbidities
Hypertension, n (%) 7540 (64.7) 5270 (64.6) 2270 (64.9)

Diabetes mellitus, n (%) 6046 (51.8) 4234 (51.9) 1812 (51.8)
Coronary artery disease, n (%) 3576 (30.7) 2511 (30.8) 1065 (30.4)

Heart failure, n (%) 2551 (21.9) 1792 (22.0) 759 (21.7)
Peptic ulcer disease, n (%) 2822 (24.2) 1990 (24.4) 832 (23.8)

COPD, n (%) 2267 (19.4) 1606 (19.7) 661 (18.9)
Malignancy, n (%) 4886 (41.9) 3422 (41.9) 1464 (41.8)

Charlson comorbidity index 4 (3, 6) 4 (3, 6) 4 (2, 6)
Laboratory Data at Hospital Discharge

White blood cells,/mm3 8100 (5700, 11,900) 8100 (5700, 11,900) 8100 (5700, 12,000)
HGB, g/dL 10.5 (9.3, 12.0) 10.5 (9.3, 12.0) 10.5 (9.3, 12.0)

Total cholesterol, mg/dL 160.0 (134.0, 188.0) 160.0 (134.0, 189.0) 159.0 (133.0, 187.0)
LDL-C, mg/dL 91.0 (70.0, 114.0) 91.0 (70.0, 115.0) 91.0 (69.0, 113.0)
HDL-C, mg/dL 41.0 (32.0, 51.0) 41.0 (32.0, 51.0) 41.0 (32.0, 51.0)
Glucose, mg/dL 116.0 (95.0, 156.0) 116.0 (94.0, 155.0) 117.0 (95.0, 157.0)
Uric acid, mg/dL 5.5 (4.1, 7.1) 5.5 (4.1, 7.1) 5.6 (4.1, 7.1)

HbA1c, % 7.2 (6.1, 10.3) 7.1 (6.1, 10.3) 7.2 (6.1, 10.5)
Albumin, mg/dL 3.0 (2.6, 3.4) 3.0 (2.6, 3.4) 3.0 (2.6, 3.4)

Blood urea nitrogen, mg/dL 24.0 (14.0, 51.0) 24.0 (14.0, 51.0) 24.0 (14.0, 50.0)
Creatinine, mg/dL 1.1 (0.7, 2.1) 1.1 (0.7, 2.2) 1.1 (0.7, 2.1)

eGFR, mL/min/1.73 m2 * 59.3 (35.5, 83.6) 59.2 (33.4, 83.6) 59.3 (35.1, 83.2)
C-reactive protein, mg/dL 3.4 (1.2, 9.0) 3.4 (1.2, 9.1) 3.3 (1.1, 8.7)

Sodium, mmol/L 139.0 (135.0, 142.0) 139.0 (135.0, 142.0) 139.0 (135.0, 142.0)
Potassium, mmol/L 4.1 (3.6, 4.6) 4.1 (3.6, 4.6) 4.1 (3.6, 4.6)
Chloride, mmol/L 103.0 (98.0, 106.0) 103.0 (98.0, 106.0) 103.0 (98.0, 106.0)
Calcium, mg/dL 8.5 (8.0, 9.0) 8.5 (8.0, 9.0) 8.5 (8.0, 9.0)

Phosphate, mg/dL 3.3 (2.6, 4.0) 3.3 (2.6, 4.0) 3.3 (2.7, 4.1)
Bicarbonate, mmol/L 23.7 (19.3, 28.0) 23.7 (19.3, 28.0) 23.8 (19.4, 28.0)

INR 1.1 (1.0, 1.2) 1.1 (1.0, 1.2) 1.1 (1.0, 1.2)
aPTT, seconds 29.9 (27.1, 34.0) 29.9 (27.2, 34.2) 29.9 (27.1, 33.8)

D-dimer, ug/mL 3.6 (1.6, 8.1) 3.6 (1.5, 7.7) 3.9 (1.8, 9.3)
Lactate dehydrogenase, U/L 253.0 (196.0, 361.0) 252.0 (196.0, 361.0) 255.0 (197.0, 361.0)

NT-pro-BNP, pg/mL 3146.0 (836.5, 11,617.0) 3142.0 (823.8, 11,648.5) 3185.0 (856.8, 11,580.8)
Total bilirubin, mg/dL 0.6 (0.4, 1.1) 0.6 (0.4, 1.1) 0.6 (0.4, 1.1)

Alanine transaminase, U/L 25.0 (15.0, 44.0) 25.0 (15.0, 45.0) 25.0 (15.0, 44.0)
Aspartate transaminase, U/L 29.0 (20.0, 51.0) 29.0 (20.0, 51.0) 29.0 (20.0, 50.0)
Alkaline phosphatase, U/L 95.0 (70.0, 147.0) 95.0 (69.0, 147.0) 94.0 (70.0, 147.0)

Gamma-glutamyl transferase, U/L 54.0 (25.0, 125.0) 53.0 (25.0, 125.0) 54.0 (24.0, 126.0)
UPCR, mg/mg 0.43 (0.13, 1.72) 0.44 (0.13, 1.73) 0.40 (0.12, 1.67)

Concomitant Medications
Calcium channel blockers, n (%) 6412 (55.0) 4517 (55.3) 1895 (54.2)

Beta-blockers, n (%) 5164 (44.3) 3636 (44.5) 1528 (43.7)
Alpha-blockers, n (%) 3672 (31.5) 2592 (31.8) 1080 (30.9)
RAS inhibitors, n (%) 5710 (49.0) 3969 (48.6) 1741 (49.8)
Anti-platelets, n (%) 4472 (38.4) 3154 (38.6) 1318 (37.7)
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Table 1. Cont.

All Training Set Validation Set

Nitrates, n (%) 3195 (27.4) 2236 (27.4) 959 (27.4)
Warfarin, n (%) 758 (6.5) 538 (6.6) 220 (6.3)
Statins, n (%) 2903 (24.9) 2028 (24.8) 875 (25.0)

Diuretics, n (%) 2414 (20.7) 1690 (20.7) 724 (20.7)
NSAID, n (%) 5550 (47.6) 3885 (47.6) 1665 (47.6)

COX-2 inhibitors, n (%) 1633 (14.0) 1143 (14.0) 490 (14.0)
Metformin, n (%) 1703 (14.6) 1192 (14.6) 511 (14.6)

Sulfonylurea, n (%) 1085 (9.3) 760 (9.3) 325 (9.3)
Meglitinide analogues, n (%) 1050 (9.0) 735 (9.0) 315 (9.0)

SGLT2 inhibitors, n (%) 47 (0.4) 33 (0.4) 14 (0.4)
Dipeptidyl peptidase-4 inhibitors, n (%) 1330 (11.4) 931 (11.4) 399 (11.4)

Insulin, n (%) 5543 (47.5) 3895 (47.7) 1648 (47.1)

Data are presented as n (%) or median and interquartile range. *—calculated by the chronic kidney disease
epidemiology collaboration (CKD-EPI) creatinine equation. Abbreviations: ICU—intensive care unit; LDL-C—
low-density lipoprotein cholesterol; HDL-C—high-density lipoprotein cholesterol; HbA1c—glycated hemoglobin;
eGFR—estimated glomerular filtration rate; INR—international normalized ratio; NT-pro-BNP—N-terminal
pro-brain natriuretic peptide; COPD—chronic obstructive pulmonary disease; HGB—hemoglobin; RAS—renin–
angiotensin system; NSAIDs—nonsteroidal anti-inflammatory drugs; COX—cyclooxygenase; SGLT2—sodium–
glucose cotransporter 2.

3.2. Model Performance for Predicting End-Stage Renal Disease Development

To predict the risk of ESRD in sepsis survivors by using AI, we adopted various
machine learning models based on various clinical features at discharge obtained from the
index hospital. The GBDT model had the highest AUC of 0.879, and the LGBM model had
the second-highest AUC of 0.868 (Table 2). The extra trees and random forest algorithms
had AUCs of 0.865 and 0.864, respectively. Compared with the LGBM model, the GBDT
model had higher accuracy, F1 score, precision, and recall. The sensitivity and specificity
between the two models were comparable. The receiver operating characteristic curves
and precision–recall curves of the models are shown in Figure 2.

Table 2. Model performance in predicting risk for end-stage renal disease among the sepsis survivors.

Model AUC Accuracy F1 Precision Recall Average Precision Sensitivity Specificity

GBDT 0.879 0.891 0.716 0.853 0.617 0.784 0.969 0.617
LGBM 0.868 0.889 0.712 0.851 0.612 0.782 0.969 0.612

Extra-trees 0.865 0.878 0.661 0.876 0.531 0.754 0.978 0.531
Random forest 0.864 0.860 0.565 0.927 0.406 0.765 0.991 0.406

XGBoost 0.859 0.885 0.708 0.820 0.623 0.769 0.961 0.623
Logistic regression 0.854 0.869 0.665 0.780 0.580 0.733 0.953 0.580

Abbreviations: AUC—area under the curve of receiver operating characteristic curve; GBDT—gradient boosting
decision tree; LGBM—light gradient boosting machine; XGBoost—extreme gradient boosting.

3.3. Feature Importance

Figure 3a shows the top 25 clinical features predicting ESRD by the GBDT model.
According to the mean SHAP values of each feature, we sorted the impacts from high to
low in descending order. In this model, the top 5 variables were eGFR, HGB, UPCR, insulin,
and β-blockers use. In Figure 3b, the SHAP summary plot illustrated the impact of clinical
features on model output. A positive SHAP value for a feature means that the value of that
feature contributes positively to the prediction. The higher the SHAP value of a feature,
the higher the probability of positive output of this model. A dot is represented for each
feature value of each patient, and the color represents the feature value (high in red, low
in blue). According to our prediction model, the low eGFR showed the most significant
impact on ESRD prediction.

As shown in Figure 4a–c, the SHAP dependence plots depicted the effect of individual
features on the ESRD risk prediction in the GBDT model. The values on the y-axis indicated
the SHAP values of features, and values on the x-axis were eGFR in mL/min/1.73 m2,
HGB in g/dL, and UPCR in mg/mg, respectively. The impact of eGFR on predicting ESRD



Biomedicines 2022, 10, 546 6 of 13

increased while eGFR values < 25 mL/min/1.73 m2 at hospital discharge. We also found
that HGB levels < 10 g/dL and UPCR > 2 mg/mg improved ESRD risk prediction.
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Figure 4. SHAP dependence plots of the GBDT model. Figure 4a–c showed the impact of eGFR (a),
HGB (b), and UPCR (c) on the prediction model’s output. The risk prediction for end-stage renal
disease development increases while the SHAP values of specific features exceed zero, represented
by the red lines. Figure 4d–f showed the interaction effects between eGFR and the use of insulin
(d), eGFR and the use of RAS inhibitor (e), eGFR and HTN (f) in the prediction model. The dotted
lines represent while the SHAP value is zero. Abbreviations: SHAP—Shapley additive explanation;
eGFR—estimated glomerular filtration rates; HGB—hemoglobin; UPCR—urine protein/creatinine
ratio; RAS—renin–angiotensin system; HTN—hypertension; GBDT—gradient boosting decision
tree. Red/blue—Features that push the prediction higher are shown in red, and those pushing the
prediction lower are blue. A gray area refers to the patient distribution by eGFR levels.
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Figure 4d–f illustrated the interaction between the SHAP values of eGFR and the use
of insulin, RAS inhibitors, and HTN. These variables are positively correlated with the
predictive value of eGFR for future ESRD, particularly in sepsis survivors with substantially
low eGFR levels at hospital discharge.

3.4. Performance of Machine Learning Model Versus Kidney Failure Risk Equation

In Figure 5, we compared the performance of the GBDT model with KFRE by using
the area under the receiver operating characteristic (ROC) curves. In our study cohort,
the AUCs assessing the 2-year ESRD risk for the GBDT model and KFPE were 0.886 and
0.857, whereas the AUCs assessing the 5-year ESRD risk were 0.879 and 0.848, respectively.
The machine learning model not only had higher AUCs, but also had better accuracy
and average precision than KFPE. The sensitivity and specificity between the two models
were similar.
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Figure 5. Receiver operating characteristic curves of GBDT prediction model and kidney failure
risk equation (KFPE) predicting 2-year risk of ESRD (a) and 5-year risk of ESRD (b). Comparing
the prediction performance of the two models, the GBDT model had a higher AUC, accuracy, and
average precision than KFPE in predicting 2-year and 5-year risk of ESRD (c). The diagonal dotted line
represents an AUC of 0.5. Abbreviations: ROC—receiver operating characteristic; AUC—area under
curve; GBDT—gradient boosting decision tree; KFRE—kidney failure risk equation; ESRD—end-stage
renal disease.

4. Discussion

In this retrospective cohort study of 11,661 sepsis survivors with CKD, during a
median follow-up of 3.5 years, approximately 11.7% of the participants developed ESRD
after discharge. We established machine learning models to predict the risk of ESRD in
sepsis survivors. The GBDT model had the highest predictive performance with the highest
AUC of 0.879 among all the algorithms. Among the clinical features at hospital discharge,
the eGFR < 25 mL/min/1.73 m2 was determined to be the most critical predictive factor
for ESRD, followed by HGB < 10 g/dL and UPCR > 2mg/mg. The use of RAS inhibitors
and the presence of HTN were positively correlated with the predictive value of eGFR for
future ESRD. Our results also showed that machine learning models trained with the best
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performing clinical variables might predict the ESRD development more accurately than a
conventional risk scoring system.

Sepsis is a critical cause of death in CKD patients. In severe sepsis and septic shock,
tissue hypoxia and a series of cellular derangements (e.g., lactic acid production and
microcirculatory and mitochondrial dysfunction) may occur, which may lead to AKI
and even multiple-organ failure [23]. Moreover, even if a patient survives after prompt
treatment, the risk of CKD progression or re-hospitalization after discharge remains high.
Joana et al. conducted a retrospective cohort study of 256 critically ill patients with sepsis-
associated AKI to evaluate their risk of adverse renal outcomes after surviving sepsis.
Post-discharge 30-day and long-term mortality rates were 21.4% and 44.1%, respectively,
whereas the percentage of patients requiring long-term dialysis was 16.5% during follow-
up [24]. Moreover, Hallie et al. indicated that survivors of severe sepsis had a higher
re-hospitalization rate of 42.7% for sepsis relapse and AKI compared with comorbidity-
matched patients without sepsis [25]. Our results revealed lower mortality of 22.1% and
re-hospitalization rates of 26% in sepsis survivors than those in previous studies, which
might be attributed to differences in disease severity. Moreover, we included all inpatients
with sepsis, whereas the study population in previous studies was mainly composed of
critically ill patients in ICUs. However, the mean eGFR value and incidence of ESRD
after discharge in patients who survived sepsis in our study and in studies evaluating the
long-term prognosis after sepsis are similar.

In the present study, the median eGFR level was 59.3 mL/min/1.73 m2 among the
sepsis survivors with CKD, categorized as stage 3a according to The Kidney Disease:
Improving Global Outcomes (KDIGO) 2012 Clinical Practice Guideline. Of the patients,
1366 (11.7%) progressed to ESRD during a median follow-up of 3.5 years. We used clinical
indicators to predict the future risk of ESRD by using machine learning models. In previous
studies that used AI to predict the progression of renal function, the primary endpoints were
the occurrence of AKI or acute kidney disease following ICU admission, cardiovascular
surgery, or sepsis [17–19]. Nevertheless, the follow-up period of 1–2 years in these studies
was too short to effectively assess the long-term eGFR decline or progression to ESRD.
Moreover, information on the impact of sepsis on the risk of renal adverse outcomes is
lacking, particularly for patients with CKD. The present study is the first to establish
machine learning models for predicting the risk of ESRD among CKD patients who survive
sepsis, and the GBDT algorithm yielded an accuracy as high as 0.879, as measured using
the AUC. Our study cohort revealed that the GBDT model had better performance metrics
than KFRE, created by Tangri et al., demonstrating the high accuracy of risk equations
predicting CKD progression to kidney failure using age, sex eGFR, and UACR in patients
with CKD stage 3–5 [21,26]. The better predictive power of the GBDT model might be
attributed to the discrepancy in the original study population, differences among subjects
in CKD severity, and the complete inclusion of variables and data training in the machine
learning approach. However, our model still lacks external validation to demonstrate its
predictive power among nonseptic patients and other CKD subpopulations.

The machine learning model revealed the strong effect of eGFR < 25 mL/min/1.73 m2

at discharge in predicting ESRD, with a positive SHAP value around 5. This finding is
consistent with those of previous epidemiological studies and systematic reviews that
investigated the baseline variables associated with subsequent renal outcomes among indi-
viduals who survive AKI [27–29]. According to the SHAP dependence plot of eGFR with
RAS inhibitors in the ESRD model, the apparent interaction with RAS inhibitors increases
the influence of eGFR in predicting ESRD development. Supraphysiological GFR levels
were associated with fewer RAS inhibitors and lower SHAP values. Our results may reflect
that persistent glomerular hyperfiltration sometimes leads to out-of-model predicted GFR
declines and poor long-term renal outcomes. Our model also suggested that HGB level is a
crucial predictive factor for ESRD risk after sepsis. The recommended optimal HGB level
for patients with CKD is >10 g/dL, and the level observed in our cohort was 10.5 g/dL.
Although the current evidence does not confirm that maintaining an appropriate HGB level
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in patients with CKD can decelerate the deterioration of renal function, the SHAP plot of
our AI models demonstrated that a higher HGB level in sepsis survivors was associated
with a lower risk of ESRD. Because inflammation and systemic infection suppress erythro-
poiesis in the bone marrow, this finding may suggest the effectiveness of erythropoietin
administration concomitant with antimicrobial therapy to maintain appropriate HGB levels
in patients with CKD who experience sepsis during admission.

As proteinuria is a known biomarker for CKD progression, some reports have high-
lighted urine protein as a diagnostic predictor of AKI in various cases of nephrotoxicity in-
duced by drugs, including cisplatin and NSAIDs. In a large cohort of nearly 1 million adults,
James et al. demonstrated an independent association among eGFR, proteinuria, and inci-
dence of AKI [30]. They reported that patients with eGFR levels of ≥60 mL/min/1.73 m2

and mild proteinuria (urine dipstick, trace to 1+) had a 2.5 times higher risk of admission to
a hospital for AKI than patients without proteinuria. The risk was increased by 4.4-fold in
those with severe proteinuria (urine dipstick ≥ 2+). Adjusted rates of hospitalization and
dialysis for AKI remained high in patients with heavy dipstick proteinuria, irrespective
of eGFR level. In the assessment, serial evaluation, and subsequent sequelae of acute
kidney injury (ASSESS-AKI) study, in the matched cohort of 1538 participants, half of
whom had AKI during hospitalization, higher urine albumin/creatinine ratio quantified
3 months after hospital discharge was associated with an increased risk of kidney disease
progression and served as a risk discriminator [31]. These findings confirm the suggestion
of previous reports that proteinuria is a potent risk factor for subsequent AKI and CKD
progression. In addition to the RAS inhibitors, recent trials have revealed the benefit of
SGLT2 inhibitors in reducing proteinuria and ESRD risk in both diabetic and nondiabetic
CKD. In the “Empagliflozin Cardiovascular Outcome Event Trial in Type 2 Diabetes Mel-
litus Patients—Removing Excess Glucose” (EMPA-REG OUTCOME) trial, empagliflozin
markedly reduced the risk of major adverse cardiovascular events and delayed CKD pro-
gression in patients with concomitant type 2 DM and cardiovascular disease [32]. In the
“Dapagliflozin and Prevention of Adverse Outcomes in Chronic Kidney Disease” (DAPA-
CKD) trial, the use of dapagliflozin 10 mg once daily resulted in a 39% reduction in the risk
of declining kidney function, the onset of ESRD, or kidney failure death among patients
with an eGFR of 25–75 mL/min/1.73 m2, irrespective of diabetes status [33]. Because we
established this cohort on the basis of medical records before 2018, less than 1% of patients
were reported to have used SGLT2 inhibitors. However, according to the KDIGO 2020
guideline recommendation of using SGLT2 inhibitors in managing patients with T2DM,
CKD, and those with an eGFR ≥ 30 mL/min/1.73 m2, and extending the indications
for an SGLT2 inhibitor in nondiabetic CKD patients, recognition of the importance of
SGLT2 inhibitors in the CKD prediction model has been increasing [34]. Therefore, further
investigation of this topic is imperative.

Our study has several strengths. This study was the first to use machine learning
algorithms for predicting long-term renal outcomes after discharge based on a large-scale
CKD data set that integrates all records from hospitalization to discharge and after dis-
charge. In addition, we included sepsis survivors who had at least two serum creatinine
measurements. Therefore, we could define renal endpoints for sepsis survivors strati-
fied by eGFR level rather than diagnostic codes as in other studies extracted data from
administrative datasets.

Nevertheless, this study has several limitations. First, this was a single-center study,
and external validation is needed to evaluate the generalizability of the prediction models
in this study. Second, we defined the sepsis survivors on the basis of ICD codes from the
data set. Bias due to hospital discharge coding may potentially affect the risk prediction of
regression and AI models. Third, although we indicated the presence of HTN was positively
correlated with the predictive value of eGFR for future ESRD, we mainly defined HTN
by diagnostic codes and anti-HTN medication prescriptions. Hence, the predictive value
of serial blood pressure changes for ESRD risk warrants further investigation. Moreover,
the biomarkers of tubular injury, such as cystatin C [35], kidney injury molecule-1 [36],
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liver fatty acid-binding protein [37], and neutrophil-gelatinase-associated lipocalin [38]—
which provide potential diagnostic information but are not routinely examined in clinical
settings—were absent from the models developed in the present study. Finally, our data
did not account for the protective role of SGLT2 inhibitors in sepsis survivors. Nevertheless,
based on the evidence of kidney and cardiovascular protection offered by SGLT2 inhibitors
in CKD patients, our prediction model may assist physicians in decision making regarding
recommending this drug for sepsis survivors who are at a high risk of ERSD.

5. Conclusions

Our study established a machine learning model revealing that sepsis survivors with
an eGFR < 25 mL/min/1.73 m2, HGB < 10 g/dL, and UPCR > 2 mg/mg at hospital
discharge had a higher risk of progression from CKD to ESRD. Our cohort also revealed
that this AI-based predictive model outperformed conventional scoring systems predicting
ESRD. External validation is warranted to prove the generalizability of this model, which
may provide an early warning and may help improve the prognosis of sepsis survivors at
high risk of developing ESRD.
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