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Abstract: During an emergency, such as a pandemic in which time and resources are extremely scarce,
it is important to find effective and rapid solutions when searching for possible treatments. One
possibility in this regard is the repurposing of available “on the market” drugs. This is a proof of
the concept study showing the potential of a collaboration between two research groups, engaged in
computer-aided drug design and control of viral infections, for the development of early strategies
to combat future pandemics. We describe a QSAR (quantitative structure activity relationship)
based repurposing study on molecular topology and molecular docking for identifying inhibitors
of the main protease (Mpro) of SARS-CoV-2, the causative agent of COVID-19. The aim of this
computational strategy was to create an agile, rapid, and efficient way to enable the selection of
molecules capable of inhibiting SARS-CoV-2 protease. Molecules selected through in silico method
were tested in vitro using human coronavirus 229E as a surrogate for SARS-CoV-2. Three strategies
were used to screen the antiviral activity of these molecules against human coronavirus 229E in cell
cultures, e.g., pre-treatment, co-treatment, and post-treatment. We found >99% of virus inhibition
during pre-treatment and co-treatment and 90–99% inhibition when the molecules were applied
post-treatment (after infection with the virus). From all tested compounds, Molport-046-067-769 and
Molport-046-568-802 are here reported for the first time as potential anti-SARS-CoV-2 compounds.

Keywords: QSAR; drug discovery; antiviral; SARS-CoV-2; COVID-19; viral protease; molecular
docking; protease inhibitors; human coronavirus 229E

1. Introduction

The pandemic of COVID-19 due to SARS-CoV-2 has made clear the importance of
being prepared. At the beginning of the pandemic, the virus spread very easily among
the global human population because no preventive strategy or treatment was available.
Scientists from all over the world started a race against the clock to understand this
new pathogen without a clear plan or path to follow. The virus was killing millions
of people [1–4] and the researchers were struggling to find a solution to the problem.
Nevertheless, because humans are among the most resilient and resourceful beings, we did
learn a lot. In less than a year, vaccines were developed against SARS-CoV-2 [5]. In this
scenario, computational drug design and discovery, especially the in silico repositioning
strategy, played a crucial role in accelerating the process of identifying potential treatments
against this virus [6,7]. During an emergency, such as a pandemic, in which time and
resources are extremely scarce, it is important to re-adapt (re-purpose) the drugs that are
already on the market [7]. Thus, studies were published in which many FDA-approved,
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drugs were screened as a potential treatment for COVID-19. This, in turn, helped spur
pre-clinical and clinical research in which energy was focused on specific targets and
compounds [8–16].

In this study, we show the potential of a new, multidisciplinary collaboration between
two research groups: one group engaged in computer-aided drug design led by Prof. Jorge
Galvez [17–19] and Prof. Subhash Basak [20–22], and the other led by a virologist Prof.
Sagar Goyal [23] with expertise in pathogenesis and control of viral infections. From the
synergy of these groups, a research unit for the development of early strategies effective
against future pandemics has been established. As a proof of concept, the results of a
QSAR (quantitative structure activity relationship) repositioning study based on molecular
topology and molecular docking of drugs against the main protease (Mpro) of SARS-CoV-2
are presented.

Two viral proteases, Mpro and PLpro [24–26], are responsible for the cleavage of
SARS-CoV-2 polyprotein yielding a complement of structural and accessory proteins
that are essential for virus replication. The crystal structure of the main protease of
SARS-CoV-2 in a complex with inhibitor N3 [27] was retrieved from the Protein Databank
website [28]. A virtual screening based on molecular docking for all the molecules of the
DrugBank database [29] was performed using the Maestro software from the Schrödinger
suite [30]. We selected 80 molecules showing the most favorable docking interaction values
(lower than −8 Kcal/mol) and 126 with the least favorable interaction values (greater than
−2 Kcal/mol). This combined pool of compounds was used to create a new data set for
the development of a QSARs based on topological descriptors using linear discriminant
analysis (LDA) and artificial neural networks (ANN).

Molecular topology is a mathematical paradigm that uses graph theory to translate
a chemical structure into a set of numbers by means of matrices [31–34]. These numbers,
called topological descriptors, encode chemical and topological information that can be
related to a specific biological or pharmacological property of the molecule [34–38]. The
development and application of the discriminant QSAR models allow qualitative discrim-
ination between compounds that have the potential to act as a viral protease inhibitor
and those that do not. We then developed a second molecular topology QSAR strategy
based on multi-linear regression analysis and regression neural networks to quantitatively
predict the docking score value for each potential drug against SARS-CoV-2 protease. The
best candidates were evaluated in vitro using human coronavirus 229E as a surrogate
for SARS-CoV-2.

The aim of this computational strategy is to create an agile, rapid, and efficient method
for the selection of molecules with potential antiviral activity by predicting specific dock-
ing scores and the potential interaction of a drug with a certain target (in this case the
SARS-CoV-2 main protease) without conducting full molecular docking simulation. This
method converts the information on structure-based drug design (docking score from
molecular docking study) to a ligand-based drug design (QSAR modeling). Modeling the
docking score of the main protease (Mpro) of SARS-CoV-2 provides a rapid method to
screen large databases. A final objective of this study was to show the potential power of a
multidisciplinary collaboration as a rapid and reliable system to identify potential antiviral
treatments during future pandemics.

2. Materials and Methods
2.1. QSAR Strategy

Figure 1 shows the algorithm strategy used for the identification of potential inhibitors
of SARS-CoV-2 main protease.
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Figure 1. Search algorithm used to develop in silico strategy for the repositioning of potential Mpro
inhibitors against SARS-CoV-2.

2.2. Creation of a Data Set of Anti-Protease Compounds: Molecular Docking Studio

As suggested in previous sections, the dataset used for the construction of QSAR
models was obtained from a previous molecular docking studio on the DrugBank database;
this library contains 17,271 compounds of approved, investigational, and experimental
(discovery-phase) drugs) [29]. The DrugBank database was screened to determine the
binding affinity of the compounds with the crystallized protein structure of SARS-CoV-2
main protease (Mpro) by means of docking score values. To be exact, the crystal structure
of the main protease of the virus in complex with inhibitor N3 (6LU7), was retrieved from
the Protein Databank website [27].

2.3. Molecular Docking Simulation

The molecular docking simulation was performed by using the Schrodinger Suite 2021-3
software (Maestro suite) Schrödinger, LLC, New York, United States of America [30]; the
default parameters were adopted unless otherwise reported [39]. For docking studies, the
6LU7 crystal structure of SARS-CoV-2 main protease in PDB was used. The main protease
structure was subjected to Protein Preparation Wizard in Maestro. During this process,
the missing hydrogens were added, partial charges were assigned using OPLS-3e force
field, and both hydrogens and heavy atoms were optimized by restrained minimization.
2D structures of the training and test set compounds from the DrugBank database were
converted to 3D structures via the Ligprep module in Maestro. Ligprep corrects the
protonation and ionization states of the compounds, assigns proper bond orders, and
creates the tautomeric and ionization states for each ligand. The receptor grid generation
was calculated based on centroid of co-crystallized ligand (peptide inhibitor N3) with Mpro
(6LU7), defined by the grid-box coordinates [x = −10,712, y = 12,411, z = 68,831], grid-box
size of 30.98 Å, and ligand grid of 10 Å (Figure 2). Rigid receptor docking protocol was
run in standard precision (SP) mode of Glide based on OPLS-3e force field, while ligands
were flexible.
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Figure 2. (A) Binding pocket for Mpro crystallized protein (PDB:6LU7) docking studio. (B) Interaction
of Mpro co-crystallized ligand (inhibitor N3) with key catalytic residues.

The resulting compounds with docking score values between −8 and −12 kcal/mol
were labeled and placed into the active group to be used in the QSAR study, while com-
pounds with a docking score value of >−2 were placed in the inactive group. Docking
studio information made it possible to create a database of potential protease inhibitors. A
total of 274 compounds (206 for the training set and 68 for the external test) were used. All
of the data sets are shown in the Supplementary Material section.

2.4. Topological Descriptors and Statistical Modeling Methods

Topological and topo-chemical indices for the dataset were calculated using alvaDesc
software version 2.0.6, Lecco (Italy), 2021 [40]. Default variable reduction tool from alvaDesc
software has been applied (1821 descriptors have been employed). Information related
to training and external test set data in addition to selected compounds information is
reported in the Supplementary Material section. To develop predictive models, various
statistical methods were used as discussed below.

2.4.1. Linear Discriminant Analysis (LDA)

Linear algorithms such as linear discriminant analysis (LDA) allow a linear combi-
nation of features capable of separating two or more classes of objects in specific classifi-
cation categories. In this study, LDA was employed to generate the discriminant model
DFClass_6LU7, which discriminates between molecules capable and incapable of interacting
with the main protease of the virus. An important aspect of building a robust LDA model is
the selection of the most significant variables or descriptors to characterize the compounds
so that their contribution to the discrimination is high. To select the best descriptors, we fol-
lowed a forward stepwise algorithm based on p-value. Therefore, at each step, the variable
with a more favorable p-value < 0.05 was chosen. The process ends when the algorithm
cannot introduce any more descriptors with a p-value < 0.05. Therefore, at each step, the
variable that adds the most to the separation of the groups is entered into the discriminant
function. Another parameter to assess the significance of the selected descriptor is the
Fisher-Snedecor parameter; higher values indicate a better descriptor. The quality of the
discriminant function is assessed by the Wilks’ lambda parameter [41]. In general, the Wilks’
lambda can take values between 0 and 1; the smaller the value the better the prediction.
Statistica was the software used for developing linear discriminant models [42].
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2.4.2. Multilinear Regression Analysis (MLRA)

A multilinear regression analysis model was developed MLRreg_6LU7 [43] using a
forward stepwise variable selection procedure in which variables are sequentially entered
into the model depending on the p-value selected (threshold: p < 0.05). Subsequently, the
best subseries of six descriptors with respect to the property (6LU7-docking score) are
identified. Therefore, from almost 2000 descriptors calculated, only six top descriptors were
selected for modeling docking score values against Mpro (6LU7). Statistical parameters
indicating the quality of the regression are, among others, correlation coefficient, r2, the F
(Fisher-Snedecor), and p-values.

2.4.3. Artificial Neural Network Analysis (ANN): Classification and Regression

The ANN is a computer-based model in which a number of nodes (also called process-
ing elements, units, or neurons) are interconnected by links in a netlike structure forming
“layers”. A variable value is assigned to each node [44,45]. The nodes can be of three
different kinds: (1) Input nodes, which form the input layer, receive their values by direct
assignation, and are associated with independent variables, with the exception of the bias
node; (2) The hidden nodes (constituting hidden layers) collect values from other nodes
and pass it on to a non-input node; and (3) Output nodes, which collect values from other
units and correspond to different dependent variables, forming the output layer (regression
ANN) or layers (classification ANN). The links between the units have values associated,
named weights, that condition the values assigned to the nodes. Additional weights are
assigned to the bias values, which act as node value offsets. The weights are adjusted
through a training process.

2.5. QSAR Models and Validation
2.5.1. Classification Matrix and External Validation

The discriminant reliability of LDA and ANNClass models is evaluated by the classifi-
cation matrices, which sort all cases from the model into categories by determining whether
the predicted value matches the actual value.

Validation is required after the construction and analysis of the models. In this respect,
the external validation procedure is going to depict how our models classify or predict
information about hitherto never seen compounds. Of 274 compounds, 206 were divided
into training sets and 68 into external sets. Therefore, 25% of the data set was randomly left
out of the model construction as a test set. All data sets are reported in the Supplementary
Material section (Tables S1–S8).

2.5.2. Relative Operating Characteristic Curve (ROC) Curve

To assess the predictive capability of the LDA models and to determine their sensitivity
and specificity, the relative operating characteristic curve (ROC curve) is calculated [46].
The sensitivity is intended as the true positive rate and is defined as the percent of active
molecules correctly classified by the model. Specificity, or true negative rate, is the percent
of non-active molecules correctly classified by the model. In the ROC curve, the y-axis
represents the sensitivity of the model as the discrimination threshold is varied, which
simultaneously affects the specificity of the model. For convenience, the x-axis represents
1-specificity, so that both magnitudes change in the same direction as the discrimination
threshold is varied. In this context, the area under the ROC curve (AUC) is often regarded as
an indicator of the performance of the classifier. A value of AUC = 1 would be obtained for
a perfect classifier, whereas the diagonal line would represent a model with no classification
power in predicting binary outcomes. The best possible prediction method would yield
a point in the upper left corner or coordinate (0, 1) of the ROC space, representing 100%
sensitivity (no false negatives) and 100% specificity (no false positives). The (0, 1) point is
also called a perfect classification. A random guess would give a point along a diagonal
line (the so-called line of no-discrimination) from the bottom left to the top right corners
(regardless of the positive and negative base rates).
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2.6. Pharmacological Distribution Diagrams

Linear discriminant analysis in topological QSAR enables the plotting of frequency
distribution diagrams, called Pharmaceutical Distribution Diagrams. These diagrams
represent the frequency of the number of molecules within an interval of values of the
discriminant function vs. these values [47]. The plot provides a straightforward way of
visualizing the regions of minimum overlap between active and inactive compounds; DF
regions with the highest expectancy of finding active molecules and range of applicability
domain for a DF. For an arbitrary range of values of a given function, an “expectancy of
activity” can be defined as Ea = a/(i + 1), where “a” is the number of active compounds
in the range divided by the total number of active compounds and “i” is the number of
inactive compounds in the interval divided by the total number of inactive compounds.
The expectancy of inactivity is defined in a symmetrical way, as Ei = i/(a + 1).

2.7. Virtual Screening

After the QSAR models were established, virtual screening of the Emolecule database
was carried out to identify potential repurposed drugs and novel synthetic chemicals
against SARS-CoV-2. A stepwise strategy was adopted for performing a virtual screening
using each of the models described.

2.8. In Vitro Testing

Human respiratory coronavirus 229E was used as a surrogate of SARS-CoV-2. The
virus was propagated and titrated in MRC-5 cells (human fetal lung fibroblast cells). The
titers, expressed as Log10 TCID50, were calculated by the Karber [48] method. The MRC-5
cells were grown in Eagle’s MEM containing fetal bovine serum and antibiotics. We used
three different in vitro methods to determine the efficacy of the six potential antiviral
compounds (see below). All these dilutions were inoculated in three wells each and all
experiments were done in duplicate. Both negative controls which consisted of cell cultures
not infected with the virus, and positive controls, which consisted of cell cultures infected
with the virus but not treated with any drug, have been considered in the experiments.

a. Pre-treatment of cells: After discarding its growth medium, the cell monolayers
were covered with 100 µL of a solution containing 50 µg/mL of a given compound).
Each compound was tested in separate cell monolayers. After incubation at room
temperature for 60 min, the monolayers were washed with sterile PBS. Immediately,
the washed monolayers were inoculated with serial 10-fold dilutions of 229E (prepared
in MEM). The plates were then incubated at 37 ◦C in a 5% CO2 incubator and examined
daily under an inverted microscope for the appearance of virus-induced cytopathic
effects (CPE). After 5 days of incubation, 229E titers in pre-treated and untreated
monolayers were calculated and compared.

b. Co-treatment of cells with antivirals and virus: Serial 10-fold dilutions of 229E were
prepared separately in 1:10 dilutions of each antiviral. From each virus dilution,
100 µL was used to infect MRC-5 monolayers. The titers of 229E prepared in antiviral
solutions and 229E prepared in MEM (control) were calculated and compared after
5 days of incubation at 37 ◦C in a 5% CO2 incubator.

c. Post-infection treatment of cells with antivirals: Cell monolayers were inoculated with
serial 10-fold dilutions of the virus followed by incubation at 37 ◦C for 2 h for viral
attachment to the cells. After virus attachment, the monolayers were washed and
treated separately with 100 µL of a given antiviral. The titers of 229E were calculated
after 5 days of incubation at 37 ◦C in a 5% CO2 incubator and compared with the
control virus titer.

3. Results and Discussion
3.1. Molecular Docking Simulation on Mpro

As mentioned above, the binding affinity of over 17,000 compounds in the DrugBank
database [29] was studied against the main protease (Mpro) of SARS-CoV-2 using crystal-
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lized protein (PDB: 6LU7 [27]). The selection of the best ligand-receptor docking complexes
was based on the values of binding affinity reported as docking scores by the Glide module
in the Schrödinger software. To assess the quality of the ligand-receptor interaction, the
results of the simulation were compared with those obtained with co-crystallized peptide
inhibitor N3 on 6LU7 [49]. The results of the docking study for each molecule of the
DrugBank database along with its docking score (lower than −8 kcal/mol and higher than
−2 kcal/mol) are shown in Tables S1 and S2 in the Supplementary Materials Section. Based
on the results of the docking simulations, a pool of 274 molecules was created for use in the
QSAR studies.

3.2. SARS-CoV-2 Main Protease QSAR Models and Validation

To identify potential drugs with anti-Mpro activity, four computational models based
on different statistical techniques were developed including linear discriminant analysis
(LDA), multilinear regression analysis (MLR), and artificial neural network (ANN) models
for classification and regression analyses.

3.2.1. Discriminant Models and Validation

The first discriminant QSAR model predicts the qualitative capacity of the drugs to
interact with Mpro of SARS-CoV-2 and enable its inhibition. Compounds are classified as
active or inactive if their docking scores are <−8 kcal/mol or >−2 kcal/mol, respectively.
Both training and test data sets were used to construct each model. The first model,
named “(DFClass_6LU7)”, focuses on identifying the mathematical pattern that discriminates
between drugs with low and high docking scores against the protease. The second model
was developed using the same data and machine learning methods. To be precise, artificial
neural networks were used to generate a predictive model capable of classifying potential
protease inhibitors based on the docking score values. Table 1 shows the statistics and
descriptors for the two classification models. Detailed information regarding training and
external test sets for classification models is given in Tables S1–S4.

Table 1. Development of classification models to predict the anti-SARS-CoV-2 activity (protease
inhibition activity).

Statistical
Method Model Model Parameters

LDA DFClass_6LU7 = (2.917 × MPC08)− 10.550 N = 206 λ = 0.305 F = 417.37 p < 0.00001

ANN
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ANNClass_6LU7
MLP 1 *-2-2

Training algorithm: BFGS 8
Error function: Entropy

Hidden activation function: Tanh
Output activation function: Softmax

N: number of molecules; λ: Wilks’ lambda; F: Fischer-Snedecor parameter; p: p-value or probability value. * Input
network: MPC08.

Matrices for classification models showing an average correct classification rate of
97% for all models are shown in Table 2. Both DFClass_6LU7 and ANNClass_6LU7 models
report higher sensitivity than specificity. However, its ability to identify inactive drugs
is above 94%. The results obtained after external validation were even better than those
presented by the selected models (Table 2); higher than 97% correct classification was found
for test sets for both models indicating that the models are robust and reliable. The same
classification matrices were obtained for training and test data sets of both models, which
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indicates that there is no difference between linear and non-linear statistical techniques to
predict anti-SARS-CoV-2 activity by means of docking score value of 6LU7 protease.

Table 2. Classification matrices for classification models and external validation.

Model External Validation

% of Correct
Classification Active Inactive % of Correct

Classification Active Inactive

Active 100.0 80 0 100.0 26 0
DFClass_6LU7 Inactive 94.4 7 119 95.2 2 40

Average 97.2 97.6

Active 100.0 80 0 100.0 26 0
ANNClass_6LU7 Inactive 94.4 7 119 95.2 2 40

Average 97.2 97.6

Both models were built using a path count descriptor (MPC08) implemented inal-
vaDesc version 2.0.6, Lecco (Italy), 2021 [40]. This index, obtained from a hydrogen-depleted
molecular graph G, encodes the number of paths of order 8 that can be identified in a
molecule. As this descriptor takes a positive value for DFClass_6LU7 equation, a higher
number of paths of order 8 in a molecule results in a greater chance of exhibiting anti-SARS-
CoV-2 activity. Figure 3 shows that compounds with MPC08 value greater than 3.7 are
considered active by the DFClass_6LU7 model (for instance adrabetadex and benzoyl-arginine-
alanine-methyl ketone) while those with lower values are labeled as inactive (agmatine
and NCX701). Agmatine has a MPC08 value of zero, as no path of order 8 is present in
its structure. It appears that there is an optimal number of paths of order 8 above which
it is possible to establish a correlation with anti-SARS-CoV-2 activity. This is probably
because NCX701 contains a path of order 8 in its structure, despite being labeled as inac-
tive. This chemo-mathematical feature may also be correlated with biochemistry when
considering a possible correlation with the steric space of the molecules inside the catalytic
pocket of the protein. A higher volume of the ligands indicates a higher probability to
establish interactions.
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3.2.2. Regression Models and Validation

Once the discriminant classification models were developed and validated, two other
models were introduced in the QSAR strategy focused on the quantitative prediction of the
most favorable docking score for potential 6LU7 protease inhibitors. Two QSAR regression
models were built; a multilinear regression model MLRreg_6LU7 and an artificial neural
network regression model ANNreg_6LU7. The same data sets used for the discriminant
models (training and test set) were employed, but this time the objective was to predict
the docking scores of the interactions with 6LU7 protease. Detailed information regarding
training and external test sets for both MLR and ANN regression models is given in
Tables S5–S8.

As seen in Table 3, both models yield similar correlation coefficients for the training
and external test sets. Therefore, both linear and non-linear statistical techniques show good
results when predicting the docking score. It should be noted that the ANN employs only
four descriptors to train the network while the MLR model includes up to six descriptors
in its equation. Nevertheless, considering the size of the dataset with 206 compounds, a 4-
or 6-descriptor predictive model does not suffer from over-fitting. The descriptors used for
the construction of regression models are listed in Table 4. It is evident that different types
of indices are involved, such as 2D matrix-based descriptors, atom-centered fragments,
chirality descriptors, edge adjacency indices, functional groups count, and pharmacophore
descriptors. Therefore, our regression models take into account different aspects of the data
set by using different types of descriptors implemented in the alvaDesc software version
2.0.6, Lecco (Italy). 2021 [40].

Table 3. Regression models developed to predict docking score against protease 6LU7 of SARS-CoV-2.

Statistical Method Model Model Parameters

MLR

Docking score (6LU7)
= 1.041

−
(

0.614 × SpDiamEA(bo)

)
−
(

1.765 × Eig09EA(bo)

)
−(6.403 × nRNR2)
+(7.069 × N − 068)
+(0.115 × CATS2D05LL )

−(0.463 × nLevel1)

N = 206
r2 = 0.884

F = 255.927
p < 0.00001
SEE = 1.415
q2 = 0.741

ANN
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Table 4. Topo-chemical descriptors used in the construction of SARS-CoV-2 models.

Descriptor Type Descriptor Name Descriptor Definition

2D matrix-based descriptors SM4_B(m) Spectral moment of order 4 from Burden
matrix weighted by mass

Atom-centered fragments N-068 Al3-N

Chirality descriptors nLevel1 Number of neighboring atoms of the
chiral center (level 1)

Chirality descriptors s2_relPathLength Maximum path length of the substituent
2 normed by the heavy atoms

Edge adjacency indices Eig09_EA(bo) Eigenvalue nº 9 from edge adjacency
matrix weighted by bond order

Edge adjacency indices SpDiam_EA(bo) Spectral diameter from edge adjacency
matrix weighted by bond order

Functional group counts nRNR2 Number of tertiary amines (aliphatic)
Pharmacophore descriptors CATS2D_05_LL CATS2D Lipophilic-Lipophilic at lag 05

We then analyzed some of the most relevant descriptors for determining the chemico-
mathematical pattern related to anti-protease activity by means of docking score prediction.
Docking score predicted by the MLR model adopts negative values for drugs with theoret-
ically higher anti-protease activity. Therefore, descriptors contributing negatively to the
equation are a priori the ones with a direct impact in explaining the property: SpDiamEa(bo),
Eig09EA(bo), nRNR2, and nLevel1. However, in the case of nLevel1, a direct correlation
with docking score value between active and inactive drugs can be observed. As shown in
Table 4, nLevel1 considers the number of neighboring atoms of the chiral center.

Table S5 shows that almost all drugs with a low docking score value (potential protease
inhibitors) exhibit a value of 3 on this descriptor. On the other hand, higher values of
docking score (non-protease inhibitors) are related to ligands exhibiting 0 value at nLevel1
chirality descriptor do not have a chiral center. Figure 4 shows two drugs as an example of
this pattern highlighted by the nLevel1 descriptor; Ornipressin exhibiting a low docking
score value (potential protease inhibitors) and adopting a value of 3 on this descriptor,
and Agmatine with a predicted higher docking score value (non-protease inhibitors) and
adopting a 0 value for the nLevel1 descriptor.
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Regression QSAR models (employing 2D descriptors) already described are focused
on inferred molecular docking scores (determined by the 3D ligand conformation analysis),
providing a rapid way to screen large databases of small molecules without conducting
full molecular docking simulations. So why don’t we use 3D descriptors? The purpose
of our QSAR analysis was only to predict docking scores capacity for unknown com-
pounds (without considering the conformation adopted by the drug), as Daré and Freitas
reported [50] the 2D approximation seems to be the optimal one, as it avoids the complex
steps of conformational screening and 3D alignment while providing robust predictive
models. However, if the scope of the QSAR model is explaining the effects of bioactive
conformations in docking score then 3D descriptors could add valuable information to
the prediction.

3.2.3. ROC Curve

To assess the reliability of the classification models, ROC curves were generated for
each model. The ROC curve provides a graphical plot that illustrates the diagnostic ability
of a binary classifier system as its discrimination threshold is varied. Figure 5 shows the
ROC curves for LDA and ANNClass_6LU7 models. For this discriminant equation, the area
under the curve (AUC) is greater than 0.96 for all models, which suggests a 96% chance that
the models will correctly distinguish between an active and inactive/decoy compound.
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3.2.4. Pharmacological Distribution Diagram

The pharmacological distribution diagram (PDD) provides information on the applica-
bility range of discriminant models. The PDD for the LDA model (Figure 6) indicates a very
intuitive way for distribution and classification of the training set data (active and inactive).
As shown in Figure 6, DFClass_6LU7 values between 1 and 8.25 show the range of the highest
expectancy of harboring anti-SARS2 drugs. Drugs that do not present anti-SARS-CoV-2
activity, generally have DF values between −12 and 0 although we found some areas with
slight overlapping between active and inactive throughout the PDD. Finally, drugs with
DF values greater than 9 and less than −12 were considered outliers.
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Figure 6. Pharmacological distribution diagram for anti-SARS-CoV-2 drugs.

Once the chemo-mathematical pattern of drugs is determined with docking score
values against Mpro, it is possible to virtually screen for novel drugs that may have anti-
SARS2 activity. The molecules with potential anti-SARS-2 activity (1) should be labeled
as active by classification models (DFClass_6LU7 and ANNClass_6LU7); (2) should have a
predicted docking score lower than −5 kcal/mol (MLRreg_6LU7 and/or ANNreg_6LU7), and
finally (3) be commercially available. Molecular structures of the final pool of compounds
selected by virtual screening are shown in Figure 7.
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As shown in Table 5, six compounds were labeled as potential anti-SARS-CoV-2 agents,
with a probability of activity or confidence level greater than 85% by the classification
models and at least one regression model predicting a docking score value of −5 kcal/mol.
However, Docetaxel and Ginsenoside showed a difference of one kcal/mol between MLR
and ANN regression models. For the remaining four compounds both models predict the
same value of the docking score. The values of the descriptors for the selected anti-SARS-
CoV-2 compounds are shown in Table S9.

Table 5. Six drugs selected by the Molecular Topology strategy as potential anti-SARS-CoV-2.

Drug DFClass_6LU7 P.A. ANNClass_6LU7 Conf. Levels Docking
ScoreMLRreg_6LU7

Docking
ScoreANNreg_6LU7

Docetaxel 7.630 1.000 1 0.873 −7.853 −6.813

Ginsenoside 8.379 1.000 1 0.873 −5.319 −4.300

Josamycin 5.473 0.996 1 0.873 −6.158 −6.718

Molport-046-067-769 4.598 0.990 1 0.872 −8.628 −8.842

Molport-046-568-802 3.557 0.972 1 0.871 −8.213 −8.584

Pepstatin A 1.758 0.853 1 0.854 −6.163 −5.975

Conf. confidence; P.A.: probability of being classified as active by the LDA model. Molport-046-067-769:[(3R,6S)-
3,4,5-tris(acetyloxy)-6-{4-[bis(2-hydroxyethyl)carbamoyl]-2-methoxyphenoxy}oxan-2-yl]methylacetate; Molport-
046-568-802:(2S,5S)-2-[(4-methoxyphenyl)methyl]-4,5-dimethyl-11-[4-oxo-4-(2,4,5- trimethoxyphenyl)butanoyl]-
1,4,7,11-tetraazacyclopentadecane-3,6,15-trione.

To further validate the developed predicted models, we performed a docking studio
obtaining the theoretical docking score values of these compounds against SARS-CoV-2
protease (PDB: 6LU7). All six compounds had docking score values of <−4 kcal/mol
(Table 6). Analyzing the co-crystallized ligand interactions with Mpro, it can be seen as
the peptide inhibitor N3 interacted through hydrogen bonds with residues Thr26, Gln189,
Glu166, Asn142, and Gly143 (Figure 2B) of 6LU7 with the depiction of the binding site
(Figure 2A). Of all potential anti-SARS-CoV-2 compounds selected by Molecular Topology
stands Molport-046-067-769 as the one with higher binding affinity for 6LU7 binding pocket
(docking score: −7.514) (Figure 8), closest to co-crystallized ligand inhibitor N3 (docking
score: −8.019). This compound establishes interactions with four of the five amino acids
(AAs) with which the co-crystallized ligand interacts with Mpro (Inhibitor N3) named
Thr26, Gln189, Glu166, and Gly143 (Table 6). All AA interactions with Mpro binding pocket
from all reported potential anti-SARS-CoV-2 are reported in Table 6.
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Table 6. Potential anti-SARS-CoV-2 compounds selected by Molecular Topology and docking score
for Mpro (PDB:6LU7).

Compound Docking Score Interaction with Indicated Amino Acids

Inhibitor N3
(co-crystallized ligand) −8.019

Glu166 (3× H, salt bridge)
Gly143 (H)
Thr26 (H)

Asn142(2× H)
Gln189 (H)

Molport-046-067-769 −7.514

Glu166 (2× H, salt bridge)
Gly143 (H)
Thr26 (H)

Gln189 (H)
His41 (H)

Pepstatin A −7.155,

Glu166 (2× H, salt bridge)
Gln189 (H)
His164 (H)
Ala191(H)

Docetaxel −6.916 Glu166 (4× H, salt bridge)
Gln189 (H)

Molport-046-568-802 −6.361

Glu166 (H)
Asn142 (H)
Thr26 (H)

Gln189 (H)

Ginsenoside −5.319
Gln189 (H)

Glu166 (2× H)
Gly170(H)

Josamycin −3.995 Glu166 (2× H, salt bridge)

Finally, these six compounds were tested in vitro to further validate our models and to
determine their ability as anti-SARS-CoV-2 compounds using human coronavirus 229E as
a surrogate. It is worth noting that some of these compounds have already been reported
as being antiviral and/or anti-COVID-19. For example, Ginsenoside has shown both
antiviral [51–53] and anti-COVID-19 [54] activities. Josamycin is considered to have anti-
COVID-19 activity [55,56] while Pepstatin A has been reported as antiviral [57–59] as well
as a SARS-CoV-2 protease inhibitor [60–62]. As far as we know, no antiviral activity has
been reported for Docetaxel, Molport-046-067-769, and Molport-046-568-802.

3.3. Antiviral Activity of Chemicals against Human Coronavirus 229E

The human coronavirus 229E was used as a surrogate of SARS-CoV-2. The virus was
grown and titrated in MRC-5 cells (human lung fibroblast cells). Before starting the experi-
ment, all six compounds were dissolved individually in 100% DMSO at a concentration
of 500 µg/mL. This solution was then diluted 1:2 (250 µg/mL), 1:5 (100 µg/mL), and 1:10
(50 µg/mL) followed by testing the cytotoxicity of all four concentrations in MRC-5 cells.
We observed that solutions containing 500 µg/mL, 250 µg/mL, and 100 µg/mL of all six
compounds were toxic to MRC-5 cells. Hence, further in vitro testing of antiviral activity
was done using 50 µg/mL of the compounds. Since it was a proof-of-the-concept study, we
tested only a single concentration of the six compounds against human coronavirus 229E.
The results shown in Table 7 are an average of duplicate experiments.
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Table 7. The effect of 50ug/mL of the six compounds on human coronavirus 229E.

Compound Virus Titers Shown as Log10 TCID50/100 µL (Per Cent Virus Inactivation)

Stock Virus Pre-Treatment Co-Treatment Post-Treatment

Josamycin 5.7 2.83 (99.87) 3.1 (99.75) 4.0 (98.00)

Pepstatin 5.7 3.5 (99.37) 3.6 (99.20) 4.5 (93.69)

Docetaxel 5.5 3.0 (99.68) 3.5 (99.00) 4.5 (90.00)

Molport-046-067-769 5.5 2.83 (99.78) 2.60 (99.87) 3.83 (97.86)

Molport-046-568-802 5.5 2.66 (99.85) 3.16 (99.54) 4.1 (96.01)

Ginsenocide Rh1 5.5 2.83 (99.78) 2.05 (99.96) 3.5 (99.00)

As shown in Table 7, all compounds inhibited >99% of the human coronavirus 229E
when administered as pre-treatment (treatment of cells with the compound before apply-
ing virus) and co-treatment (treatment of cells with indicated compound and the virus
simultaneously). In the post-treatment modality (treatment of cells with the compound
after application of the virus), however, 90–99% of the virus was inactivated. Docetaxel
is a well-known antimitotic agent, derived from paclitaxel, with a significant level of tox-
icity. Its common adverse reactions include a reduction in immune system activity and
certain blood disorders. Josamycin is a macrolide with an average safety profile in terms
of toxicity. However, there are reports of complications related to its use in the presence
of hepatic or renal impairment. In addition, there is a potential for cardiotoxicity related
to prolongation of the QT interval, although it is seldom fatal. Pepstatine A seems to be a
valid candidate, with acceptable levels of toxicity. The same is true for Ginsenoside rh1,
which is essentially safe and is of natural origins. As far as we know, the anti-SARS-CoV-2
action of Molport-046-067-769 and Molport-046-568-802 is reported here for the first time.
These two compounds do not appear to have any significant side effects or toxicity.

4. Conclusions

This study reports the identification of a set of potential inhibitors of the main pro-
tease of SARS-CoV-2 in silico and in vitro. We achieved this by using three-dimensional
information, e.g., molecular docking, ligand-receptor interactions into chemometrics terms,
and by using pattern recognition and machine learning techniques based on molecular
topology. The idea was to show how the topological paradigm, which is capable of trans-
lating physicochemical information into a set of numbers by means of graph theory, can
be a useful and time-saving tool in drug design and discovery. Despite the known ability
of molecular docking to determine specific ligand-receptor interaction, screening a large
number of molecules against a specific receptor is usually a long process. The possibil-
ity to translate this process, into a set of topological models based on discriminant and
regression analysis, allows the screening of larger databases (billions of molecules) in a
very short time. Thanks to the QSAR strategy, the in silico results were robust, with an
average rate of correct classification for the discriminant analysis above 97% for both active
and inactive compounds. The best candidates selected during the computational strategy
were then tested in vitro on human coronavirus 229E. All compounds showed >99% virus
inhibition when administered as pre-treatment and co-treatment and values of 90–99% of
inhibition when administered as post-treatment. Further studies are needed for a deeper
analysis of the selected molecules to determine which of them may be the most suitable
for repurposing against SARS-CoV-2. Several factors such as price, toxicity, and potential
risks (e.g., generation of antiviral resistance) need to be studied. Both Molport-046-067-769
and Molport-046-568-802 are described for the first time here as potential inhibitors of
SARS-CoV-2 main protease. In addition, according to the literature, their toxicity profile is
favorable. Thus, we believe that both of them could be good candidates for further testing
as potential treatments against SARS-CoV-2.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines10061342/s1, Table S1: DFClass_6LU7 training set:
compounds identification, 6LU7 Mpro docking score, descriptors value, classification and probability
of being classified as active; Table S2: DFClass_6LU7 external set: compounds identification, 6LU7
Mpro docking score, descriptors value, classification and probability of being classified as active;
Table S3: ANNClass_6LU7 training set: compounds identification, 6LU7 Mpro docking score, de-
scriptors value, classification and confidence level associated; Table S4: ANNClass_6LU7 external set:
compounds identification, 6LU7 Mpro docking score, descriptors value, classification and confidence
level associated; Table S5: MLRA_reg6LU7 training set: compounds identification, 6LU7 Mpro
docking score, descriptors value and 6LU7 Mpro docking score predicted; Table S6: MLRA_reg6LU7
external set: compounds identification, 6LU7 Mpro docking score, descriptors value and 6LU7 Mpro
docking score predicted; Table S7: ANNreg_6LU7 regression training set: compounds identification,
6LU7 Mpro docking score, descriptors value and 6LU7 Mpro docking score predicted; Table S8:
ANNreg_6LU7 regression external set: compounds identification, 6LU7 Mpro docking score, de-
scriptors value and 6LU7 Mpro docking score predicted; Table S9: Descriptors’ value for the selected
anti-SARS-CoV-2 compounds.
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