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Abstract: The purpose of this study is to develop a deep radiomic signature based on an artificial
intelligence (AI) model. This radiomic signature identifies oocyte morphological changes correspond-
ing to reproductive aging in bright field images captured by optical light microscopy. Oocytes were
collected from three mice groups: young (4- to 5-week-old) C57BL/6J female mice, aged (12-month-
old) mice, and aged mice treated with the NAD+ precursor nicotinamide mononucleotide (NMN), a
treatment recently shown to rejuvenate aspects of fertility in aged mice. We applied deep learning,
swarm intelligence, and discriminative analysis to images of mouse oocytes taken by bright field
microscopy to identify a highly informative deep radiomic signature (DRS) of oocyte morphology.
Predictive DRS accuracy was determined by evaluating sensitivity, specificity, and cross-validation,
and was visualized using scatter plots of the data associated with three groups: Young, old and
Old + NMN. DRS could successfully distinguish morphological changes in oocytes associated with
maternal age with 92% accuracy (AUC~1), reflecting this decline in oocyte quality. We then employed
the DRS to evaluate the impact of the treatment of reproductively aged mice with NMN. The DRS
signature classified 60% of oocytes from NMN-treated aged mice as having a ‘young’ morphology. In
conclusion, the DRS signature developed in this study was successfully able to detect aging-related
oocyte morphological changes. The significance of our approach is that DRS applied to bright field
oocyte images will allow us to distinguish and select oocytes originally affected by reproductive
aging and whose quality has been successfully restored by the NMN therapy.

Keywords: oocyte; aging; morphology; machine learning; NMN

1. Introduction

In humans, the non-renewable reserve of oocytes is laid down during in utero devel-
opment, where they must be maintained prior to ovulation and be ready for fertilization
decades later. Given the decades that oocytes must persist in the ovarian environment,
oocytes are highly vulnerable to aging, with impacts that occur well before other tis-
sues [1,2]. Oocyte aging represents a key constraint on natural and assisted reproduction,
yet the ability to objectively measure the impacts of aging on oocytes in a non-invasive
manner is lacking. Currently, oocyte morphological analysis is undertaken using light
microscopy by trained embryologists to provide a rough assessment of oocyte quality.
However, visual assessment is highly subjective and poorly predictive [3]. Little work
has been done on the impact of biological aging on oocyte morphology, with one study
observing no difference for 20, 25, and 30 weeks of age in mice on zona pellucida thickness
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or periventricular space in mice [4]. An accurate methodology for assessing age-related
differences in oocyte morphology is needed. This would have potential clinical utility (for
optimizing oocyte selection) and enable new avenues of research for reversing age-related
declines in oocyte quality.

Recently, artificial intelligence (AI) has been widely applied to objective biomedical
image assessment for disease diagnosis and monitoring to enable the precise customization
of treatment plans [5–9]. Deep learning strategies (machine learning algorithms that use
multiple layers to progressively extract higher-level features from data) have been used
to interpret electroencephalogram (EEG), electrocardiogram (ECG), magnetoencephalog-
raphy (MEG), and magnetic resonance imaging (MRI) data, to improve reliability and
precision [10]. This recent surge in interest has led to several attempts to apply AI method-
ologies to the assessment of embryo viability for human-assisted reproduction, although
success has been variable [11–13]. AI methods have been proposed to automate sperm, and
embryo assessment through morphology analysis such as time-lapse imaging [14–18].

In this study, we hypothesized that aging impacts oocyte morphological properties
and generates a specific morphology signature in oocytes. As such, we applied a deep
radiomic (i.e., relating to the algorithmic extraction of a large number of features from
medical images) signature (DRS) method to detect age-related changes in oocyte morphol-
ogy. DRS is an AI quantitative approach for automating the extraction of information from
images to standardize the interpretation of medical imaging. Brightfield images of oocytes
were segmented, and morphological features were extracted using deep structured nets
which capture features including shapes and textures. This approach identifies image dif-
ferences resulting from characteristics perceptible to the human eye, such as oocyte size and
circularity. In addition, this technique can capture characteristics that are imperceptible by
traditional visual inspection of oocytes, including the specific spatial distribution of image
pixel intensities and pixel interrelationships, where there are no existing mathematical
definitions with which they can be captured [19].

To discover the morphological DRS for the impact of maternal age on oocyte mor-
phology, we used a novel combination of artificial intelligence methods, including deep
learning [20–22], swarm intelligence [7,23,24], and discriminative analysis [25,26]. Subse-
quent to the DRS discovery, we applied our new DRS to brightfield microscopy images of
oocytes obtained from aged mice that had been treated with nicotinamide mononucleotide
(NMN). NMN is an orally deliverable metabolic precursor to the metabolic redox cofactor
nicotinamide adenine dinucleotide (NAD+) and is essential for energy metabolism (via
its involvement in the electron transport chain), DNA repair, and epigenetic homeostasis.
We have previously shown that NMN positively impacts female reproductive aging [27].
In this way, we tested our hypothesis that the DRS would be sensitive to reversals of the
impact of aging by comparing the morphology of old, NMN oocytes to that of young and
old oocytes. To the best of our knowledge, this is the first study where age-related oocyte
morphological changes have been quantified using artificial intelligence.

2. Materials and Methods
2.1. Oocyte Collection and NMN Treatment

The oocyte images used in this study were brightfield microscopy images that were
collected during a recent study [27] but whose morphology was not previously analyzed.
To recover metaphase II (MII) oocytes, aged (12-month-old) and young (4- to 5-week-old)
C57BL/6J female mice were maintained in individually ventilated cages at 22 ◦C at 80%
humidity at a density of 5 per cage, with ad libitum access to food and water. All water
in this animal house was acidified to pH 3 with HCl to decrease microbial growth. The
UNSW animal house maintained a 12 h light/dark cycle with lights on at 0700 and off at
1900. Experiments were carried out with prior approval of the UNSW Animal Care and
Ethics Committee (ACEC) under ACEC number 18/133A. UNSW ACEC operates under
strict animal ethics guidelines from the National Health and Medical Research Council
(NHMRC) of Australia.
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Aged females were treated with NMN in drinking water (2 g/L) for 4 weeks. Oocytes
from young mice are of very high quality and have high developmental competence, as
such no additional benefit is seen for NMN treatment and hence this was not examined.
After 4 weeks, both aged and young females were treated with an intraperitoneal (i.p.)
injection of pregnant mare serum gonadotrophin (PMSG; Folligon, Intervet, Boxmeer, The
Netherlands) to stimulate follicle growth, followed by an i.p. injection of human chorionic
gonadotrophin (hCG; Chorulon, MSD Animal Health, Sydney, Australia) 46 h later to in-
duce ovulation. Young females were administered 5 IU PMSG and 10 IU hCG, whereas aged
animals were treated with 10 IU PMSG and 10 IU hCG COCs were collected from oviductal
ampullae using a 27-gauge needle and collected in HEPES-buffered α-minimum essential
medium (α-MEM; GIBCO Life Technologies, Grand Island, NE, USA) supplemented with
3 mg/mL bovine serum albumin (BSA; Sigma Aldrich. St. Louis, MO, USA) 14–16 h after
hCG injection. Oocytes were stripped of their cumulus cells with hyaluronidase (concen-
tration, supplier, etc.). Non-degenerate, nominally healthy oocytes were then placed into
equilibrated Hank’s balanced salt solution (HBSS) under paraffin oil for imaging. Finally,
the number of collected oocytes from young, old, and old NMN-treated mice are 26, 21,
and 29, respectively.

2.2. Microscopy Imaging

Standard brightfield microscopy imaging was performed on an Olympus iX83 sys-
tem with a 40× oil objective (NA 1.15) and a Prime95B™ sCMOS (Photometrics) camera
operated below −30 ◦C to reduce noise. The image size was 1200 × 1200 pixels.

3. Data Analysis

We applied a novel artificial intelligence strategy combining deep learning, swarm
intelligence, and discriminative analysis to images of mouse oocytes taken by bright
field microscopy to create a highly informative deep radiomic signature (DRS) of oocyte
morphology. The process of data analysis is illustrated in Figure 1. After bright field
imaging, oocytes were segmented to isolate the image sections containing oocytes only.
Then, oocyte images were augmented [28] to artificially expand the dataset by adding
images that are intuitively equivalent to the original images (details in Section 3.1. Data
augmentation). Next, old and young oocytes were provided to the deep learning nets
which were constructed to extract the deep information where several (here N = 3) bespoke
deep learning nets with different structures and resolutions were implemented to extract
accurate, data-driven image feature information (details in Section 3.2. Deep convolutional
neural network). Further, the information associated with old and young oocytes was used
to discover the DRS.

To discover DRS, we used discriminative analysis based on the feature subset iter-
atively selected from the pool of features by swarm intelligence, a technique that draws
on the collective behavior of a group of naïve agents [29] (details in Section 3.3. Swarm
intelligence). To this end, data points were partitioned into training data set (80% of data)
and testing data set (20% of data) through a cross-validation process. The DRS can take
advantage of numerous image characteristics including size, circularity, the spatial distri-
bution of variations in pixel intensities, and pixel interrelationships. Using the training
data set, feature values from the oocyte groups under consideration (here, young and old
oocytes) are represented in a 2-D discriminative space spanned by two canonical variables
providing the highest separation of these clusters measured by the Fisher distance (FD)
(ratio of between-cluster and within-cluster variances) [30]. The canonical variables in our
work are the optimal linear combinations of the utilized features. Further, the testing data
points are projected onto this 2D discriminative space, and their Fisher distance (FD) is
evaluated. This is followed by the next round of feature selection (new subset) by swarm
intelligence and discriminative cluster analysis where the maximization of FD calculated
on the testing data serves as the criterion in the swarm intelligence process. This iterative
search for improved feature subsets is carried out until the algorithm achieves satisfactory
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convergence of FD with respect to its changes between consecutive swarm intelligence
iterations. This DRS was then used to obtain the support vector machine classifier (details
in Section 3.4) allowing us to distinguish old vs young oocytes which were rigorously
cross-validated and finally we used that classifier to evaluate the NMN + old oocytes and
produced the assessment of the NMN treatment outcomes.
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Figure 1. Data analysis methodology employed in this study.

3.1. Data Augmentation

Image augmentation [28] is a technique to artificially expand the dataset by adding
images that are intuitively equivalent to the original images, in this case, images of oocytes
that have been rotated by various angles, or reflected along various axes—as the oocyte
orientation on the microscope is irrelevant This leads to enhancements in both the quantity
and diversity of the data for training models, improving the performance and ability of
the model to generalize. With image augmentation, CNN is able to learn features that are
invariant with respect to their location in the image and image orientation. Image augmen-
tation can aid the model in learning features that are invariant to intuitively acceptable
image transforms such as left-to-right orientation to top-to-bottom ordering, etc.
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In this work, we applied image augmentation to deal with the limited number of
training images and enhance the performance of the CNN for discovering the DRS. For
data augmentation, oocyte images and their mirror reflections were rotated at different
angles (45◦, 90◦, 13◦, 18◦).

3.2. Deep Convolutional Neural Network

A convolutional neural network (CNN) is a deep learning strategy that automatically
performs feature identification [31]. To identify features, the CNN carries out several
procedures called convolutional layers that are sequentially applied to an input image
to learn the features that in traditional algorithms were derived based on mathematical
feature definitions [32]. This independence from mathematical definitions that represent
prior knowledge in the feature extraction is the major advantage of CNN. A convolutional
layer contains a number of sub-procedures called filters where image convolution with
specific filter arrays is carried out to extract image information. As an example, a filter with
a 3 × 3 array whose parameters are all 1/9 computes the average of 9 pixels of the image
after convolution. The number of filters can vary from layer to layer. The parameters of
these arrays could be taken from the literature, where one can source filter arrays from
convolutional nets previously trained on large image data sets [33]. This is possible because
some image features, such as edges, shapes, corners, and intensity are common in a wide
range of images, enabling knowledge transfer [33]. Such filter sharing adds efficiency while
maintaining good generalization [34]. Alternatively, the filters could be learned from the
dataset through a learning process [35]. Training is the step where the network learns
from the data. Each filter array is assigned with random parameters and the classifier
goes a forward pass based on the data to predict the class labels. Further, the predicted
class labels are compared against the actual class labels and an error is calculated. This
error is subsequently back propagated across the network and parameters are revised
accordingly [35].

To apply the filter to the input image, the filter array is moved across the width
and height of the input image, and the dot products between the input image and filter
array are computed at every spatial position. The output of the filter is another image
of reduced size compared with the input image to the filter. Each convolutional layer is
immediately followed by two other procedures called activation and pooling layers. The
specific activation layer used in this work referred to as a “rectified linear unit (ReLU)”
removes negative pixels in the input image replacing them with zeros but retains all positive
pixels. The role of the pooling layer is to reduce the spatial size of the input image by
a chosen pooling operation. Here, we used max-pooling where each 3 × 3 image tile is
replaced by the maximum value in that tile. The activation and pooling layers lead to more
effective training, by eliminating negative values, down-sampling (making images smaller)
and reducing the number of parameters that the network needs to learn.

The output of each convolutional layer is a modified image used as the input to the
next convolutional layer. The convolution, ReLU, and pooling processes are repeated until
the final high-level information about the image (image features obtained through deep
learning) is extracted at different resolutions depending on the filters and the specifics of
convolutional layers employed in the nets which alter the data with the intent of learning
the features [34]. After learning the features by using several convolutional layers, the CNN
typically shifts to classification through the next set of protocols called “fully connected
layers” as in a standard multilayer neural network approach [35] however this leads to
many unknown parameters that can only be defined through training on thousands of
images [36], which is extremely challenging for clinical experiments and their limited
number of images. Deep networks that only have a limited amount of training data suffer
from a reduction in accuracy and generality power of the model, especially when the depth
(number of layers) of the network increases [37].

In this study, three CNNs (Net1, Net2, and Net3) were used to extract image features.
Net 1 consisted of 152 convolutional with specific filters taken from ResNet [38]. The
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parameters in the first 151 convolutional layers were taken exactly as in ResNet and then
Net 1 was trained using oocyte data to correct the deep features based on the actual oocyte
features. Net 2 contained 22 convolutional layers. It was built by drawing on the GoogLe
net [39] where 21 layers used the filters from GoogLe and the 22-nd layer was fine-tuned
by the training data set of the oocytes. Such fine-tuning corrects the net parameters to align
them more closely with oocyte morphological features. Net 3 was developed specifically
for this study. It had 5 convolutional layers, where the first 4 convolutional layers used
the filters from the Krizhevsky net [40]. The fifth convolutional layer had 96 filters with
a size of 3 × 3 pixels; these filters were trained using the oocyte data set. In the end, by
applying these nets, we were able to generate Nf~6000 of deep learning image features for
our dataset. We did not use CNNs for feature classification, this was carried out by the
method of swarm intelligence detailed below.

3.3. Swarm Intelligence

Swarm intelligence is a methodology inspired by the evolution of a group of simple
information-processing interacting agents [23]. In this approach, the naive artificial agents
(in this case feature subsets) are iteratively evolved according to a pre-set evolution rule
attempting to find the highest FD as a criterion optimization problem [41]. First, a popula-
tion of the agents (feature subsets) is generated, and the FD is assessed for each of these
agents, and then the agents are repeatedly updated according to a defined evolutionary
strategy until the convergence condition for FD is satisfied.

In this study, we chose the agents to be candidate feature subsets of all available
features generated by our CNN (Nf~6000), and 50 agents were used. We have run the
swarm intelligence process multiple (19) times to optimize the number of features K
underpinning the deep radiomics signature, starting from K = 2 to K = 20.

3.4. Support Vector Machine Classifier

In this work, we used a support vector machine classifier (SVM), a strong supervised
method that can deal with sparse data with a limited risk of being overfitted. In this
approach, a hyperplane is formed [26,42,43] with maximum margins in the high dimen-
sional spectral feature space to separate data points into the classes under consideration
(here, young and old oocytes). This classifier defines the data label based on a linear
predictor function [44]. Then the classifier is trained using optimal DRS to predict the
pre-defined data labels (here, old and young). To train our SVM classifier the method of
10-fold cross-validation was employed, and the classifier performance was evaluated using
nested cross-validation and bootstrapping [45].

4. Results

Our approach obtained comprehensive morphological information from brightfield
images of oocytes obtained following the super-ovulation of young (4–5 weeks) and re-
productively aged (12 months) mice. Following the training of our DRS on these images
of oocytes from young and aged animals, we applied this system to images of oocytes
from a separate group of reproductively aged (12 months) mice that were treated with
NMN (See Methods Section 2.1). Figure 2 shows representative brightfield oocyte images of
oocytes from these three groups of animals. All oocytes were non-degenerate and therefore
nominally healthy in terms of reproductive competence, and were not morphologically
distinct by visual inspection.

After applying image augmentation and a deep convolutional learning approach, the
DRS was discovered using a combination of the swarm intelligence method with discrimina-
tive analysis which was cross-validated using a testing dataset (Supplementary Figure S1,
further information in Supplementary Material Section S1). The number of features in the
swarm intelligence subsets (DRS dimension, Figure 3a) was independently varied and
optimized, and DRS was constructed using 15 features (30% from Krizhevsky net, 10% from
Google net, and 60% from Resnet). As shown in Figure 3b, this DRS allowed us to clearly
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separate clusters of young (red data points) and old oocytes (blue data points), highlighting
a significant difference in morphology that could be automated for standardization of as-
sessment. The final DRS based on 15 features was used to train our support vector machine
classifier (further details supplementary material Section S3). To this aim, 10-fold cross-
validation was employed, and the classifier performance was evaluated using nested cross-
validation and bootstrapping (further information in Supplementary Material Section S2,
Supplementary Figures S2 and S3). The corresponding receiver operating characteristic
(ROC) graph determining the DRC classification performance (Figure 3c) showed it has an
accuracy of 92.2 ± 3.3 and an area under the curve (AUC) of 0.99.
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Figure 2. Representative brightfield images of oocytes from (a) young (4–5 weeks), (b) aged
(12 months), and (c) aged animals treated with NMN. Oocytes from the different groups were
morphologically indistinguishable by visual inspection.

Brightfield images of oocytes from older, NMN-treated mice from our recent work [27]
were taken concurrently with oocytes used to define the DRS (Figure 1) these oocytes were
not used for the development of the canonical variables applied, and are fully independent.
We showed that data points representing oocytes from NMN-treated aged mice (black
crosses) moved away from the cluster of oocytes from untreated age-matched controls (blue
circles) toward the young cluster (red squares; Figure 3d). Overall, ~55% of NMN-treated
oocytes had morphological properties that exactly correlated to the young cluster, ~25%
were very close to the young cluster and 20% retained the morphological properties of
oocytes from old mice. Morphological features of oocytes from NMN-treated animals
were subsequently fed to the support vector machine classifier trained with our DRS. This
resulted in 60% of oocytes being sorted into the young group and 40% into the aged group.
As NMN is known to restore ‘youthful’ characteristics and health to oocytes [27], this shows
that the DRS is sensitive to changes induced in the biological age of oocytes induced by
geroprotective interventions. Furthermore, as detailed in [27,43], hyperspectral imaging
enabled the quantification of specific autofluorophores, including the key metabolic cofactor
NAD(P)H. Remapping these findings to the results of the morphology analysis showed that
the NAD(P)H levels of Old + NMN oocytes classified as young had the same NAD(P)H
profile as actual young oocytes, while those classified as old matched other old oocytes
(Supplementary Figure S5). Additionally, NAD(P)H was significantly elevated in young,
sorted oocytes compared to old sorted oocytes. This provides direct biochemical evidence
that the DRS is genuinely sensitive to oocyte age and quality.”
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5. Discussion

Morphology plays a significant role in developmental biology and is strongly affected
by the cell’s microenvironment and response to biophysical and environmental factors [46].
Reliable oocyte morphology quantification indicative of oocyte biological (as opposed to
chronological) age would be of significant utility to advise clinical decision-making. As well
as facilitating gamete selection, it would enable women undergoing cryopreservation of
oocytes for fertility preservation to receive an informed estimate of when sufficient oocytes
have been collected to reasonably guarantee future success mitigating the likelihood of
both collecting too few oocytes and subjecting women to additional, unnecessary rounds
of stimulation and collection. However, there are no options with sufficient consistency
and precision for widespread uptake for oocyte morphology analysis. Conventional mor-
phological analysis for oocyte competency scoring is mostly limited to visually visible
features, including that oocytes should have a clear, moderately granular cytoplasm, with-
out inclusions, a small perivitelline space with a single unfragmented first polar body, and
a round clear zona pellucida [3]. Generally, findings have been mixed with regards to
whether conventional scoring of oocyte morphology can be prognostic for oocyte quality
assessment in terms of fertilization and pregnancy [47]. A systematic review of fifty studies



Biomedicines 2022, 10, 1544 9 of 13

that investigated the impact of single or multiple oocyte features on in vitro fertilization
(IVF) outcomes did not find any visible features with unanimous prognostic value for
the further developmental competence of oocytes. More promising results were found
for complex classification systems which considered multiple features. Extreme variabil-
ity has also been observed between individual assessors and facilities applying scoring
systems [48,49]. Overall, while conventional assessment of oocyte morphology has demon-
strated that morphology has the potential to indicate the reproductive potential and quality
of an oocyte [50], this promise has been difficult to realize through manual observations.

This study introduced a standard quantitative approach to assess oocyte morphology
properties named DRS which enabled oocytes to be sensitively categorized according to
their age category. We used brightfield images of oocytes from young and reproductively
aged animals to extract morphological features and develop a DRS for the morphology of
aging in oocytes. In this study, we demonstrated that a DRS can differentiate young and
old oocytes with 92.2 ± 3.3 accuracy. To extract features and create a comprehensive feature
bank, three different nets with different structures were employed. We used extremely deep
(Res net), deep (Google net), and moderately deep (Krizhevsky net) structures to capture
features with different resolutions. DRS discovered using swarm intelligence shows that
features have been selected from all three nets. This demonstrates that the efficacy of using
three networks while using only one net may result in suboptimal DRS and consequently
lower classification performance. Segmentation of oocyte images from the background was
performed manually without subjective selection and all available oocyte images were used
for subsequent analysis. Oocyte segmentation can potentially be performed automatically,
which would classify the DRS methodology as fully automated.

Further, we analyzed the effect of NMN on oocyte morphology when it is used to treat
aged animals. NMN treatment supports the generation of the redox cofactor nicotinamide
adenine dinucleotide, which is essential to fundamental metabolic processes including
glycolysis and the TCA cycle, and also acts as a substrate for proteins involved in DNA
repair and epigenetic maintenance, such as members of the poly-ADP-ribose (PARP)
and sirtuin family. We recently showed that NAD+ levels decline with age, impairing
oocyte function, and that restoration of NAD+ levels through treatment with its metabolic
precursor NMN could restore oocyte quality and functional fertility in aged animals [27].
As the availability of competent oocytes is a rate-limiting factor in human reproduction
their rejuvenation, and subsequent identification of high-quality oocytes is an important
goal for reproductive healthcare in the context of an aging population. In this study, we
showed that in NMN-treated aged animals, oocyte morphological properties were restored
to those of young oocytes in 60% of cases. Those oocytes from old animals with young
morphological properties also had the same levels of the key metabolite NAD(P)H as
oocytes from young animals, while conversely, oocytes with old morphological properties
had low levels of NAD(P)H corresponding to the levels seen in oocytes from old untreated
animals (Supplementary Figure S5). This provides biochemical confirmation that the DRS
is genuinely sensitive to changes in oocyte quality. As well as adding to the growing
evidence that NMN may address reproductive aging in females [27], these findings have
implications for research into oocyte quality and aging.

Our results indicate that a combination of modern artificial intelligence methods of
deep learning and swarm intelligence coupled with discriminative analysis produces a
DRS capable of recognizing age-related changes in oocyte morphology. Our methodology
outperforms the conventional oocyte morphology analysis as it is automatic, objective,
fast and can extract and consider specific features which are undetectable to human vision
and there is no particular mathematical definition for them. As well as the potential for
optimizing oocyte selection in clinical practice, DRS could greatly accelerate the efficiency
of research in oocyte quality and aging. As the only reliable measures of oocyte quality
are future outcomes (e.g., fertilization, blastocyst development, implantation, and/or preg-
nancy), which are time- and labor-intensive, experimentation on interventions to optimize
oocyte quality is severely curtailed. The direct measurement of apparent oocyte age given
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by our DRS would enable high throughput investigations of potential interventions to
restore oocyte competence in the face of reproductive aging. This study was performed
by bright-field microscopy which is the plainest of all the optical microscopy illumination
methods and involves only basic equipment. Bright-field imaging is routinely used in
reproduction laboratories and therefore our methodology has high translatability.

This study was conducted as a proof of principle using images from mouse oocytes,
as such a limitation is that it will be necessary to evaluate this technology in images
of human oocytes to test its relevance for clinical practice. Although DRS is shown to
be statistically robust with respect to the number of oocytes allowing the extraction of
strong morphological signatures (backed up with statistical evidence in the manuscript),
enhancing the number of studied subjects in a data set could improve the strength of the
discovered DRS. Additionally, the images used were 2-dimensional snapshots, and the
orientation of oocytes will have resulted in some potentially informative features being
present or absent in different images, reducing their utility. It is possible the model could
be improved through the application of “z-stack” reconstructions. Furthermore, this study
showed the possibility of extracting a unique morphological signature of age and was
calibrated with known young and aged oocytes. Future application of the DRS as a tool for
assessing the competency of aged oocytes for successful pregnancy will require us to follow
up with experiments that directly demonstrate its association with this primary outcome.

The success rate of reproduction depends highly on oocyte quality and the current
pregnancy rate per retrieved oocyte is estimated at 4.5%. Therefore DRS, as a potential
non-invasive approach to predict human oocyte developmental potential, has promise
in reliably improving the prediction of viability and blastocyst formation [51] for future
clinical practice.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/biomedicines10071544/s1. Ref. [52] is citied in supplementary materials.
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