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Abstract: Epilepsy is a neurological disorder that causes recurrent seizures and sometimes loss of
awareness. Around 30% of epileptic patients continue to have seizures despite taking anti-seizure
medication. The ability to predict the future occurrence of seizures would enable the patients
to take precautions against probable injuries and administer timely treatment to abort or control
impending seizures. In this study, we introduce a Transformer-based approach called Multi-channel
Vision Transformer (MViT) for automated and simultaneous learning of the spatio-temporal-spectral
features in multi-channel EEG data. Continuous wavelet transform, a simple yet efficient pre-
processing approach, is first used for turning the time-series EEG signals into image-like time-
frequency representations named Scalograms. Each scalogram is split into a sequence of fixed-size
non-overlapping patches, which are then fed as inputs to the MViT for EEG classification. Extensive
experiments on three benchmark EEG datasets demonstrate the superiority of the proposed MViT
algorithm over the state-of-the-art seizure prediction methods, achieving an average prediction
sensitivity of 99.80% for surface EEG and 90.28–91.15% for invasive EEG data.

Keywords: EEG; epilepsy; seizure prediction; continuous wavelet transform; vision transformer

1. Introduction

Epilepsy is a central nervous system disorder that is associated with abnormal electrical
activity in the brain [1]. It is characterized by recurrent seizures that strike without warning.
Symptoms may include sudden violent convulsions, reduced or suspension of awareness,
and sporadically loss of consciousness [2]. Currently, anti-epileptic drugs are the mainstay
of epilepsy treatment. Lamentably, around 30% of people with epilepsy continue to have
seizures despite treatment [3]. In addition, the other 70% of patients who respond to
anti-epileptic medication suffer from several undesirable side effects such as stomach
discomfort, tiredness, dizziness, or blurred vision. Epilepsy surgery may be an option
when medications fail to control seizures. It is a surgical procedure that removes or
disconnects an area of the brain where seizures occur, which helps stop seizures or seize
their severity. It may, however, involve serious risks such as visual impairment, memory
and language problems, stroke, and paralysis [4]. This motivated researchers to develop
seizure prediction solutions [5].

Epileptic seizure prediction holds a great potential for alerting patients of impending
seizures so they can take precautions to avoid any probable injuries and administer a
fast-acting medication. It also helps pave the way for individualized epilepsy treatment
(e.g., tailored therapies with less side-effects), and seizure intervention systems could also
be used to abort imminent seizures. Recently, several studies have demonstrated that
epileptic seizures could be predicted with reasonable levels of accuracy [6,7], suggesting
that epileptic patients can benefit from methods that forecast seizures occurrence far enough
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in advance. Currently, electroencephalography (EEG) is the most common tool used in
seizure detection and prediction studies. The key challenge is to analyze the pre-seizure
EEG activities to identify any distinctive pattern(s) that indicate upcoming seizures, which
is the main question to address in the proposed study.

Epilepsy researchers have categorized the brain EEG activities of patients with epilepsy
into four prime states: preictal (right before seizure), ictal (seizure), postictal (immediately
after seizure), and interictal (a seizure-free time period between the postictal and the
preictal of consecutive seizures) [8,9]. An ideal seizure prediction algorithm would be
able to recognize brain activities during the preictal periods and make correct predictions
of future seizure onset (true positive) while minimizing false positive predictions made
during the interictal periods (i.e., normal brain activity). To achieve this, several feature
engineering and classification approaches have been introduced to differentiate between
the preictal and interictal EEG activities. Four main types of EEG features have been used
in previous studies: (1) time domain features (e.g., mean, variance, skewness, kurtosis,
number of zero-crossing, cross-correlation coefficients) [10], (2) frequency domain features
(e.g., spectral entropy, phase locking value, spectral edge frequency, surface cross-frequency
coherence) [11], (3) time-frequency domain features (e.g., short-time-Fourier-transform,
wavelet sub-bands coefficients, Hilbert/Slant transform) [12], and (4) non-linear features
(e.g., Hjorth statistical parameters, Lyapunov characteristic exponent, Hurst exponent,
empirical mode decomposition) [13]. Although the above-mentioned hand-crafted features
were able to well-characterize different EEG states, they failed to attain clinical applicability
due to lack of generalization capacity [14].

In this work, we propose a novel transformer-based algorithm that accurately and ro-
bustly classify preictal and interictal EEG activities. The main contributions of our work are
as follows: (1) We utilize continuous wavelet transform (CWT), an efficient time-frequency
transform, for converting the time-series EEG signals into image-like representations that
well maintain both local spectral and temporal EEG information; (2) We introduce a novel
multi-channel vision transformer (MViT) model to extract the distinctive temporal-spectral
feature representations from different EEG channels simultaneously; and (3) Using both
scalp and invasive EEG databases, our approach demonstrates superior seizure predic-
tion performance when compared to the state-of-the-art prediction methods including
convolutional and recurrent neural network models.

2. Related Work

Over the past decade, researchers have developed seizure-prediction methods uti-
lizing a variety of signal processing and machine learning methods. Before the rise of
deep learning, seizure-prediction methods followed a conventional pipeline that consisted
of (1) feature engineering to capture the distinguishable EEG features that characterize
different classes of EEG activities, and (2) feature stratification using traditional or modern
machine learning classification models. The conventional pipeline has been utilized in a
seizure advisory system (SAS) that can prognosticate the occurrence of seizures ahead of
time using invasive EEG (iEEG) data [15]. The system was implanted in 15 adults with
refractory (drug-resistant) epilepsy and achieved a prediction sensitivity in the range of
17–100% with a large subject variability. Another automated seizure prediction solution
was developed by Kiral-Kornek et al. [16] based on the invasive EEE data of 10 of the
patients who participated in the clinical trial of the SAS. According to a recent review on
seizure prediction studies [17], frequency and/or time-frequency domain features are the
most prevalent attributes, and support vector machine (SVM)-based algorithms are the
most common machine learning classifiers used for EEG classification. For instance, in [18],
the authors developed a seizure prediction model based on spectral power features of EEG
frequency rhythms. Using a cost-sensitive SVM that can handle the imbalanced class distri-
bution of interictal and preictal samples, the EEG collected from 18 patients in the Freiburg
EEG database could be classified with an average sensitivity of 97.5% and a false alarm
rate of 0.27/hr. A similar approach (i.e., frequency domain-based EEG features + SVM
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classifier) has been tested on other datasets [19–21], with performance ranging between
90 and 92% prediction sensitivity. Williamson et al. [22] proposed to utilize multivariate
EEG features instead of the popular univariate features such as the power spectral density
to capture patterns involving multiple EEG channels. An SVM classifier was trained on
the multivariate EEG features and resulted in Area under the ROC Curve (AUC) score of
0.936–0.972 when tested on 19 patients in the Freiburg EEG database.

The advent of deep learning has transformed and advanced the field of epileptic
seizure prediction. In particular, end-to-end automated learning taking advantage of deep
neural networks has enabled bypassing the laborious feature extraction and selection
processes while successfully solving the challenging task of predicting seizures solely from
neural signals. Several deep learning models that use time-frequency representations (e.g.,
spectrograms) of the EEG data as the input have been proposed. In [23], a convolutional
neural network (CNN) consisting of six convolutional layers and two fully connected
layers was proposed to distinguish between the interictal and preictal EEG activities of
two independent scalp EEG datasets. Trained on 3D wavelet tensors computed from the
Wavelet transformation of raw scalp EEG data, the CNN achieved a prediction sensitivity
of 87.8% and a false prediction rate of 0.142/hr. A similar line of work can be found in [24],
where raw EEG signals were transformed into time-frequency features using short-time
Fourier transform (STFT), and the produced image-like 2D features were used as inputs to a
CNN consisting of three convolution blocks and two fully connected layers. The proposed
model achieved a sensitivity of 81.4%, 81.2%, and 75% when tested on the Freiburg Hospital
dataset, CBH-MIT dataset, and the American Epilepsy Society (AES) Seizure Prediction
dataset, respectively. Wang et al. [25] trained a CNN model (3 convolutional layers followed
by 3 fully connected layers) on channel-frequency feature maps derived by the directed
transfer function (DFT) and achieved a sensitivity of 90.8% and false prediction rate of
0.08/h on the Freiburg EEG dataset.

Several studies have proposed a different line of CNN architecture. Instead of the
2D-CNN models described above, Ozcan et al. [26] adopted a 3D-CNN model trained on
the time and frequency features of EEG data and achieved a sensitivity of 85.7% when
tested on the CHB–MIT dataset. Liu et al. [27] introduced a multi-view CNN architecture
to simultaneously utilize information from the frequency and time domains. Specifically,
fast Fourier transform (FFT) was applied to the raw EEG signals to obtain a representation
in the frequency domain, and time domain features were obtained using approaches such
as autoregression coefficient, correlation, and signal entropy. The two sets of domain-based
features are separately processed through a series of convolutional layers, and then a fully
connected layer was used to combine the two different views into a more representative
single shared view. The proposed model was used to predict the occurrence of epileptic
seizures and resulted in an average AUC score of 0.837 on the AES invasive EEG dataset and
AUC scores of 0.82 and 0.89 on two subjects of the CHB–MIT surface EEG dataset. In [28],
a novel CNN architecture with multi-scale temporal convolution was introduced to tackle
the common domain-shift problem (between training and testing samples) in the seizure
prediction field. The proposed model encodes preictal features in different time spans to
constrain the consistency of features between training and testing samples. The model
was found to learn effective features against signal pattern shifting and improve seizure
prediction performance by around 9% when tested on two public datasets of Freiburg and
AES Kaggle competition.

Hussein et al. [29] proposed a semi-dilated convolutional network (SDCN) architec-
ture capable of effectively expanding the receptive field of convolution filters along the
long dimension (time) while preserving the high resolution along the short dimension
(frequency) when applied to EEG scalogram images. Their proposed semi-dilated CNN
achieved a high seizure-prediction sensitivity of 98.8% and 88.5–89.52% for a public scalp
EEG and two invasive EEE datasets, respectively. More recently, novel seizure-prediction
algorithms utilizing graph convolutional networks (GCNs) were introduced. GCN-based
seizure-prediction methods consider EEG channels as nodes and their relationships as
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edges to build a topological graph, which helps leverage graphical structures of multiple
channels. Lian et al. [30] proposed a joint graph structure and representation learning
network to capture both the global and local contextual information of EEG signals. Using
the Freiburg dataset, this network demonstrated promising results achieving superior
prediction accuracy and sensitivity compared to other classifiers such as SVM, XGBoost,
and 2D-CNN.

3. Materials and Methods
3.1. Datasets

We evaluate the representation learning capabilities of the proposed MViT on both
scalp and invasive EEG data recorded from pediatric and adult humans as well as dogs.
The following public datasets are used for benchmarking the proposed MViT and baseline
seizure-prediction methods:

CHB–MIT Scalp EEG Dataset [31]—This database, acquired at the Children’s Hospi-
tal Boston (CHB), contains EEG recordings from pediatric participants with drug-resistant
epilepsy. The patients were monitored for several days after the withdrawal of anti-epileptic
medication to evaluate their condition for surgical intervention. EEG recordings were col-
lected from 22 patients (5 males, age: 3–22; 17 females, age: 1.5–19) at 256 Hz sampling
frequency and 16-bit resolution. Around 9–42 continuous 1-h EEG measurements were
recorded for each patient. For most of the patients, the international 10–20 system for EEG
electrode placement was adopted and 23 electrodes were used to record the multi-channel
EEG data. More electrodes were used for a few patients, where 24 and 26 electrodes were
used to record more detailed EEG data. A total of 198 seizure events were recorded in the
CHB–MIT dataset, and the onset and termination of the seizures were labeled and provided
together with the EEG measurements.

Kaggle/American Epilepsy Society (AES) Invasive EEG Dataset [32]—This EEG
dataset was collected from two adult human and five canine subjects. The EEG signals
were recorded at a sampling frequency of 400 Hz using an ambulatory 16-electrode system.
The five dogs produced high-quality EEG recordings with sufficient number of seizures,
spanning 7–12 months. The two human subjects were diagnosed with drug-resistant
epilepsy. The first patient (female, 70 years old) underwent iEEG monitoring for 71.3 h with
five seizures recorded. The second patient (female, 48 years old) had intractable epilepsy
and underwent 158.5 h of iEEG monitoring. All iEEG data were organized into 10-min
EEG clips labeled “preictal” for pre-seizure data and “interictal” for inter-seizure (between
seizures) data. Preictal EEG data clips are provided covering one hour before seizure with a
five minute offset (i.e., the five minutes before seizure onset). Similarly, the 10-min interictal
EEG data clips were chosen randomly from the full EEG recordings, with the restriction
that interictal clips be more than 4 h before or after any seizure, to avoid contamination
with either preictal or postictal data.

Kaggle/Melbourne University Invasive EEG Dataset [33]—This invasive EEG dataset
was recorded from three adult patients suffering from drug-resistant focal epilepsy using
the NeuroVista Seizure Advisory System (described in [15]). The first patient (female,
22 years old) was diagnosed with focal epilepsy at age 16. She was treated with several anti-
epileptic medications and had epilepsy surgery before the clinical trial. The second patient
(female, 51 years old) was also diagnosed with focal epilepsy at age 10. She was receiving a
Carbamazepine drug at the time of the clinical trial. The third patient (female, 50 years old)
was diagnosed with frontal lobe epilepsy at age 15 and underwent epilepsy surgery before
the clinical trial. Sixteen electrodes were implanted on the surface of the brain, directed
to the brain regions with presumed seizure focus, and connected to a wireless module
embedded in the subclavicular area. Data were sampled at 400 Hz, digitized with 16-bit
resolution, transmitted to an external hand-held advisory device, and stored in a removable
flash drive. As in the American Epilepsy Society iEEG dataset, both preictal and interictal
iEEG data were split into 10-min clips. Preictal data were also provided covering one
hour before seizure with a five-minute offset segment. Figure 1 shows examples of the 1-h
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preictal data recorded from four EEG channels. Interictal data clips were also segmented
from 60-min long recordings that started at an arbitrarily time with a minimum gap of 4 h
before or after any seizure.

Figure 1. Examples of one-hour preictal (pre-seizure) EEG signals with a 5-min offset before seizures;
Sz denotes the seizure onset. For convenience, only four channels are plotted.

3.2. Methodology

Our proposed multi-channel vision transformer is inspired by the success of the
vision transformer of Dosovitskiy et al. [34], which showed promising results for several
image recognition tasks. We propose a variant of the vision transformer with multiple-
path architecture to extract multi-channel EEG features for better seizure prediction. The
proposed architecture comprises different branches that concurrently operate at different
EEG channels to learn and integrate the distinctive tempo-spectral features needed for
reliable EEG stratification.

3.2.1. EEG Pre-Processing

The proposed EEG pre-processing strategy comprises two major procedures: (1) EEG
segmentation, in which the time-series EEG clips are split into shorter non-overlapping EEG
segments; and (2) encoding the resulting EEG segments into image-like representations
using continuous wavelet transform. The output representations are then fed into the
proposed MViT model for EEG feature learning and classification.

EEG Segmentation: Both surface and intracranial EEG signals are characterized
as non-stationary data, i.e., their statistical features change over time [35]. The main
rationale behind EEG segmentation is to split the non-stationary EEG signal into shorter
pseudo-stationary chunks with comparable statistical properties [36]. Additionally, EEG
segmentation can significantly increase the number of labeled data samples needed for
improving the performance of vision transformers. In this work, each 10-min EEG clip is
split into 60 non-overlapping segments; each is 10 s long. This results in a 60-fold increase
in the total number of both interictal and preictal EEG samples.

Mapping EEG Segments into Images: The automatic detection of different EEG
brain statuses is clinically useful for both seizure-detection and -prediction tasks. Although
several approaches exist based on the hand-crafted temporal or spectral EEG features, they
result in a high number of false positives. Wavelet transform, a time-frequency analysis
tool, can effectively attain both temporal and spectral characteristics in a single image-
like representation called a “scalogram”. After EEG segmentation, continuous wavelet
transform is applied to the 10-s EEG segments to generate the two-dimensional EEG
scalogram images, which are then used as inputs to the MViT approach. Figure 2a shows
the EEG-to-scalogram conversion procedure, where the left panel shows an example of
a 10-s preictal EEG segment (with fS = 400 Hz) and the middle and right panels show
the corresponding EEG power spectrum in 3D and 2D domains, respectively. It is worth
mentioning that the scalogram of the interictal EEG data (omitted for lack of space) reveals a
lower power spectrum in the same time-frequency scales. This contrast in the characteristics
of the scalogram images underlying interictal or preictal activities can be exploited to build
an efficient seizure prediction system.
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Figure 2. Schematic pipeline of the proposed EEG pre-processing strategy for seizure prediction:
(a) EEG-to-scalogram conversion procedure: continuous wavelet transform (CWT) is adopted to
generate the EEG power spectrum from the time-series EEG data; and 3D-to-2D projection (Proj)
is used to produce the 2D time-frequency representations of EEG named “scalogram”. (b) EEG
pre-processing approach: S1, S2, · · · , S60 correspond to the 1st, 2nd, and 60th 10-s segments of each
10-min EEG clip ( fS = 400 Hz); N is the total number of EEG channels (N = 23 for scalp EEG; N = 16
for invasive EEG); d is the number of data-points in each EEG segment (d = 10-s × fS = 4000); and h
and w are the height and width of the EEG scalogram images (h× w = 100 × 4000).

The initial data shape is M × N × D, where M is the total number of EEG samples, N
is the number of EEG channels (23 for scalp EEG; 16 for invasive EEG), and D is the length
of the 10-min EEG clip (153,600 for surface EEG; 240,000 for invasive EEG). After data
segmentation and reshaping, the resulting shape of the EEG data is 60M × N × d, where
60 is the number of the 10-s EEG segments in each 10-min EEG clip, and d is the length of
the 10-s EEG segment (2560 for surface EEG; 4000 for invasive EEG). Since CWT is applied
to each EEG channel individually, the resulting shape of the data is thus 60M × N × h × w,
where h and w are the height and width of the EEG scalogram images. Figure 2b depicts all
the transformations applied to the raw EEG data before feeding it to the MViT approach
for representation learning and classification.

3.2.2. MViT for EEG Representation Learning

Transformer is a new type of neural network architecture that was originally intro-
duced for natural language processing (NLP) tasks [37], where multi-layer perceptron
(MLP) layers are used on top of multi-head attention mechanisms to capture the long-term
dependencies in sequential data. Recently, vision transformer (ViT) showed great potential
in several computer vision tasks, including image classification [34] and segmentation [38].
Motivated by this, we propose a ViT variant called multi-channel vision transformer (MViT)
that operates at different EEG channels simultaneously. More specifically, we introduce
a ViT architecture with multiple branches where each branch processes a different EEG
scalogram image, and then the information from the different branches is aggregated and
used for EEG classification.
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Figure 3 illustrates the network architecture of our MViT approach. The model is
primarily composed of N transformer encoders, where each encoder takes one of the N EEG
scalograms as an input. Each 2D scalogram image x ∈ RH×W is first split into fixed-size
non-overlapping 2D patches xp ∈ RL×P2

, where (H×W) is the shape of the EEG scalogram
image; (P × P) is the shape of the resulting patches; and L = HW/P2 is the number
of patches, which also represents the length of the input sequence for each of the MViT
branches. The resulting patches are then flattened and mapped into lower-dimensional
representations called “patch embeddings” using linear projection. The size of the patch
embeddings is set to D, which also is the size of the latent vector used by the transformer
through all of its layers.

Since position information is crucial for computer vision tasks, position embeddings
are also added to the patch embeddings and the resulting sequence of embedding vectors
serves as an input to the transformer encoder. The standard transformer encoder presented
in [37] is used for EEG scalogram encoding and representation learning. The multi-head self
attention (MSA) and multi-layer perceptron (MLP) are the main blocks in the transformer
encoder as they help attain both local and global dependencies in the input images. Layer
normalization (LN) is applied before each block to improve the accuracy and training
time, and the residual connections are also included after each block as they allow the
components to flow through the network directly without passing through non-linear
activations. Lastly, the output feature representations of the different transformer encoders
are aggregated and used as an input to MLP for preictal/interictal EEG classification.

Scalogram of EEG Channel 1 Scalogram of EEG Channel N

Branch NBranch N-1Branch 1 Branch 2 Branch 3 ..…

Patch + Position
Embedding

* Class Embedding

..…

Patching

Multi-Layer 
Perceptron (MLP)

EEG Class: Preictal/Interictal

Multi-Head 
Attention

Norm

Embedded Patches 

Norm

+

+
MLP

Transformer Encoder
Features Fusion/Aggregation

Patching

Figure 3. Framework of MViT for multi-channel EEG feature learning. It consists of a stack of N
transformer encoders; each encoder processes image tokens from an individual EEG channel. The
output feature representations are then concatenated and fed as an input to MLP for EEG classification.

3.2.3. Performance Evaluation

Several performance metrics including accuracy (ACC), sensitivity (SENS), specificity
(SPEC), false-positive rate (FPR), and area under the ROC curve (AUC) are used to evaluate
the performance of the proposed MViT approach for epileptic seizure prediction.
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4. Results and Discussion

In this section, we evaluate the seizure prediction performance of the proposed MViT
approach and compare it to the concurrent and previous works when examined on the
same benchmark surface and invasive EEG databases.

4.1. MViT Prediction Performance on Surface Pediatric EEG

In this section, the seizure prediction performance of our proposed MViT algorithm
is compared to the classical machine learning and recent deep learning methods on the
CHB–MIT surface EEG dataset. Table 1 reports the performance metrics achieved by
the proposed, concurrent, and previous seizure-prediction methods. In [39–41], the SVM
classifier was used together with a set of domain-based hand-picked EEG features, namely,
spectral power, phase looking value, and spectral moments, yielding a seizure-prediction
sensitivity between 82.4% and 98.7%. The methods introduced in [39–41], however, rely
on domain-based features that are usually unreliable and prone to domain shift. Thus, the
discriminative power of such prediction systems is negatively affected especially when
tested on unseen data. Our MViT algorithm, on the contrary, extracts the distinguishable
EEG features in an automated manner, achieving higher seizure-prediction sensitivity of
99.8%, as shown in Table 1.

Table 1. Benchmarking of the previous seizure-prediction methods and our MViT approach: CHB–
MIT EEG dataset.

Authors Year EEG Features Classifier SENS SPEC ACC FPR
(%) (%) (%) (/h)

Zhang and Parhi [39] 2016 Spectral power SVM 98.7 - - 0.04
Cho et al. [40] 2016 Phase locking value SVM 82.4 82.8 - -
Usman et al. [41] 2017 Statistical and spectral moments SVM 92.2 - - -
Khan et al. [23] 2018 Wavelet coefficients CNN 86.6 - - 0.147
Truong et al. [24] 2018 EEG Spectrogram CNN 81.2 - - 0.16
Tsiouris et al. [42] 2018 Spectral power, statistical moments LSTM 99.3–99.8 99.3–99.9 - 0.02–0.11
Ozcan et al. [26] 2018 Spectral power, statistical moments 3D CNN 85.7 - - 0.096
Zhang et al. [43] 2019 Common spatial patterns CNN 92.0 - 90.0 0.12
Daoud et al. [44] 2019 Multi-channel time series LSTM 99.7 99.6 99.7 0.004
Usman et al. [45] 2020 EEG Spectrogram + CNN features SVM 92.7 90.8 - -
Büyükçakır et al. [46] 2020 Statiscal moments, spectral power MLP 89.8 - - 0.081
Xu et al. [47] 2020 Raw EEG CNN 98.8 - - 0.074
Dissanayake et al. [48] 2021 Mel-frequency cepstral coefficients Siamese NN 92.5 89.9 91.5 -
Hussein et al. [29] 2021 Scalogram SDCN 98.9 - - -
Jana et al. [49] 2021 Raw EEG CNN 92.0 86.4 - 0.136
Li et al. [50] 2021 Spectral-temporal features GCN 95.5 - - 0.109
Usman et al. [51] 2021 EEG Spectrogram LSTM 93.0 92.5 - -
Yang et al. [52] 2021 EEG Spectrogram Residual network 89.3 93.0 92.1 -
Dissanayake et al. [53] 2022 Mel frequency cepstral coefficients GNN 94.5 94.2 95.4 -
Gao et al. [54] 2022 Raw EEG Dilated CNN 93.3 - - 0.007
Zhang et al. [55] 2022 EEG Spectrogram ViT 59.2–97.0 65.8–94.6 - -
Proposed Method 2022 EEG Scalogram MViT 99.8 99.7 99.8 0.004

We also compare our MViT approach with other concurrent and recently-developed
deep learning methods that either use CNN [23,24,43,47,49,54] or long short-term memory
(LSTM) [42,44] for epileptic seizure prediction. In [23], the raw EEG signals were converted
to 3D wavelet tensors (time × scales × channels) and fed into a CNN model, which
achieved a prediction sensitivity of 86.6% and a FPR of 0.147/h. In [24], the raw EEG
data were converted into image-like 2D representations using STFT and then fed into a
three-block CNN architecture. The results showed an average seizure-prediction sensitivity
of 81.2% and a FPR of 0.16/h. In [43], the spectral power of EEG rhythms was used as
inputs to a three-layer CNN model for automated EEG feature learning and classification.
The results showed that both seizure-prediction sensitivity and FPR were considerably
improved to 92.0% and 0.12, respectively. More recently, several studies have demonstrated
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that CNN-based models can be also effectively applied to raw EEG signals and achieve
comparable prediction performance with a sensitivity of 92.0–98.8% [47,49,54].

Recurrent neural networks (RNNs) were also used for predicting epileptic seizures
based on EEG signals. For instance, Tsiouris et al. [42] employed a LSTM network—a
common type of RNN—to forecast the occurrence of seizure onsets in the CHB–MIT surface
EEG recordings. Although the results showed high levels of seizure-prediction sensitivity
and specificity (≈99%), the LSTM-based solution cannot be generalized to new patients
as the network was trained and tested in a subject-specific manner. Additionally, two
patient-specific seizure prediction solutions that use LSTM were also presented in [44].
They achieved high seizure prediction performance of 99.7% sensitivity and 0.004/h FPR.
However, their LSTM and deep convolutional autoencoder (DCAE) networks were trained
and tested on individual patients to forecast the patient-specific seizure onsets. Our MViT
approach, on the other hand, is trained and tested on the CHB–MIT dataset using leave-one-
subject-out cross-validation, which demonstrates the ability of our approach to generalize
and maintain robust seizure prediction performance on unseen EEG data recorded from
new patients. The results reveal that the proposed MViT feature learning approach, together
with wavelet transform, yields superior seizure prediction performance, achieving an
average specificity, accuracy, and FPR of 99.7%, 99.8%, and 0.004, respectively.

4.2. MViT Prediction Performance on Invasive Human and Canine EEG

In this section, we also evaluate the seizure prediction performance of our MViT
approach on the invasive human and canine EEG data of the Kaggle/AES dataset [32]. The
model is trained and tested on humans and dogs individually. The prediction performance
of the MViT is compared to the top five Kaggle algorithms [32] and other recent machine
and deep learning methods [24,27–29,56–61]. As shown in Table 2, the top five algorithms
of the Kaggle/AES dataset achieved AUC scores between 0.825 and 0.903 when tested on
the Kaggle/AES public test set and 0.793–0.840 when tested on the Kaggle/AES private
test set. The highest prediction scores achieved by the top Kaggle winning teams were
based on both frequency domain features such as spectral entropy and spectral power,
as well as on non-linear representations such as fractal dimensions and Hurst exponents.
These features were extracted from the frequency rhythms of the EEG signals and fed
into an efficient classification model to differentiate between the interictal and preictal
EEG activities. Among all classifiers, the SVM, Random Forest, and Lasso regularization
of generalized linear models (LassoGLM) were found to achieve the highest AUC scores.
Neural networks, however, were found to achieve inferior results of 0.825/0.793 AUC when
used with a combination of spectral features, temporal features, and principal component
analysis (PCA). Our MViT algorithm, on the other hand, exhibits remarkable improvements
on both human and canine EEG data, achieving average AUC scores of 0.940 and 0.885 on
the Kaggle/AES public and private test sets, respectively.

Table 2 also compares other machine learning methods applied to the American
Epilepsy Society dataset. In [24], Truong et al. used STFT for EEG pre-processing and
then adopted a generic CNN architecture for EEG stratification. They first segmented
the 10-min invasive EEG clips into 5-s non-overlapping chunks, then utilized STFT for
transforming these time-series chunks into spectrogram images, and finally supplied the
EEG spectrograms to a CNN for the automatic learning and classification of interictal
and preictal EEG activities. This method helped achieve an average seizure-prediction
sensitivity of 75% on both human and canine EEG data. Our seizure-prediction algorithm
uses a more adequate pre-processing approach that relies on CWT for data transformation
but with a more efficient architecture that learns temporal-spectral feature representations
from different EEG channels simultaneously. As shown in Table 2, our MViT algorithm
produces a notable seizure-prediction sensitivity of 90.28%.

We also demonstrate a benchmark of the recently-developed deep learning meth-
ods [27,56–58] and our seizure prediction method. In [56], a simple CNN architecture that
adopts one-dimensional convolutions was applied to the multi-channel invasive EEG data,
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resulting in an average AUC score of 0.843 on the public test set. Moreover, Ma et al. imple-
mented and examined the LSTM—a recurrent neural network architecture—for the seizure
prediction problem under study [57]. Unlike traditional approaches that use time-series
data as an input to the LSTM, Ma et al. provided the statistical features extracted from EEG
rhythms as inputs to the proposed LSTM-based seizure prediction approach. This resulted
in a better AUC score of 0.894 when tested on the public test set. In [58], the spectral power
features of invasive EEG signals were also used as inputs to a CNN model that achieved an
average AUC score of 0.780 on the public test set and 0.760 on the private test set. In [27],
a multi-view CNN architecture was introduced to capture multi-scale EEG features, and
an average AUC score of 0.837 and 0.842 was achieved for public and private test sets,
respectively.

Table 2. Benchmarking of the previous seizure-prediction methods and our MViT approach: Kag-
gle/AES Seizure Prediction dataset.

Authors/ Year EEG Features Classifier SENS AUC Score
Team (%) Public/Private

Medrr [32] 2016 N/A N/A - 0.903/0.840
QMSDP [32] 2016 Correlation, Hurst exponent, LassoGLM, - 0.859/0.820

fractal dimensions, Bagged SVM,
Spectral entropy Random Forest

Birchwood [32] 2016 Covariance, spectral power SVM - 0.839/0.801
ESAI CEU-UCH [32] 2016 Spectral power, Neural Network, - 0.825/0.793

correlation, PCA kNN
Michael Hills [32] 2016 Spectral power, correlation, SVM - 0.862/0.793

spectral entropy, fractal dimensions
Truong et al. [24] 2018 EEG Spectrogram CNN 75.0 -
Eberlein et al. [56] 2018 Multi-channel time series CNN - 0.843/-
Ma et al. [57] 2018 Spectral power, correlation LSTM - 0.894/-
Korshunova et al. [58] 2018 Spectral power CNN - 0.780/0.760
Liu et al. [27] 2019 PCA, spectral power Multi-view CNN - 0.837/0.842
Qi et al. [28] 2019 Spectral power, variance, correlation Multi-scale CNN - 0.829/0.774
Chen et al. [59] 2021 EEG Spectrogram CNN 82.00 0.746/-
Hussein et al. [29] 2021 EEG Scalogram SDCN 88.45 0.928/0.856
Usman et al. [60] 2021 statistical and spectral moments Ensemble of SVM, 94.20 -

CNN, and LSTM
Zhao et al. [61] 2022 Raw EEG CNN 91.77–93.48 0.953–0.977/-
Proposed Method 2022 EEG Scalogram MViT 90.28 0.940/0.885

The combination of EEG spectrogram (generated by STFT) and CNN was also used
in [59], yielding a limited seizure-prediction sensitivity of 82% and an AUC score of 0.746 on
the public test set. Improved seizure-prediction results (AUC scores of 0.928 and 0.856) were
reported in [29], where the authors applied a novel semi-dilated convolutional network
to the scalograms of the invasive EEG data. Compared with the traditional convolutions,
the semi-dilated CNN was found to boost the seizure prediction accuracy by exploiting
the wide temporal-level and fine-grained spectral-level information needed to distinguish
between preictal and interictal EEG data.

In [60,61], customized seizure-prediction results were reported. Usman et al. [60],
for instance, introduced a patient-dependent seizure prediction solution that uses a set of
temporal and spectral hand-crafted EEG features as an input to an ensemble classifier of
SVM, CNN, and LSTM. On the contrary, Zhao et al. [61] used the raw invasive EEG data
as inputs to a CNN model whose architecture was automatically determined via neural
architecture search instead of being manually designed. The models proposed in [60,61]
were trained and tested on individual subjects and achieved promising patient-specific
seizure-prediction results (sensitivity of 91.77–94.20%). Our proposed MViT model has
been found to outperform the existing CNN- and LSTM-based methods by a significant
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margin, producing an average AUC score of 0.940 on the public test set. More importantly,
our seizure predictor achieves the highest AUC score of 0.885 on the unseen data of the
private test set, proving that it can accommodate the variations in EEG data across different
subjects and also over time for the same subject. This makes our MViT model an excellent
candidate for clinical and real-life settings.

4.3. MViT Prediction Performance on Invasive Human EEG

In this section, we test our seizure-prediction algorithm on the invasive EEG data
of the Kaggle/Melbourne University seizure prediction dataset [33]. The data was col-
lected from three adult human subjects, all females, who had epilepsy surgery before the
clinical trial. We compare the prediction performance of our MViT approach with the
top winning teams of the Kaggle competition [33] as well as baseline machine learning
methods [15,16,29,61–64]. In [15], Cook and his team successfully implanted the first-in-
man seizure advisory system in several patients with drug-resistant epilepsy. After the
system implantation, a seizure forecasting method was introduced to identify time intervals
of the low, medium, and high occurrence probability of impending seizures. The initial
seizure-prediction results were satisfactory for most of the subjects, proving that seizure
prediction using EEG is possible. The average seizure-prediction sensitivity for all patients
was 61.20%, while the three patients under study had the least seizure-prediction sensitivi-
ties with an average of 33.67%. The major cause of this performance degradation for these
particular three patients was the data drift observed in the temporal EEG features used for
prediction [15]. Improving the prediction performance for these three patients is important
to ensure that seizure prediction is feasible for different patients, including those whose
EEG characteristics vary over time.

In [62], Karoly et al. developed a circadian seizure forecasting approach to identify
pre-seizure brain activities. They proposed to use the spike rate in preictal EEG recordings
as a biomarker that indicates whether the brain is approaching an eminent seizure. This
biomarker, however, was proven to be unreliable and cannot be generalized to all patients.
The spike rate was found to increase before seizures for nine patients and decrease before
seizures for the remaining six patients. They used logistic regression to evaluate the
effectiveness of their temporal feature engineering approach, which showed an average
prediction sensitivity of 62.10% for all the 15 patients and 52.67% for the three patients
under study. In [16], Kiral-Kornek et al. proposed to use deep learning for developing
patient-specific seizure warning systems that could be fine-tuned to meet patients’ needs.
Their work manifested a significant improvement in the seizure prediction performance
for almost all patients. An average prediction sensitivity of 69.00% was achieved for
the 15 patients, while the three patients whose data are studied in this work had an
average prediction sensitivity of 77.36%. In our study, a multi-channel vision transformer
approach was neatly developed to thoroughly search the hidden pre-seizure patterns and
thus improve the seizure prediction for those three patients. Table 3 reports the seizure-
prediction results achieved by the proposed MViT approach, along with the concurrent
and previous seizure prediction studies. It should be noted that our approach achieves a
superior seizure-prediction sensitivity of 91.15% for the three patients under study.

In addition, we compare our prediction results to those of the winning solutions of
the Kaggle/Melbourne University seizure prediction competition. The AUC score was the
performance metric used for ranking the submitted solutions. The winning team employed
eleven different machine learning classifiers with more than 3000 hand-engineered EEG
features and achieved an average AUC score of 0.854 on the public test set and 0.791 on the
private test set (see Table 3) [33]. However, it is impractical to deploy such computationally
intensive and manually extracted EEG features in real-time applications. In general, the top
five Kaggle solutions used a variety of hand-crafted features attained in the time domain,
frequency domain, or time-frequency domain. The SVM, adaptive boosting, tree ensemble,
and random forest classifiers were used to assess the usefulness of the extracted domain-
based EEG features. The results of the top five solutions showed an average AUC score of
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0.783–0.854 on the public test set and 0.746–0.807 on the private test set [33]. The authors
of [63] also studied the possibility of combining the preictal probabilities produced by the
top eight competition solutions. This ensemble approach, however, failed to improve the
prediction performance, achieving an average AUC score of 0.815 on the public test set.

Table 3. Benchmarking of the previous seizure-prediction methods and our MViT approach: Mel-
bourne University AES/MathWorks/NIH Seizure Prediction dataset.

Authors/ Year EEG Features Classifier SENS AUC Score
Team (%) Public/Private

Cook et al. [15] ? 2013 Signal energy Decision tree, kNN 33.67 -
Karoly et al. [62] ? 2017 Signal energy, circadian profile Logistic regression 52.67 -
Kiral-Kornek et al. [16] ? 2018 EEG Spectrogram, circadian profile CNN 77.36 -
Not-so-random 2018 Hurst exponent, spectral power, Extreme gradient - 0.853/0.807
-anymore [33] distribution attributes, fractal dimensions, boosting,

AR error, and cross-frequency coherence kNN, SVM
Arete 2018 Correlation, entropy, zero-crossings, Extremely - 0.783/0.799
Associates [33] distribution statistics, and spectral power randomized trees
GarethJones [33] 2018 Distribution statistics, spectral power, SVM - 0.815/0.797

signal RMS, correlation, and spectral edge tree ensemble
QingnanTang [33] 2018 Spectral power, spectral entropy Gradient boosting, - 0.854/0.791

correlation, and spectral edge power SVM
Nullset [33] 2018 Hjorth parameters, spectral power, Random Forest, - 0.844/0.746

spectral edge, spectral entropy, adaptive boosting,
Shannon entropy , and fractal dimensions and gradient boosting

Reuben et al. [63] 2019 Preictal probabilities from MLP - 0.815/-
the top 8 teams in [33]

Varnosfaderani et al. [64] 2021 Temporal features, statistical moments, LSTM 86.80 0.920/-
and spectral power

Hussein et al. [29] 2021 EEG Scalogram SDCN 89.52 0.883/-
Zhao et al. [61] 2022 Raw EEG CNN 85.19–86.27 0.914–0.933/-
Proposed Method 2022 EEG Scalogram MViT 91.15 0.924/-

? Patients 1, 2, and 3 in the Melbourne University Kaggle competition dataset are the same as Patients 3, 9, and 11
in [15,16,62].

Two recent studies [29,61] achieved improved AUC scores (Table 3) by training CNNs
on time-frequency features [29] and raw EEG signals [61], respectively. The promising
results of the two studies were obtained using considerably different forms of the inputs,
which demonstrates the versatility of CNNs in the seizure prediction task. However, the
results from [61] are based on the model trained and tested on individual subjects, and the
generalizability of CNNs trained on raw EEG signals needs to be validated in future studies.
Varnosfaderani et al. [64] reported a higher AUC score of 0.920 using a two-layer LSTM
network. The authors first extracted hand-crafted features including temporal features
(e.g., mean, variance, and peak-to-peak values) and spectral features (e.g., spectral power
in eight canonical EEG frequency bands) from the EEG signals and used them as inputs to
the LSTM network. Our proposed MViT algorithm, on the other hand, achieves a superior
AUC score of 0.924 while relaxing the need for manually extracting domain-based features.
The MViT algorithm is also much faster in obtaining the results on unseen data and is thus
more suitable for use in ambulatory and clinical applications.

5. Clinical Significance and Limitations

Clinical significance: This study’s findings reveal how vision transformers can be
effectively adopted for simultaneous feature learning of multi-channel EEG data. The
findings would be of major importance in evaluating how distinctive EEG representations
extracted by a vision transformer can markedly improve the seizure prediction performance
using both surface and invasive EEG data. The proposed multi-channel vision transformer
(MViT) algorithm achieved a high prediction sensitivity of 90.28–99.80% across three
independent public datasets, demonstrating its potential clinical application as a remote
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EEG-based seizure warning system. The proposed MViT approach can accurately and
rapidly forecast future seizure onsets, providing patients with opportunities to take fast-
acting medications and safety measures during the periods of great seizure susceptibility.
Closed-loop seizure intervention systems could also be adopted to abort imminent seizures
for patients with drug-resistant epilepsy.

Limitations: Despite promising seizure-prediction results for vision transformer-
based models, there exist several challenges related to their applicability in clinical settings.
As highlighted in [65], large-scale vision transformers can require intensive power and
computational resources, limiting their deployment on resource-constrained devices such
as brain-computer interface and seizure warning systems. It is also quite challenging to
interpret vision transformers’ decisions [66], e.g., by visualizing the image regions with
the greatest impact on the EEG classification performance. Vision transformers, however,
were proven to be more robust than convolutional and recurrent neural networks against
texture changes and data contamination, making them more generalizable and reliable
in real-life settings [67]. Current works focus on reducing the high computational cost
of vision transformers (caused by the self-attention mechanisms [37]) by developing a
computationally-efficient self-attention mechanism that can accommodate high-resolution
images on resource-constrained systems without compromising accuracy.

6. Conclusions

In this study, we proposed a multi-channel vision transformer (MViT) algorithm for
the accurate prediction of epileptic seizures. The EEG signals were first divided into shorter
non-overlapping chunks of 10-s duration each. Continuous wavelet transform was then
adopted to convert the resulting EEG chunks into image-like representations named “scalo-
grams”. The scalogram images were then split into fixed-size non-overlapping patches,
which were used as inputs to the MViT algorithm to automatically learn the distinctive EEG
features needed for subtle seizure prediction. The proposed MViT architecture comprises
multiple branches where each branch operates at a typical EEG channel, allowing learning
temporal-spectral features from the different EEG channels simultaneously. With extensive
experiments, we demonstrate that the proposed MViT model outperforms several con-
current and previous works on seizure prediction including advanced convolutional and
recurrent neural network models.
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Abbreviations

The following abbreviations are used in this manuscript:
AES American Epilepsy Society
AUC Area under the ROC Curve
CHB Children’s Hospital Boston
CNN Convolutional Neural Networks
CWT Continuous Wavelet Transform
DCAE Deep Convolutional AutoEncoder
DFT Directed Transfer Function
EEG Electroencephalogram
FPR False Positive Rate
FFT Fast Fourier Transform
GCN Graph Convolutional Network
iEEG intracranial EEG
LassoGLM Lasso regularization of Generalized Linear Models
LN Layer normalization
LSTM Long Short-Term Memory
MLP Multi-Layer Perceptron
MViT Multi-Channel Vision Transformer
MSA Multi-head Self Attention
NLP Natural Language Processing
PCA Principal Component Analysis
Proj Projection
RNN Recurrent Neural Networks
ROC Receiver Operating Characteristic
SAS Seizure Advisory System
SENS Sensitivity
STFT Short-Time Fourier Transform
SPEC Specificity
SVM Support Vector Machine
ViT Vision Transformer
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