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Abstract: Inflammation, when properly mounted and precisely calibrated, is a beneficial process
that enables the rapid removal of invading pathogens and/or cellular corpses and promotes tissue
repair/regeneration to restore homeostasis after injury. Being a paradigm of a rapid response
transcription factor, the nuclear factor-kappa B (NF-κB) transcription factor family plays a central role
in amplifying inflammation by inducing the expression of inflammatory cytokines and chemokines.
Additionally, NF-κB also induces the expression of pro-survival and -proliferative genes responsible
for promoting tissue repair and regeneration. Paradoxically, recent studies have suggested that the
NF-κB pathway can also exert inhibitory effects on pro-inflammatory cytokine production to temper
inflammation. Here, we review our current understanding about the pro- and anti-inflammatory
roles of NF-κB and discuss the implication of its dichotomous inflammation-modulating activity in
the context of inflammasome activation and tumorigenesis.

Keywords: NF-κB; inflammation; NLRP3 inflammasome; mitochondrial damage; mitochondrial
DNA; mitophagy; cancer

1. Introduction

Inflammation is an essential innate immune process exploited by the host to initiate
protective responses against various insults. Upon pathogen invasion and tissue damage, a
rapidly mounted inflammatory response is critical for neutralizing/eliminating pathogens
and/or cellular corpses [1]. However, once this goal is achieved, the inflammatory flame
needs to be extinguished promptly to initiate tissue repair and regeneration, which ul-
timately restores homeostasis and organismal health [2]. When the host fails to resolve
inflammation, as evidenced by prolonged, uncontrolled immune activation even after the
clearance of insults, it often results in an impediment of tissue repair, leading to the loss
of normal tissue function and the consequent development of chronic syndromes such
as autoinflammatory/autoimmune diseases, degenerative or metabolic disorders, and
various types of cancer [2]. Therefore, a well-balanced and precisely controlled inflamma-
tory response is crucial for insult clearance and tissue repair, while avoiding devastating
immunopathology—ultimately restoring homeostasis [1,3–5].

Inflammatory responses are initiated upon host recognition of inflammatory cues in
the form of either pathogen-derived molecules (PAMPs) or self-danger signals generated
during tissue damage (DAMPs), by diverse pattern recognition receptors (PRR) [5,6].
NOD-like receptor family pyrin domain containing 3 (NLRP3) is a PRR that acts as a
dominant innate immune sensor for tissue damage, and thus plays an indispensable role
in igniting sterile inflammation [1,7]. By sensing self-danger signals, NLRP3 undergoes
a conformational change that results in unfolding and binding to the adaptor protein
ASC through homotypic pyrin–pyrin domain interactions, ultimately leading to ASC
nucleation. The ASC scaffold then recruits the effector pro-caspase-1 to eventually form
a large cytosolic protein complex termed the NLRP3 inflammasome, whose outcome is
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self-cleavage and autoactivation of pro-caspase-1, generating mature caspase-1. Activated
caspase-1 then processes pro-IL-1β and pro-IL-18 into their bioactive forms, respectively,
to initiate inflammation [6]. NLRP3 inflammasome activation is crucial for mounting
protective immunity in response to injury by stimulating punchy damage clearance and
tissue repair pathways [8]. However, aberrant NLRP3 inflammasome activation has also
been shown to drive the progression of many major human diseases, including various
types of cancer, as well as metabolic and degenerative disorders [9–11].

Nuclear factor-κB (NF-κB) was first discovered in 1986 by David Baltimore’s group as
a transcription factor involved in B-cell development and activation [12–14]. Subsequent
studies established a broad role of this transcription factor in diverse cellular processes,
including inflammation, cell proliferation and survival, differentiation of effector and
regulatory T cells, and maturation of dendritic cells. Acting as a perfect example of a
rapid response transcription factor, NF-κB family members are retained in the cytoplasm
in an inactive state in resting cells by binding to the inhibitor of NF-κB (IκB) [13]. Upon
stimulation by PAMPs, DAMPs, or proinflammatory cytokines, the engagement of PRR
and cytokine receptors triggers downstream signaling cascades, leading to the activation
of the IκB kinase (IKK) complex. IKK then phosphorylates and promotes proteasomal
degradation of the IκBs to liberate NF-κB dimers for nuclear translocation, resulting in
the expression of pro-survival and -proliferative genes, as well as various cytokines and
chemokines to propagate inflammation. Once the inflammatory insults are cleared and
inflammation is no longer needed, IKK is deactivated and IκBs accumulate and remove
NF-κB dimers from the DNA back to the cytoplasm [15,16].

As a result of its key role in initiating an inflammatory response, NF-κB was thought
to be an “ideal” drug target for the treatment of diverse inflammatory diseases [17]. How-
ever, quite unexpectedly, the pharmacologic or genetic inhibition of NF-κB was found
to exacerbate, rather than attenuate, inflammation in many preclinical disease models,
which was then recapitulated in several large clinical trials. This led to the termina-
tion of several drug-development programs targeting IKK or other components of the
NF-κB pathway [1,3,17,18]. It was not clear until recently that these seemingly counter-
intuitive results can at least partially be explained by the fact that NF-κB also acts as a
macrophage-intrinsic negative regulator of the NLRP3 inflammasome. In this review, we
summarize recent advancements in understanding the pro- and anti-inflammatory proper-
ties of NF-κB and discuss its implication in inflammasome activation and tumorigenesis.

2. The NF-κB Signaling Pathway

The NF-κB family transcription factors consist of five different DNA binding proteins
that share a Rel homology region (cRel, RelA, RelB, NF-κB1, and NF-κB2) and can form
up to 15 homodimers and heterodimers [19,20]. In resting cells, these dimers are kept in
the cytoplasm in an inactive form through binding to IκB proteins that mask their nuclear
localization sequence (NLS).

There are two distinct NF-κB signaling pathways operating in the cell: canonical
and alternative pathways. The canonical pathway entails rapid and transient activation in
response to stimulation with PAMPs/DAMPs (e.g., LPS, polyI:C, and CpG DNA) and proin-
flammatory cytokines (e.g., TNF and IL-1), or upon T- and B-cell receptor engagement [21].
Although the upstream signaling events vary among different NF-κB activating recep-
tors, the downstream signaling converges on the IKK complex comprised of the catalytic
subunits IKKα/β and the regulatory subunit IKKγ/NEMO. Once activated, the IKK com-
plex phosphorylates IκB molecules on two adjacent serine residues, thereby promoting
K48-linked ubiquitination to induce the proteasomal degradation of IκBs. The liberated NF-
κB dimers then translocate into the nucleus where they initiate the transcription of a large
set of genes [13], including pro-inflammatory cytokines and pro-survival molecules, as well
as enzymes that generate non-protein inflammatory mediators, so as to amplify inflamma-
tory responses and/or promote cell proliferation and survival [14]. Given its indispensable
roles in regulating multiple cellular functions, the NF-κB pathway needs to be tightly
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regulated to avoid excessive activation that would otherwise cause pathology. Indeed, the
NF-κB pathway can be negatively regulated at multiple levels. Nfkbia, which encodes IκBα,
is one of the NF-κB target genes that serves as an inhibitor by binding to the NF-κB dimer,
thereby terminating the NF-κB transcriptional activity. Apart from this, deubiquitylation
also negatively regulates NF-κB activity. For example, CYLD (cylindromatosis), a deubiq-
uitinase, was shown to negatively regulate the canonical NF-κB pathway by disassembling
K63-ubiquitin chains on TRAF2, TRAF6, and NEMO, thereby inhibiting IKK activation [22].

The alternative NF-κB pathway plays an essential role in inducing genes associated
with secondary lymphoid organ development and maintenance [14]. However, in contrast
to the rapidly induced canonical NF-κB pathway, activation of the alternative pathway
requires de novo synthesis of NF-κB-inducing kinase (NIK, also known as MAP3K14), and
therefore has slow kinetics. TNF superfamily cytokines, including lymphotoxin (LT), recep-
tor activator of NF-κB ligand (RANKL; also known as TNFSF11), CD40 ligand (CD40L),
and B-cell activating factor of the TNF family (BAFF; also known as TNFSF13B), serve as
the ligands for the alternative NF-κB pathway [23–25], which, through activating IKKα

homodimers, drive the NF-κB2/p52-RELB dimer activation [25,26].

3. Pro- and Anti-Inflammatory Properties of NF-κB

NF-κB is traditionally viewed as a key transcriptional activator of an arsenal of pro-
inflammatory, -survival, and -proliferative molecules [17]. Consistent with this notion, it is
well-documented that most of the pro-inflammatory cytokine/chemokine genes possess
NF-κB-binding site(s) in their promoter/enhancer regions, and the activation of NF-κB is
essential for their induction in response to a large array of immunostimulatory stimuli [27].
Moreover, overactivation of NF-κB signaling is evident in many chronic inflammatory
disorders, such as inflammatory bowel disease (IBD) [28,29], rheumatoid arthritis (RA) [30],
and psoriasis, among others [28,30–33] (Table 1). The ability of NF-κB to induce TNF
expression is thought to be a major pathogenic driver of these diseases. Consistently, all
of these disorders have responded to anti-TNF therapy and NF-κB inhibitors [34–40]. In
acute inflammatory conditions such as sepsis, genetic polymorphisms potentiating NF-κB
activation have been found to increase mortality because of excessive inflammation [41,42].
Together, these findings imply that targeting NF-κB signaling might be beneficial for treating
inflammatory diseases [17]. However, contradicting this notion, pharmacological or genetic
inhibition of NF-κB has been shown to exacerbate, rather than attenuate, inflammation un-
der various disease settings [3,18], leading to the termination of several drug development
pipelines aiming to inhibit IKK-driven NF-κB activation to eliminate inflammation.

This unexpected anti-inflammatory property of NF-κB can be both indirect and
direct [1,3,17]. The former often takes place at barrier surfaces (e.g., skin and intestine),
where NF-κB-mediated pro-survival signaling ensures proper barrier function to prevent
microbial translocation [29,43,44]. In addition to classical pro-survival molecules, including
BCL-XL, FLICE-like inhibitory protein (FLIP), and members of the inhibitor of apoptosis
(IAP) family [16], the expression of other molecules involved in the preservation of epithelial
integrity is also under the control of NF-κB [29]. In line with this concept, the loss of IKKβ

in intestinal epithelial cells (IECs) drastically increases susceptibility to chemical-induced
colitis in mice [43]. Similarly, mice lacking IKKγ/NEMO in IECs display a severe and
spontaneous inflammatory condition [44], and the absence of IKKγ in mouse keratinocytes
can also lead to the development of a psoriasis-like inflammatory disease [29]. In contrast
to these indirect effects, the direct anti-inflammatory function of NF-κB is largely attributed
to its ability to limit the production of a key proinflammatory cytokine—IL-1β. This was
first demonstrated in our earlier study in which pharmacologic or genetic inhibition of
NF-κB unexpectedly exacerbated IL-1β-dependent inflammation in vivo [18]. Mice lacking
Ikkβ expression in myeloid cells were more susceptible to lipopolysaccharide (LPS)- or
bacteria-induced septic shock. Similar results were observed after repetitively treating WT
mice with a specific IKKβ inhibitor. Moreover, spontaneous development of progressive
neutrophilia was observed in mice genetically or pharmaceutically deprived of IKKβ in
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myeloid cells owing to the dramatically augmented IL-1β production [45]. These results
indicate that, in addition to promoting pro-IL-1β expression, NF-κB functions to limit
the production of bioactive IL-1β—a process mediated by inflammasome assembly and
subsequent caspase-1 activation.

Table 1. Pro- and anti-inflammatory properties of NF-κB in inflammatory diseases.

Type of Diseases (Models) Role and Mechanism of Action References

Pro-inflammatory role

IBD

NF-κB p65 is potently activated in TNBS-induced experimental colitis and local
p65 inhibition abrogates clinical and histological signs of colitis. [34]

Blockade of NF-κB attenuates TNBS-induced chronic inflammation associated
intestinal fibrosis in mice. [46]

Blocking RhoA/Rho-kinase pathway prevents experimental colitis via
NF-κB inhibition. [47]

RA

IKKβ overexpression in the joints of rats results in significant synovial
inflammation. Intraarticular transfer of IKKβ-dominant negative adenoviral

constructs decreases NF-κB expression in the joints and ameliorates the severity
of arthritis.

[30,38]

Gene polymorphism of NF-κB pathway components exists in patients with
autoimmune rheumatic disease. [48–50]

Skin inflammation

Constitutively active NF-κB/RelA is present in uninvolved epidermis from
psoriasis patients, and etanercept treatment significantly downregulates

phosphorylated NF-κB/RelA correlating with the restoration of normal markers of
keratinocyte differentiation and clinical outcome.

[31–33]

Sepsis
Increased NF-κB binding activity is present after the injection of LPS in mice.

Intravenous somatic gene transfer with IκBα given before LPS attenuates renal
NF-κB binding activity and increases survival.

[41,42]

Anti-inflammatory role

IBD

Ikkβ depletion in IECs increases colonic inflammation in a DSS-induced mice
model of colitis. [43]

IECs’ specific inhibition of NEMO induces apoptosis of colonic epithelial cells,
resulting in the disruption of epithelial integrity and intestinal immune

homeostasis, thereby causing severe chronic intestinal inflammation in mice.
[29,44,51]

Skin inflammation
Inhibition of NF-κB in the mouse epidermis disturbs skin homeostasis and

triggers TNF-dependent skin inflammation, epidermal hyperplasia, and
subsequent development of squamous cell carcinoma.

[29,52]

Endotoxin-induced infection

Mice with a targeted IKKβ deletion in myeloid cells are more susceptible to
endotoxin-induced shock owing to overwhelmed IL-1β production. [18]

Mice deprived of IKKβ in monocytes develop a spontaneous neutrophilia owing
to augmented IL-1β production. [14,45,53]

IBD: inflammatory bowel disease; TNBS: 2,4,6-trinitrobenzene sulfonic acid; RA: rheumatoid arthritis;
LPS: lipopolysaccharide; IECs: intestinal epithelial cells; DSS: dextran sodium sulfate; NEMO: NF-κB
essential modulator.

4. NF-κB in NLRP3 Inflammasome Activation

Inflammasomes, a group of multi-protein signaling platforms, are key mediators
of innate immunity and play indispensable roles in the initiation and propagation of
inflammation [54]. The NLRP3 inflammasome, the most extensively studied member
in this group, is a key immune sensor of tissue damage [3,55]. A “two-step” process,
namely “priming” and “activation”, is required for NLRP3 inflammasome assembly [3,6,56].
Priming entails the detection of DAMPs or PAMPs by PRRs to drive NF-κB-dependent
de novo synthesis of pro-IL-1β and upregulation of NLRP3. In contrast, activation takes
place after cell exposure to chemically and structurally diverse NLRP3 activators, including
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ATP, pathogen-derived factors, and many microparticle-shaped insults [1,7], triggering
the assembly of the NLRP3 inflammasome complex and subsequent self-cleavage and
autoactivation of caspase-1, which in turn processes pro-IL-1β/pro-IL-18 into their mature
forms to ignite inflammation. Additionally, active caspase-1 also cleaves Gasdermin D
(GSDMD), whose N-terminal fragments insert into the plasma membrane and form pores
to facilitate the release of IL-1β/IL-18, as well as to initiate an inflammatory form of cell
death, named pyroptosis [57,58].

Inflammasome priming is a multifaceted process involving the transcriptional induc-
tion of inflammasome components followed by a series of posttranslational modifications
necessary for their subsequent activation [59,60]. Priming starts with NF-κB-dependent
transcription of cytokine precursors (e.g., pro-IL-1β) and upregulation of NLRP3 itself [61,62].
Ligands for PRRs or cytokine receptors, such as LPS and TNF, serve as priming stimuli
that activate NF-κB signaling. Upregulation of NLRP3 increases its abundance above a
threshold, allowing for subsequent inflammasome assembly when cells encounter NLRP3
activators [59,63,64]. Moreover, recent studies have also revealed transcription-independent
priming events achieved through the posttranslational modifications (PTMs) of inflam-
masome components [59]. For instance, 10 min acute priming with LPS enhances NLRP3
inflammasome activation in the absence of NLRP3 upregulation [65,66], and the simulta-
neous addition of priming and activation stimuli can also activate NLRP3 [65–69]. The
adapter molecule MyD88 and the IL-1 receptor-associated kinases IRAK-1 and IRAK-4
are essential for triggering multiple PTMs processes, including the deubiquitylation and
phosphorylation of NLRP3, thereby contributing to this rapid priming event [62,68–70].

The chemical and structural diversity of NLRP3 inflammasome activators suggests
that they need to operate through a common downstream signaling intermediate [3,8]. Nu-
merous independent studies have collectively demonstrated that mitochondrial damage is
a common signaling event downstream of all NLRP3 activators, resulting in the production
of oxidized mitochondrial DNA (ox-mtDNA) that binds to and activates NLRP3 [3,71].
The concept that mitochondria are a signaling hub that controls NLRP3 inflammasome
activation was initially proposed by the late Jurg Tschopp and Augustine Choi [72,73],
who independently demonstrated that NLRP3 activator-induced mitochondrial damage
is indispensable for NLRP3 inflammasome activation. Shortly thereafter, Moshe Arditi’s
group further extended our understanding by showing that ox-mtDNA released from the
damaged mitochondria in apoptotic cells serves as an endogenous activator that binds to
and activates NLRP3 [71].

As a dominant immune sensor of tissue damage that ignites inflammation in response
to a breach of homeostasis, the NLRP3 inflammasome activity must be precisely tuned
and tightly controlled to avoid immunopathology [3,8]. Therefore, keeping mitochondrial
damage under control is vital for preventing NLRP3 inflammasome overactivation [74–76].
In macrophages, this mission is mainly carried out by the autophagy machinery, which,
through selective clearance of the damaged mitochondria via mitophagy, acts as a “brake”
to restrict excessive NLRP3 inflammasome activation [56,72,73,77]. The first evidence that
autophagy may have an inhibitory role for NLRP3 inflammasome came from Shizuo Akira’s
group, who showed that Atg16L1 deficiency in mice resulted in IL-1β overproduction by
macrophages [77]. In support of this finding, the Tschopp group and Choi group later
revealed that autophagy-mediated clearance of damaged mitochondria inhibits NLRP3
inflammasome activation, thereby restricting excessive IL-1β production [72,73].

To gain further mechanistic insights into the negative regulatory network that keeps
NLRP3 inflammasome activity in check in macrophages, we recently discovered that NF-κB
is a driver for this circuit by inducing the expression of an autophagy adaptor molecule,
called p62 [3], also known as sequestosome 1 (SQSTM1). p62 functions to bridge autophagy
machinery with its cargo (e.g., protein complexes and damaged mitochondria), thereby
targeting the cargo for lysosomal degradation [57,78]. We found that the expression of
p62 is strongly induced, albeit with delayed kinetics relative to pro-IL-1β, during priming,
to prepare the macrophage for efficient clearance of the damaged mitochondria at the
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inflammasome activation step [75]. The NLRP3 activators induce mitochondrial damage,
leading to PINK1-mediated Parkin recruitment to the damaged mitochondria, where Parkin
ubiquitinates multiple proteins of the mitochondria outer membrane. p62 then recognizes
ubiquitin-decorated mitochondria via its ubiquitin-associated (UBA) domain and delivers
them to the autophagosome through interacting with LC3 via its LC3-interacting region
(LIR) [3,75]. Our work, summarized in Figure 1, not only confirmed the fundamental role
of the mitochondria in NLRP3 inflammasome activation, but also further established the
“NF-κB−p62-mitophagy” axis as a macrophage-intrinsic negative regulatory mechanism
that keeps the NLRP3 inflammasome activity in check to avoid immunopathology [75].
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Figure 1. NF-κB controls both the gas pedal and brake of the NLRP3 inflammasome. During inflam-
masome priming, TLR activation results in NF-κB-dependent robust transcriptional upregulation
of NLRP3 and de novo synthesis of pro-IL-1β. In parallel, NF-κB activation also induces p62 up-
regulation, although with slower kinetics. In the inflammasome activation step, various NLRP3
inflammasome activators trigger mitochondrial damage, resulting in the generation of oxidized
mtDNA (ox-mtDNA), which is subsequently released from the damaged mitochondria to the cytosol,
where it binds to and activates NLRP3. This leads to the assembly of the inflammasome complex,
followed by autocleavage and activation of caspase-1, which in turn proteolytically processes pro-
IL-1β into its mature and bioactive form, thereby igniting inflammation. Meanwhile, to prevent
NLRP3 overactivation, p62 induced upon NF-κB activation promotes the autophagic degradation
of the damaged mitochondria, a process also known as mitophagy, and thereby restricts NLRP3
hyperactivation. In summary, NF-κB controls both the gas pedal and brake of NLRP3 inflammasome
to generate a well-balanced immune response that focuses on the removal of insults and tissue repair
while avoiding immunopathology (the figure was created using BioRender).

5. NLRP3 Inflammasome and Cancer

As a dominant sensor for sterile inflammatory insults, the NLRP3 inflammasome,
whose activity is orchestrated by NF-κB in the tumor microenvironment (TME), plays vital
roles in regulating tumorigenesis (Figure 2) [79]. Although polymorphisms in NLRP3
inflammasome-related genes, including NLRP3, CARD-8, IL-1β, and IL-18, correlate with
susceptibility, prognosis, and overall survival in different types of cancer [80–86], the precise
function of the NLRP3 inflammasome in cancer appears to be context-dependent, as it can
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exert both anti- and pro-tumorigenic effects [87,88]. For instance, in breast cancer, NLRP3
inflammasome-induced IL-1β production promotes infiltration with immunosuppressive
myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs),
generating a TME favoring breast cancer progression and metastasis [89–92]. Moreover,
NLRP3 has also been shown to suppress NK cell and IFN-γ mediated antitumor responses
to carcinogen-induced cancers in mice [93]. Additionally, the NLRP3 inflammasome is
constitutively expressed and activated in human melanoma cells, promoting the secre-
tion of IL-1β at late stages of the disease, to drive disease progression [94,95]. NLRP3
signaling also participates in pancreatic tumorigenesis by promoting tolerogenic T-cell
differentiation and adaptive immune suppression via IL-10 [96]. Lastly, the NLRP3 in-
flammasome contributes to the development of myeloid leukemias, where its activation
has been found in chronic myelomonocytic leukemia (CMML), juvenile myelomonocytic
leukemia (JMML), and acute myeloid leukemia (AML) patients harboring KRAS muta-
tions [97,98]. In further support of the pro-tumor role of the NLRP3 inflammasome, IL-1β
neutralizing antibodies were recently found to attenuate lung cancer development in a
large clinical trial (CANTOS) [99,100].
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Figure 2. The NF-κB−NLRP3 inflammasome axis regulates tumorigenesis through modulating the
tumor microenvironment. NLRP3 inflammasome-induced IL-1β production promotes MDSCs’ and
TAMs’ infiltration, thereby driving breast cancer progression. NLRP3 could also suppress NK-cell
and IFN-γ mediated antitumor responses in carcinogen-induced cancers and melanoma. More-
over, NLRP3 signaling drives pancreatic tumorigenesis by inducing tolerogenic T-cell differentiation
and adaptive immune suppression. In contrast to these tumor-promoting effects, the NLRP3 in-
flammasome also suppresses tumorigenesis. For instance, NLRP3 inflammasome-dependent IL-1β
production by dendritic cells directs an effective CD8+ T cell response against transplantable tumors.
In colitis-associated colorectal cancer, NLRP3 inflammasome-induced IL-18 promotes an epithelial
barrier healing process to prevent colorectal cancer progression and metastasis. Furthermore, IL-18
can also promote the tumoricidal activity of NK cells against metastasized colonic tumors and directly
induce cancer cell pyroptosis. Lastly, NLRP3 inflammasome-dependent IL-18 downregulates the
IL-22-binding protein (IL-22BP), whose production fine tunes IL-22 biological activity to regulate
colonic tumorigenesis (the figure was created using BioRender).
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The NLRP3 inflammasome, however, also possesses anti-tumorigenic functions (Figure 2).
For instance, NLRP3-dependent IL-1β production by dendritic cells is required for prim-
ing IFN-γ-producing T cells, and is thus essential for mounting an effective CD8+ T cell
response against transplantable tumors [101,102]. In colitis-associated colorectal cancer,
the NLRP3 inflammasome acts as a negative modulator of tumorigenesis [103], because
NLRP3-dependent IL-18 production promotes epithelial barrier healing, thereby prevent-
ing colorectal cancer progression and metastasis [104–109]. Furthermore, IL-18 can also
induce tumoricidal NK cell activity against metastasized colonic tumor cells in the mouse
liver [105], and inflammasome-dependent pyroptosis in cancer cells exerts direct tumori-
cidal effects [103,110,111]. Lastly, NLRP3 inflammasome-dependent IL-18 downregulates
IL-22-binding protein (IL-22BP), whose production orchestrates IL-22 biological activity,
thereby suppressing intestinal damage at the peak of inflammation [112]. Altogether, these
studies highlight the tumor suppressive role of the NLRP3 inflammasome. Further investi-
gation of the interplay between NF-κB and the NLRP3 inflammasome should broaden our
understanding about the complex roles of NF-κB and TME in tumorigenesis, and may also
lead to the development of new anti-cancer therapies.

6. Conclusions

Inflammation is an evolutionarily conserved host protective mechanism whose ac-
tivity requires precise calibration to ensure the rapid clearance of insults while avoiding
immunopathology. NF-κB signaling represents a rapid and potent response to exogenous
or endogenous insults and plays a central and pleiotropic role in shaping the outcome of
inflammation, including regulating inflammasome activation and the efficacy of anti-cancer
therapies. In addition to inducing the expression of pro-inflammatory cytokines, chemokines,
and cell-survival factors, NF-κB also controls the expression of anti-inflammatory and anti-
apoptotic molecules that fine tune host immune responses [3,13,14,17]. Therefore, it seems
oversimplified to define NF-κB as a pure pro- or anti-inflammatory transcription factor.
Consistent with its complex biological functions, therapies that globally target NF-κB
are impractical for the treatment of inflammation-associated disorders, including cancer.
As NF-κB controls both the gas pedal and brake of inflammation, future investigations
aiming at identifying NF-κB downstream factors and pathways that have clear pro- or
anti-inflammatory roles should pave the way for developing new therapies to combat many
inflammation-associated diseases, including cancer.
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