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Abstract: Different drug combinations including irinotecan remain some of the most important
therapeutic modalities in treating colorectal cancer (CRC). However, chemotherapy often leads to
the acquisition of cancer drug resistance. To bridge the gap between in vitro and in vivo models,
we compared the mRNA expression profiles of CRC cell lines (HT29, HTC116, and LoVo and their
respective irinotecan-resistant variants) with patient samples to select new candidate genes for the
validation of irinotecan resistance. Data were downloaded from the Gene Expression Omnibus (GEO)
(GSE42387, GSE62080, and GSE18105) and the Human Protein Atlas databases and were subjected to
an integrated bioinformatics analysis. The protein–protein interaction (PPI) network of differently
expressed genes (DEGs) between FOLFIRI-resistant and -sensitive CRC patients delivered several
potential irinotecan resistance markers: NDUFA2, SDHD, LSM5, DCAF4, COX10 RBM8A, TIMP1,
QKI, TGOLN2, and PTGS2. The chosen DEGs were used to validate irinotecan-resistant cell line
models, proving their substantial phylogenetic heterogeneity. These results indicated that in vitro
models are highly limited and favor different mechanisms than in vivo, patient-derived ones. Thus,
cell lines can be perfectly utilized to analyze specific mechanisms on their molecular levels but cannot
mirror the complicated drug resistance network observed in patients.

Keywords: CRC; irinotecan resistance; multidrug resistance; chemotherapy; integrated bioinformatics
analysis

1. Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide and the second
leading cause of cancer death [1]. The main therapeutic approaches to treat CRC are
surgery, chemotherapy, irradiation, and targeted therapy [2]. Combined with 5-fluorouracil
(5-FU), irinotecan is considered the standard therapeutic agent of the first-line treatment,
the FOLFIRII regimen. Combination chemotherapy regimens have been shown to achieve
greater efficacy than single-agent treatments in CRC [3]. After more than two decades of
clinical usage, irinotecan has become a versatile chemotherapeutic agent that combines
well not only with 5-FU but also with monoclonal antibodies, such as cetuximab and
bevacizumab. Experimental and clinical studies have also indicated that irinotecan could
be used with kinase inhibitors, such as fruquintinib, apatinib, dasatinib, regorafenib, and
sunitinib, or with cell-cycle checkpoint inhibitors [4,5]. Although irinotecan still represents
the backbone of CRC chemotherapy, drug resistance is a significant obstacle that severely
limits the efficacy of irinotecan and often causes cancer relapse and metastasis [6].

The mechanism of irinotecan resistance is still inconclusive and requires further investi-
gation [7]. Since the intracellular concentration of irinotecan or its active metabolites can be
reduced by increased efflux or increased metabolism, the cellular processing and irinotecan
transport out of cancer cells can be exploited to identify biomarkers of therapeutic failures.

Irinotecan is a prodrug that requires bioactivation to form the active metabolite SN-
38. SN-38 inhibits topoisomerase-I (Topo 1) activity and affects tumor cell proliferation.
The bioactivation of irinotecan occurs rapidly after administration in the plasma and
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liver. Irinotecan is subjected to enzymatic cleavage performed by two isoforms of car-
boxylesterases (CES1 and CES2) and butyrylcholinesterase (hBChE) that removes bulky
side chains, forming SN-38, which presents 100- to 1000-fold greater activity than irinotecan
itself. CES1 and CES2 are predominantly active in the liver, colon, kidneys, and blood cells.
In contrast, the activity of hBChE is mainly localized in blood plasma [7,8]. SN-38 may
be further conversed by uridine diphosphate-glucuronosyl transferases (UGT) from the
UGT1 family, such as UGT1A1 and UGT1A9 in the liver or extrahepatic UGT1A1, UGT1A7,
and UGT1A10 in bile, into inactive SN-38 glucuronide (SN-38G), which in turn may be
further processed by the intestinal bacterial β-glucuronidase back into active SN-38 [9,10].
The human UGT1 gene is located on chromosome 2q37, producing nine functional en-
zymes (UGT1A1, UGT1A3, UGT1A4, UGT1A5, UGT1A6, UGT1A7, UGT1A8, UGT1A9,
and UGT1A10) by exon-sharing, possessing similar substrates but differently expressed
depending on tissue type [11]. Irinotecan, like most the xenobiotics, is oxidized by CYP3A4
and CYP3A5—members of the cytochrome P450 superfamily—into inactive aminopen-
tane carboxylic acids, APC (7-ethyl-10[4-N-(5-aminopentanoicacid)-1-piperidino] carbony-
loxycamptothecin), and NPC (7-ethyl-10[4-amino-1-piperidino]carbonyloxycamptothecin).
NPC is a weak inhibitor of cell growth, but contrary to APC, NPC can be further repro-
cessed into active SN-38 by CES1 and CES2 [12,13]. In addition to metabolism, another
critical aspect of the irinotecan body’s processing is its transport out of cells executed by
transporters belonging to the ATP-binding cassette (ABC) protein superfamily [14]. Irinote-
can and SN-38 are transported into blood or bile from hepatocytes by ABCB1, ABCC1,
ABCC2, and ABCG2, whereas the OATP transporter (SLCO1B1) enables its influx from
blood [15–17]. The active efflux of irinotecan and its metabolites by ABC proteins is also re-
sponsible for acquired multidrug resistance (MDR). ABC proteins, such as ABCB1, ABCB5,
ABCC1, ABCC2, ABCC4, ABCC5, and ABCG2, have been identified as being involved in
irinotecan and SN-38 transport out of the cytosol to reduce its intracellular concentration
and efficacy in cancer cells [18,19]. Although enzymes and transporters involved in the
irinotecan body’s metabolism and disposition are known, their contributions to irinotecan
resistance are still poorly understood.

In vitro studies based on the molecular analysis of drug-sensitive cell lines vs. drug-
resistant cell lines have been commonly used to understand the irinotecan resistance
mechanism in CRC [20,21]. Cell lines are a less expensive and less complicated model than
primary cells that provide an unlimited supply of reproducible material and bypass ethical
concerns regarding the usage of patient-derived samples [22–24]. Drug-resistant variants
of specific cell lines are obtained through continuous exposure to increasing concentrations
of irinotecan itself [21] or its active metabolite, SN-38 [20], in growth media for several
months. The complicated natures of irinotecan activation, deactivation, and re-activation,
followed by its transport and bioavailability, create substantial discrepancies between the
knowledge about cancer biology generated in cell line experiments and the translation of
this knowledge into clinically useful information [25].

This study uses microarray gene expression profiles from an open database to identify
potential biomarkers for irinotecan resistance in CRC. We analyze the expression profiles
of the primary genes involved in the irinotecan metabolism and transport out of the cells.
We aim to investigate mRNA profile differences between several CRC cell lines commonly
used in in vitro studies on irinotecan resistance, such as HT29, LoVo, and HTC116, as
well as their irinotecan (SN-38)-resistant variants to highlight the heterogeneity of the
acquired irinotecan resistance mechanism. Our main objective, and the novelty approach,
is to use changes in the molecular patterns of patient-derived samples to validate the
usefulness of popular in vitro CRC models. Thus, we analyze the mRNA profiles of CRC
samples obtained from patients with metastatic colon cancer who are sensitive or resistant
to the first-line treatment of FOLFIRI. Next, we select the top 10 networking genes and
proteins (five upregulated and five downregulated) using a protein-protein interaction
network of differently expressed genes (DEGs) that may be considered potential biomarkers
of irinotecan resistance in vivo. Finally, we validate irinotecan resistance-related DEG
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expression in obtained irinotecan (SN-38)-resistant CRC cell lines, providing their in-depth
molecular analyses of resistance-related mechanisms.

2. Materials and Methods
2.1. Microarray Data Processing and Analysis

Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/ (ac-
cessed on 18 May 2022)) gene expression profiles were downloaded with accession num-
bers GSE42387, GSE62080, and GSE18105. The cell lines and their irinotecan (SN-38)-
resistant variants were obtained as described [26] Briefly, HCT116, HT29, and LoVo
cells were exposed in vitro to gradually increasing SN-38 concentrations for about nine
months, generating sub-cell lines with acquired resistance. Gene expression profiles
of the parental and resistant cell lines were obtained after 2–3 weeks of culturing in a
drug-free medium (each in triplicate) using a GPL16297 Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F platform (Agilent Systematic Name, collapsed probe,
version). The GSE62080 database comprised 21 patients with advanced colorectal can-
cer treated using the FOLFIRI scheme and classified according to the WHO criteria in
responder (sensitive (S)) and nonresponder (resistant (R)) groups. Detailed information
on patient clinical-pathological characteristics was presented in the original paper (https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC2257989/table/T2/?report=objectonly (ac-
cessed on 18 May 2022)) [27]. Gene expression profiles were obtained using Human
Genome GeneChip arrays U133. The GSE18105 database included mRNA profiles of
normal adjacent tissue and primary CRC tumors from different stages. One hundred
and eleven microarray datasets (77 for LCM samples and 17 pairs for homogenized sam-
ples from tumors and adjacent tissues) were normalized through a robust multi-array
average (RMA) method using R 2.6.2 statistical software with the BioConductor package.
Next, the gene expression levels were log2-transformed. We excluded samples named
“metastatic recurrence” obtained from homogenized normal tissue for our analysis. All the
data were processed using the GEO2R online analytical tool, which uses the R language
(https://www.ncbi.nlm.nih.gov/geo/geo2r/ (accessed on 18 May 2022)) [28]. Differently
expressed genes (DEGs) were further calculated and visualized with JASP 0.14.1.0 software
(https://jasp-stats.org/ (accessed on 18 May 2022)) using a normality test (Shapiro–Wilk’s),
followed by a Mann–Whitney U test (for not normally distributed data) or T-test (for
normally distributed data). Additionally, in the case of a small n size, we used JASP 0.14.1.0
software (https://jasp-stats.org/ (accessed on 18 May 2022)) to perform a Bayesian Mann–
Whitney U test based on a data augmentation algorithm with five chains of 1000 iterations
to verify our data further.

2.2. Hierarchical Clustering Analysis

After extracting the expression values from the gene expression profiles, a bidirectional
hierarchical clustering heatmap was constructed using the Orange open-source machine
learning and data visualization platform (https://orangedatamining.com/ (accessed on 18
May 2022)).

2.3. Construction of PPI Network

A protein–protein interaction (PPI) network of differently expressed genes (DEGs) was
created using STRING version 11.0 online software (https://string-db.org/ (accessed on 18
May 2022)) and an open-source software platform for visualizing complex networks called
Cytoscape (https://cytoscape.org/ (accessed on 18 May 2022)). A KEGG (Kyoto Encyclo-
pedia of Genes and Genomes) pathway analysis was performed using the DAVID online
tool (https://david.ncifcrf.gov/ (accessed on 18 May 2022)) and the KEGG PATHWAY
database (https://www.kegg.jp/kegg/pathway.html (accessed on 18 May 2022)).

All URL address and obtained data were validated and accessed on 18 May 2022.

http://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257989/table/T2/?report=objectonly
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2257989/table/T2/?report=objectonly
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://jasp-stats.org/
https://jasp-stats.org/
https://orangedatamining.com/
https://string-db.org/
https://cytoscape.org/
https://david.ncifcrf.gov/
https://www.kegg.jp/kegg/pathway.html
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3. Results

We analyzed the mRNA profiles of three CRC cell lines (HT29, LoVo, and HTC116)
and their respective irinotecan (SN-38)-resistant variants using the GSE42387 database.
Gene expression profiles of the parental and resistant cell lines were obtained from cells
cultured for 2–3 weeks in a drug-free medium, each in triplicate (https://www.ncbi.nlm.
nih.gov/geo/query/acc.cgi?acc=GSE42387 (accessed on 18 May 2022)). In our analysis,
we first focused on ABC proteins, as their expression levels are considered to have a high
impact on the overall SN-38 intracellular concentration and are mainly analyzed in CRC
cells lines to establish the mechanism of acquired irinotecan resistance [27,29], as shown
in Figure 1A. Then, we analyzed the expression levels of enzymes involved in irinotecan
and SN-38 metabolism, as shown in Figure 1B. Since our previous study showed that the
expression of ABC transporters in CRC was correlated to cell phenotype and shifts during
ongoing EMT [18] and considering that many other reports have shown that irinotecan
resistance is often related to advanced EMT, we additionally compared the expression
levels of significant EMT markers, such as E-cadherin (CDH1), N-cadherin (CDH2), and
vimentin (VIM) [30], as shown in Figure 1C.

Our analysis proved the high heterogeneity among all the tested cell lines. All the
tested SN-38-resistant variants of CRC cell lines presented elevated expressions of several
ABC proteins; however, the profiles differed among all the cell lines, as seen in Figure 1A.
The expressions of main SN-38 and irinotecan transporters, i.e., ABCB1, ABCC1, ABCC2,
and ABCG2, were significantly upregulated in most SN-38-resistant variants, except for
HCT116 cells. HTC116 SN-38 manifested ABCC4 upregulation. Our previous study
showed that, in CRC, the elevated expression of ABCC4 was correlated with EMT and
the mesenchymal phenotype [18]. However, HT29-SN-38- and LoVo-SN-38-resistant cells,
which presented an evident mesenchymal phenotype (downregulation of CDH1 accom-
panied by upregulation of vimentin and CDH2), exhibited higher mRNA expressions of
ABCG2. Interestingly, HT29-SN-38-resistant cells showed the upregulation of ABCC5,
which strongly resembled the structure and substrate specificity of ABCC4 [19]. Similar
to our findings, the irinotecan (not SN-38)-resistant CRC cell line S1-IR20 presented an
upregulated level of protein expression for ABCG2, but not ABCB1 or ABCC1, compared
to those of parental S1 cells [21].

Regarding the expression profiles of the main enzymes involved in irinotecan pro-
cessing, we noticed that HT29-SN-38-resistant variants demonstrated increased CES1 and
decreased CES2 expressions. Surprisingly, HCT116-SN-38-resistant variant cells presented
an upregulated mRNA level of CES2 and a downregulated mRNA level of CYP3A5 that me-
tabolized SN-38 into NPC. The mRNA levels of UGT1 enzymes, which inactivate SN-38 into
SN-38G, also presented ambiguous results. UGT1A6 was upregulated in HT29- and LoVo-
SN-38-resistant variants; UGT1A8 was upregulated in HT29 SN-38 but downregulated in
LoVo SN-38 cells.

To summarize changes between different cell lines and their SN-38-resistant variants,
we used the mRNA levels of the above-analyzed genes as an algorithm to perform a
clustering analysis via Orange, an open-source machine learning and data visualization
platform, as shown in Figure 2. Our results indicated that all the SN-38-resistant variants
presented significantly different profiles than their respective parental cell lines; however,
the HT29 cell line and its SN-38-resistant variant differed significantly from the other tested
cell lines and clustered separately. Interestingly, using the changes in levels of the above-
mentioned mRNA as an algorithm, the LoVo cell line was more closely related to HCT116
and HTC116 SN-38 than to the LoVo SN-38 variant; thus, we can assume that acquired
resistance for SN-38 triggered the most significant changes in the mRNA expression profiles
of LoVo.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42387
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42387
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Figure 1. The expression levels of irinotecan-resistance-related proteins in CRC cell lines. Data
were obtained from the GEO database of GSE42387 (using GPL16297 Agilent-014850 Whole Human
Genome Microarray 4x44K G4112F platform). Changes in mRNA expressions (Y-axis) of (A) ABC
proteins, (B) irinotecan-metabolism-related enzymes, and (C) EMT markers were measured in every
cell line variant (HT29, LoVo, and HTC116 and their irinotecan (SN-38)-resistant variants HT29
SN-38, LoVo SN-38, and HTC116 SN-38) in triplicate. Normality test (Shapiro–Wilk’s) followed by
Mann–Whitney U test (for not normally distributed data) or T-test (for normally distributed data);
* p < 0.05, ** p < 0.005, and *** p < 0.001.
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Figure 2. Hierarchical clustering analysis of CRC cell lines using mRNA expression profiles of
irinotecan-resistance-related proteins. The expression values between SN-38-resistant variants and
corresponding parental cell lines are grayscale; black represents low and white represents high
expression values (6.1–17.23). A bidirectional hierarchical clustering heat map was visualized using
the Orange data visualization platform.

Next, we analyzed samples from 21 patients with advanced colorectal tumors
(GSE62080; https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62080 (accessed
on 18 May 2022)) that, at the end of a first-line treatment FOLFIRI scheme were attributed to
responders (sensitive (S)) and nonresponders (resistant (R)) groups according to the WHO
criteria [27]. The expression profiles of genes related to chemotherapy resistance observed
in CRC tissue samples differed substantially from those obtained from the resistant cell
line analysis. In the patient samples, no statistically significant changes were observed in
the mRNA expression levels of either ABC transporters or irinotecan-processing enzymes
between the sensitive and resistant patient groups. Surprisingly, the mRNA levels of
vimentin (EMT marker) and TWIST-1 (EMT-related transcription factor) were significantly
downregulated in the resistant patient group (Supplementary Files). To better characterize
the patient cohort, we analyzed the expression of leucine-rich repeat-containing G-protein-
coupled receptor 5 (LGR5) [31]. The Bayesian Mann–Whitney U test BF10 suggested
“anecdotal evidence” of mRNA upregulation in resistant groups (data not shown). LGR5
potentiates canonical Wnt/β-catenin signaling and is considered a marker of advanced
CRC state and a highly unfavorable prognostic marker [31].

Next, we analyzed the top 250 differently expressed genes (DEGs) between the resis-
tant and sensitive patient groups using a protein–protein interaction (PPI) network with
STRING version 11.0 (https://string-db.org/ (accessed on 18 May 2022)), as shown in
Figure 3. The PPI network was enhanced by known proteins that filled the gaps in proper
networking, as described in [28]. The upgraded networking contained: for upregulated
genes, number of nodes: 198; number of edges: 2141; average node degree: 1.6; average
local clustering coefficient: 0.64; expected number of edges: 488; and PPI enrichment
p-value: <1.0e-16; and for downregulated genes, number of nodes: 203; number of edges:
2989; average node degree: 29.4; avg. local clustering coefficient: 0.656; expected number of
edges: and 756; PPI enrichment p-value: <1.0e-16. First, we performed a KEGG pathway
analysis using the KEGG PATHWAY database (https://www.kegg.jp/kegg/pathway.html
(accessed on 18 May 2022)), STRING version 11.0, and the DAVID online tool. This analysis
indicated several signaling pathways that reached a false discovery rate (FDR) < 0.05 and a
p < 0.05, as shown in Table 1. The top five up- and downregulated DEGs with the highest
networking scores are shown in Table 2, and their respective KEGG pathways are pre-

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62080
https://string-db.org/
https://www.kegg.jp/kegg/pathway.html
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sented in Table 3. Even though the top five DEGs presented the highest networking scores,
DCAF4, QKI, and TGOLN2 showed no KEGG involvement. On the other hand, NDUAF2,
SDHD, and PTGS2 were involved in many pathways. Interestingly, COX10, one of the
highest networking proteins, held the number one spot among all the upregulated DEGs in
the resistant patient group compared to the sensitive group. Finally, we investigated the
influences of the top five DEGs on CRC patient survival using the Human Protein Atlas
database (https://www.proteinatlas.org/ (accessed on 18 May 2022)) [32]. We compared
the 5-year survival times of colon adenocarcinoma patients and rectum adenocarcinoma
patients, as displayed in Table 4. We noticed that the 5-year survival time substantially
depended on cancer location. Importantly, LSM5 and DACF4 upregulation in resistant pa-
tient samples seem to be unfavorable factors in colon adenocarcinoma patients, leading to a
higher mortality rate. Surprisingly, NDUFA2, SDHD, and COX10, which were upregulated
in resistant patients, positively influenced the patient survival rate. On the other hand, in
rectum adenocarcinoma, the upregulation of NDUFA2 was a highly unfavorable factor,
presenting a 19% 5-year survival rate in comparison to 67% for the NDUFA2 low-expression
cohort. Furthermore, in the case of the top five downregulated DEGs in resistant CRC
patients, a low expression level of PTGS2 was considered an unfavorable factor for both
colon and rectum adenocarcinoma. In contrast, for only rectum adenocarcinoma, QKI and
RBM8A were recognized as such.

Table 1. KEEG pathway analysis of PPI network. Visualization of top dysregulated pathways by
up- and downregulated DEGs in resistant patients samples from GSE62080 database using KEGG
PATHWAY database (https://www.kegg.jp/kegg/pathway.html (accessed on 18 May 2022)).

Gene Name Count in Network FDR

Upregulated Genes
Oxidative phosphorylation 48 of 131 7.97 × 10−54

RNA degradation 23 of 77 3.48 × 10−24

Retrograde endocannabinoid signaling 42 of 148 1.54 × 10−43

Spliceosome 34 of 130 3.52 × 10−34

Thermogenesis 50 of 228 3.39 × 10−47

Citrate cycle (TCA cycle) 4 of 30 0.0028
Metabolic pathways 52 of 1250 2.16 × 10−17

Downregulated genes
Spliceosome 60 of 130 4.04 × 10−72

mRNA surveillance pathway 21 of 89 4.61 × 10−19

SNARE interactions in vesicular transport 4 of 33 0.0044
RNA transport 19 of 159 1.75 × 10−12

RNA degradation 8 of 77 4.26 × 10−5

Adipocytokine signaling pathway 7 of 69 0.00018
FoxO signaling pathway 12 of 130 9.57 × 10−7

AMPK signaling pathway 10 of 120 1.89 × 10−5

Glucagon signaling pathway 7 of 100 0.0012
Oxytocin signaling pathway 10 of 149 8.76 × 10−5

Insulin signaling pathway 9 of 134 0.00021
Apelin signaling pathway 9 of 133 0.00021

Tight junction 11 of 167 4.24 × 10−5

Endocrine resistance 5 of 95 0.0221
Signaling pathways regulating pluripotency of stem cells 7 of 138 0.0059

microRNAs in cancer 7 of 149 0.0080
mTOR signaling pathway 7 of 148 0.0080
Proteoglycans in cancer 9 of 195 0.0024
Rap1 signaling pathway 9 of 203 0.0030

Leukocyte transendothelial migration 5 of 112 0.0401
Focal adhesion 8 of 197 0.0085
Thermogenesis 9 of 228 0.0059

Herpes simplex infection 7 of 181 0.0206
PI3K-Akt signaling pathway 10 of 348 0.0231

https://www.proteinatlas.org/
https://www.kegg.jp/kegg/pathway.html
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Table 2. Top DEGs that had interactions in the protein–protein interaction (PPI) network (GSE62080
database).

Gene Name Gene Betweenness
Centrality Degree

NADH Ubiquinone Oxidoreductase Subunit A2 NDUFA2 0.009082 48

Succinate Dehydrogenase Complex Subunit D SDHD 0.013266 41

LSM5 Homolog, U6 Small Nuclear RNA, and
MRNA-Degradation-Associated LSM5 7.02 × 10−4 36

DDB1 and CUL4-Associated Factor 4 DCAF4 0 25

Cytochrome C Oxidase Assembly Factor Heme
A: Farnesyltransferase COX10 4.08 × 10−5 24

RNA-Binding Motif Protein 8A RBM8A 0.007638 75

TIMP Metallopeptidase Inhibitor 1 TIMP1 0.031803 20

KH Domain-Containing RNA-Binding QKI 0.035524 17

Trans-Golgi Network Protein 2 TGOLN2 0.062555 16

Prostaglandin-Endoperoxide Synthase 2 PTGS2 0.018124 14

Table 3. Involvement of the top networking DEGs in significant KEGG pathways. Gene enrichment
analysis of the DEGs involved in resistance of CRC patients treated with FOLFIRI (GSE62080 database)
and their involvements in significant KEGG pathways using KEGG PATHWAY database (https:
//www.kegg.jp/kegg/pathway.html (accessed on 18 May 2022)).

N
D

U
FA

2

SD
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LS
M

5
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C
O

X
10

R
B

M
8A

T
IM

P1

Q
K

I

T
G

O
LN

2

PT
G

S2

Arachidonic acid metabolism x

Biosynthesis of cofactors x

Biosynthesis of secondary metabolites x x

Butanoate metabolism x

Carbon metabolism x

Chemical carcinogenesis x

Citrate cycle (TCA cycle) x

C-type lectin receptor signaling pathway x

HIF-1 signaling pathway x

Human cytomegalovirus infection x

Human papillomavirus infection x

IL-17 signaling pathway x

Metabolic pathways x x x x

Microbial metabolism in diverse
environments x

mRNA surveillance pathway x

NF-kappa B signaling pathway x

Oxidative phosphorylation x x x

Oxytocin signaling pathway x

Pathways in cancer x

Regulation of lipolysis in adipocytes x

https://www.kegg.jp/kegg/pathway.html
https://www.kegg.jp/kegg/pathway.html
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Table 3. Cont.
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O
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Retrograde endocannabinoid signaling x x

RNA degradation x

RNA transport x

Spliceosome x x

Thermogenesis x x x

TNF signaling pathway x

VEGF signaling pathway x

Table 4. The prognostic relationships between high and low expressions of specific genes involved
in drug resistance to the overall survival of colon and rectum adenocarcinoma patients. Five-year
survival factor obtained from the Human Protein Atlas (https://www.proteinatlas.org (accessed on
18 May 2022)) [32].

Colon Adenocarcinoma Rectum Adenocarcinoma

5-Year Survival

Gene High Low High Low

NDUFA2 72% 58% 19% 67%

SDHD 71% 52% 65% 19%

LSM5 43% 69% 50% 41%

DCAF4 61% 71% 61% 45%

COX10 71% 57% 66% 25%

RBM8A 57% 71% 60% 23%

TIMP1 53% 69% 34% 89%

QKI 64% 63% 57% 0%

TGOLN2 64% 63% 62% 47%

PTGS2 69% 59% 59% 20%

To better characterize the CRC cell lines and their respective SN-38-resistant variants,
we analyzed changes in the mRNA expressions of the top up- and downregulated DEGs
and the best networking proteins identified in patients’ samples. The data presented in
Figure 4A,B clearly show that the data from the CRC cell line analysis partially overlapped
with the data obtained from the CRC patient sample analysis. SN-38-resistance-related
changes in the mRNA profiles of LoVo lines presented a significant resemblance to the
changes in the mRNA levels of NDUAF2, DCAF4, and PTGS2. Interestingly, NDUAF2 and
PTGS2 were two of the three most influential tested proteins involved in several important
pathways (Table 3). HCT116 and its SN-38-resistant variant, in comparison to the patient
samples, presented similar (statistically significant) changes in the mRNA expressions
of multifunctional PTGS2 and LSM5, which are involved in RNA degradation and the
spliceosome mechanism. The cell lines also presented a similar tendency to that observed
in CRC patient samples (yet not statistically significant change) in the mRNA expression
profile of RBM8A, which is also involved in spliceosome and RNA transport. The same
expression tendency was observed in the case of NDUFA2, but the mRNA expression
profile of SDHD demonstrated an inverse expression profile. In HT29, similar to the
patient samples, the mRNA expressions of TIPM1 and TGOLN2 were downregulated
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in the SN-38-resistant variant. The expression of NDUFA2 was also downregulated in
the SN-38-resistant variant; however, its expression was upregulated in resistant patients.
Surprisingly, COX10, the number one among upregulated DEGs and one of the highest
networking proteins, was not upregulated in any SN-38-resistant variants.

Figure 3. Protein–protein interaction (PPI) network of differentially expressed genes (DEGs). The
PPI network was created from 250 differently expressed genes obtained from the GSE62080 database
using STRING version 11.0 online software. The PPI pairs were imported into Cytoscape software
described in the Materials and Methods section. The lines represent the interaction relationships
between nodes.
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Figure 4. The mRNA expression levels in CRC cell lines of the 5 top networking up- (A) and down-
(B) regulated DEGs from FOLFIRI-resistant patient cohort. Data were obtained using the GOE
database: GSE42387 (GPL16297 Agilent-014850 Whole Human Genome Microarray 4x44K G4112F
platform). Normality test (Shapiro–Wilk’s) followed by Mann–Whitney U test (for not normally
distributed data) or T-test (for normally distributed data); * p > 0.05, ** p> 0.005, *** and p > 0.001.

Next, we performed a clustering analysis using the mRNA expression profiles of
the top DEGs, as shown in Figure 5. The results indicated that HT29 and HTC116, with
their respective SN-38-resistant variants, differed enough to establish their phylogenetic
groups but were closely located in two respective arms. Interestingly, LoVo and LoVo SN-38
cell lines presented the highest diversity inside the resistant–parental groups and among
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all the tested cell lines, located separately on different arms of a phylogenetic tree. The
expression patterns of DCAF4, COX10, and TGOLN2 (Figures 4 and 5) presented minor
differences inside each cell line pair, i.e., parental and irinotecan-resistant variants; however,
they substantially differed between cell line sets. This observation could be utilized as
an identification tool to separate CRC cell lines. Furthermore, it could provide a deep
molecular differentiation pattern for patient-derived samples and potentially generate a
new CRC classification type [33].

Figure 5. Hierarchical clustering analysis of CRC cell lines using mRNA expressions of top network-
ing DEGs from FOLFIRI-resistant patient cohort. The expression values between corresponding
irinotecan-resistant and parental CRC cell lines are presented in grayscale; black represents low and
white represents high expression values (6.29–15.02). A bidirectional hierarchical clustering heat map
was visualized using the Orange data visualization platform.

To analyze the mutual changes between different DEGs, we correlated the mRNA
expression profiles of DEGs and the highest networking proteins. A Pearson correlation
matrix was performed, as shown in Figure 6. This analysis showed that, in LoVo (pooled
parental and the respective SN-38-resistant variant), similar to the patient samples, most of
the top five upregulated DEGs (NDUFA2, SDHD, LSM5, and DCAF4) presented positive
correlations (yet not statistically significant in all cases). COX10 was positively correlated
only with NDUFA2 and DCAF4. Similar to the patient samples, a negative correlation was
observed among RBM8A, TGOLN2, and PTGS2. In the cases of HT29 and HTC116, the cell
line data were ambiguous, as NDUFA2, SDHD, LSM5, DCAF4, COX10, RBM8A, TIMP1,
QKI, TGOLN2, and PTGS2 presented mixed correlations with one another.
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Figure 6. Pearson correlation matrix of FOLFIRI-resistance-related top networking DEGs. mRNA
expression data of parental and corresponding resistant variants of CRC cell lines (GSE42387) (A) HT-
29, (B) HTC116, and (C) LoVo were pooled to create a Pearson correlation matrix using JASP 0.14.1.0
software; * p < 0.05, ** p < 0.005, and *** p < 0.001.
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EMT was proved to play a role in acquiring chemoresistance to several anticancer
drugs [34]. Observation of the LoVo cell-line shift toward the mesenchymal phenotype
upon the acquisition of SN-38 resistance encouraged us to analyze EMT phenotypes in
FOLFIRI-sensitive and -resistant patient cohorts (GSE62080, n = 21). First, using the mRNA
levels of four primary EMT markers (E-cadherin (CDH1), N-cadherin (CDH2), vimentin
(VIM), and fibronectin (FN)), we divided the patient samples into three groups: strongly
epithelial (E), partially mesenchymal (E/M), and mesenchymal (M). However, all the
subgroups presented elevated expression levels of CHD1, suggesting an epithelial, well-
differentiated phenotype. This observation can be explained by the fact that the GSE62080
dataset comprised cancer samples diagnosed at early stages with no metastatic occurrences.
Thus, we assigned the patient samples to the E or E/M groups. (Figure 7A). Interestingly,
the sample distribution proved that FLOFIRI-resistant E/M samples presented the upregu-
lation of FN and CDH2 rather than VIM (Figure 7A). Nevertheless, in the resistant cohort
(n = 12), seven samples were qualified in the E/M group and five in the E group. In contrast,
in the sensitive cohort (n = 9), three samples were attributed to the E/M group and six to
the E group (Figure 7B). These results showed a tendency of the resistant cohort to acquire a
more mesenchymal phenotype. Furthermore, this heterogeneous composition of the E and
E/M groups, consisting of both resistant and sensitive patient samples in each phenotypical
group, partially explained why no statistically significant upregulation of the EMT markers
between the resistant and sensitive cohorts was observed in the GSE62080 dataset.

Figure 7. EMT phenotypes of FOLFIRI-resistant and -sensitive patients. Patient samples (n = 21) from
GSE62080 were attributed to two groups, strongly epithelial (E) and partially mesenchymal (E/M),
based on the mRNA levels of four primary EMT markers, E-cadherin (CDH1), N-cadherin (CDH2),
vimentin (VIM), and fibronectin (FN), using Orange software (A). Sample distribution among E and
E/M groups (B).

Since the GSE62080 dataset included a low number of patient samples, we decided
to apply the GSE18105 dataset to analyze the mRNA expression levels of the previously
selected top networking DEGs (upregulated: NDUFA2, SDHD, LSM5, DCAF4, and COX10;
downregulated: RBM8A, TIMP1, QKI, TGOLN2, and PTGS2) in CRC patient samples.
The GSE18105 (https://www.ncbi.nlm.nih.gov/geo/geo2r/?acc=GSE18105 (accessed on
18 May 2022)) database was composed of mRNA profiles (n = 111) obtained using oligonu-
cleotide microarrays of normal tissue and CRC patient primary tumors in different stages.
Similar to the previous analysis, the samples were divided into E, E/M, and M groups
using the mRNA levels of four primary EMT markers: E-cadherin, N-cadherin, vimentin,
and fibronectin. Only six out of the ten tested proteins, i.e., NDUFA2, SDHD, LSM5, COX10,
QKI, and TGOLN2, presented statistically significant changes in the mRNA expressions
among the E, E/M, and M patient groups (Figure 8A). We observed that in the M and
E/M groups, similar to the resistant patient group, NDUFA2, SDHD, LSM5, and COX10
were upregulated, whereas TGOLN2 was downregulated; additionally, the mRNA levels
of QKI were upregulated in the E/M and M phenotype groups, unlike that observed in the
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resistant patient group. The upregulation of NDUFA2, SDHD, and COX10 in the M and
E/M groups was interesting since those DEGs are involved in oxidative phosphorylation
(OXPHOS). Several experiments proved that human CRC exhibited higher rates of oxida-
tive phosphorylation than large intestine normal cells [35]. Finally, in the current study,
we confirmed our previous observation that ABCC4 was upregulated under EMT [18], as
well as in cells presenting the mesenchymal phenotype (M and E/M groups). In contrast,
the expressions of ABCG2 were slightly (yet statistically significant) downregulated in
the M and E/M groups (Figure 8B). We also showed that ABCC1 correlated with the
mesenchymal phenotype, but ABCC5, upregulated in HT29 SN-38-resistant variants, was
downregulated in both the E/M and M patient groups. Finally, to prove that our E, E/M,
and M groups were composed correctly, we also tested the mRNA levels of LGR5 [31],
which were significantly upregulated in both the E/M and M groups compared to E.

1 
 

 

 

Figure 8. The mRNA expression level of FOLFIRI resistant DEGs (A)and major ABC 

proteins (B) in various EMT states in patient samples.  

Figure 8. The mRNA expression levels of FOLFIRI-resistant DEGs (A) and major ABC proteins (B) in
various EMT states in patient samples. Patient samples (n = 111) from GSE18105 were divided into



Biomedicines 2022, 10, 1720 16 of 21

three groups, strongly epithelial (E), partially mesenchymal (E/M), and mesenchymal (M), based
on mRNA levels of 4 main EMT markers, E-cadherin (CDH1), N-cadherin (CDH2), vimentin, and
fibronectin, using Orange software. Next, mRNA expressions of irinotecan-resistant-related DEGs
(A) and ABC proteins (B) were visualized for each patient in their respective groups using JASP
0.14.1.0 software. Normality test (Shapiro–Wilk’s) followed by Mann–Whitney U test (for not normally
distributed data) or T-test (for normally distributed data); * p < 0.05, *** p < 0.001.

4. Discussion

Approximately 50–60% of patients diagnosed with CRC eventually develop metastatic
disease. Most often, metastases develop after first-line therapy treatments for local disease;
thus, drug resistance is still the central problem in CRC treatment [36,37]. Gene profiling,
among other methods, has been used to identify genes involved in the progression and
the prognosis of CRC or to establish a current CRC classification based on four molecular
subtypes (CMS1-CMS4) [38,39]. Previously, we identified NMU as a predictive marker
of CRC invasiveness [40]. In the current study, to bridge the gap between in vitro and
in vivo studies, we combined and compared the expression profiles of cell lines and patient
samples from a publicly available database to select new candidate genes for irinotecan
resistance. Many attempts have been made to identify predictive chemotherapy biomarkers
of treatment response and resistance in CRC. However, most of these biomarkers, except
for the KRAS and BRAF genes, are not accurately predicting treatment response. As such,
additional studies are urgently needed to identify and validate novel biomarkers to improve
therapy for CRC patients [39].

CRC cell lines have previously been shown to recapitulate primary tumors’ mutational
and transcriptional heterogeneity [41,42]. Various CRC cell lines resistant to SN-38 have
also been generated to understand the irinotecan resistance mechanism. Drug-resistance-
associated molecules have been identified by analyzing parental irinotecan-sensitive cells
and irinotecan-resistant cells with molecular biology and cellular methods [43]. Our
study examined the expression profiles of three cell lines, HT29, HCT116, and LoVo, and
their SN-38-resistant variants. We used these three cell lines since they present various
genetic, epigenetic, and molecular subtypes, and to some extent, they may reflect the
molecular heterogeneity of CRC [41]. Since it has been demonstrated that the assessment
of multiple biomarkers provides a more accurate prediction of drug response than a single
biomarker, in our study, we analyzed the main enzymes involved in irinotecan transport
and processing and, additionally, the main EMT players, as the mesenchymal phenotype
is associated with irinotecan resistance [18,39]. First, we concluded that SN-38 treatment
changed the expression profiles of all the tested cell lines, irrespective of their molecular
backgrounds and origins. The expressions of primary SN38 and irinotecan transporters,
i.e., ABCB1, ABCC1, and ABCC2, were significantly upregulated in most SN-38-resistant
variants, and the expression profiles of ABC transporters were specific to each cell line. This
observation aligns with many other reports on in vitro studies concerning ABC transporter
function in cancer [21]. We also observed various changes in the expression profiles of
the primary EMT markers in each tested cell line. EMT is the best-known cause of tumor
cell plasticity, which appears to influence sensitivity to various chemotherapeutic drugs,
and EMT is an essential regulator of ABC transporters [44]. According to our previous
data, the phenotype conversion induced by the Snail transcription factor decreased ABCG2
and increased the ABCC4 expression level in HT29 cells [40]. In the current study, we
observed that the LoVo-SN-38-resistant variant, which exhibited an evident mesenchymal
phenotype, showed the upregulation of ABCG2 expression. A possible explanation for this
inconsistency could be that LoVo and HT29 present different genetic profiles and belong to
various CRC molecular subtypes—LoVo to CMS1 and HT29 to CMS3—or that LoVo-SN-38-
resistant variants acquire mesenchymal features through SN-38 treatment. Our analysis of
the primary enzyme responsible for irinotecan activation and deactivation indicated the
different expression profiles among the tested lines. The changes in their expressions are
relevant in the case of irinotecan administration; however, in the case of the analysis of
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CRC cell lines, their expression profiles are less attractive since the majority of their activity
related to irinotecan in the body is located in the liver [8]. In our tested CRC cell lines,
they could process the inactive irinotecan metabolite NPC into active SN-38. A further
clustering analysis confirmed that all the SN-38-resistant variants presented significantly
different expression profiles than their respective parental cell lines.

To verify our above observation, we analyzed the expression profiles of patients with
advanced colon cancer who were sensitive or resistant to the first-line treatment of FOLFIRI.
The combination of irinotecan with fluorouracil and calcium folinate significantly increased
response rates, time to progression, and survival, presenting response rates up to 40–50%,
while 5-FU alone showed only a 10–15% response rate. Interestingly, no differences in
response rates were noted for tumors treated with 5-FU alone compared to 5-FU plus
leucovorin [45,46]. Thus, we could assume that irinotecan is a major therapeutic factor
in the FOLFIRI regimen., In the patient samples, no statistically significant changes were
observed in the mRNA expression levels of either ABC transporters or irinotecan-processing
enzymes between the sensitive and resistant patient groups. We confirmed the upregulation
of LGR5, a marker of advanced CRC, in the resistant patient group concomitantly; the
expression profiles of EMT players from this group demonstrated the epithelial phenotype.
The epithelial phenotype may be related to 5-FU resistance [47], as patients were treated
with 5-FU within the FOLFIRI regimen.

We analyzed the top 250 differently expressed genes (DEGs) between the resistant and
sensitive patient groups using a protein–protein interaction (PPI) network to identify new
candidate genes for irinotecan resistance. Then, we selected the five upregulated (NDUFA2,
SDHD, LSM5, DCAF4, and COX10) and downregulated (RBM8A, TIMP1, QKI, TGOLN2,
and PTGS2) DEGs with the highest networking scores. These genes have not been reported
as irinotecan-resistance-associated to date; thus, we checked their utility as prognostic
markers. Using the KEGG database, we showed the involvement of the selected DEGs
in significant cellular pathways. Oxidative phosphorylation was the most-upregulated
pathway, while the processes related to RNA processing (RNA spliceosome, surveillance,
transport, and degradation) were the most-downregulated. These findings are consistent
with the previous observation that cells, to survive under chemotherapy treatment, reduce
transcription rates and increase energy demands. Several experiments proved that human
CRC cells exhibited even higher rates of oxidative phosphorylation than large intestine
normal cells [48]. The elevated production of ATP may be connected to the increase in
drug efflux operated by ABC transporters or the increased migration of advanced CRC
cells. Irinotecan-resistant non-small cell lung cancer (NSCLC) cells are characterized by
increased oxidative phosphorylation, and treatment with gossypol (pan-ALDH inhibitor)
and phenformin (OXPHOS inhibitor) reversed irinotecan resistance in a tested xenograft
model of human NSCLC [35]. A CRC patient 5-year survival analysis showed that the
prognostic values of the selected DEGs depended on cancer location, i.e., colon vs. rectum,
and they could be favorable or unfavorable factors. These results are difficult to discuss;
however, they align with current knowledge that, in the case of CRC, actual tumor location
is one of the most important prognostic factors [39].

To integrate the obtained data and to facilitate the selection of cell lines as appropriate
research models, we reversed the standard data flow axis from “cell lines to patients” to
“patient-derived data to cell lines”. Although in vivo irinotecan resistance mechanisms are
more complicated than in vitro mechanisms, investigating such mechanisms in vitro can
provide strategies to overcome drug resistance in CRC [21]. The top five networking up-
and downregulated DEGs (NDUFA2, SDHD, LSM5, DCAF4, COX10, RBM8A, TIMP1, QKI,
TGOLN2, and PTGS2) were differently expressed in the majority of the irinotecan-resistant
variants of the CRC cell lines and often presented a reversed tendency from that observed
in vivo. However, this gene set could be utilized to analyze cell line heterogeneity and, as
such, the utility of a specific in vitro model. Interestingly, the expression patterns of DCAF4,
COX10, and TGOLN2 presented the best tool set to identify and separate cell lines with
their respective irinotecan-resistant variants from other pairs of parental–resistant CRC cells
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lines that were delivered from different cancer locations or stages. This tool could enhance
CRC taxonomy and support clinical decisions on therapy selection [33,49]. The obtained
data confirmed that in vivo irinotecan resistance mechanisms were more complicated than
in vitro mechanisms and suggested that, not one but many, different mechanisms, signaling
pathways, and other factors such as other drugs or tumor microenvironment may act
simultaneously or complementarily in the development of irinotecan resistance in CRC.
We can assume that our results may need to be verified by a specific irinotecan treatment
patient cohort. However, in the case of CRC, irinotecan is commonly applied to patients
in the FOLFIRI scheme. Our current analysis may also imply why plenty of promising
in vitro studies have failed in clinical implementation and why the mechanisms leading
to irinotecan resistance are still poorly characterized. However, cell lines still represent
a mainstay in functionalizing molecular data, as they allow experimental manipulation,
global and detailed mechanistic studies, and high-throughput applications.

Our study showed that by integrating expression profile data, each CRC cell line can
be a resource to select relevant models for studies of irinotecan resistance mechanisms.

5. Conclusions

After more than two decades of clinical usage, irinotecan represents the backbone of
CRC chemotherapy. Although irinotecan resistance mechanisms in vivo are more compli-
cated than those in vitro, investigating the latter is less complex and more cost-effective.
Thus, it can provide an easier way to elaborate strategies to overcome overall drug re-
sistance in CRC. Our analysis provided several potential irinotecan resistance markers
previously not described: NDUFA2, SDHD, LSM5, DCAF4, COX10, RBM8A, TIMP1, QKI,
TGOLN2, and PTGS2. The selected genes and their corresponding mRNA and protein
levels could be used clinically to determine the possible outcome of chemotherapy or
could be utilized as potential therapeutical targets to overcome irinotecan resistance. We
also confirmed that data from publicly available databases, such as GEO or the Human
Protein Atlas, are powerful tools to enhance and support in vitro studies. Thus, in a cell
line-based study, more than one cell line should be employed, and the obtained data should
be compared with patient-derived data.
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Abbreviations

5-FU 5 fluorouracil
ABC ATP-binding cassette
ABCB1 ATP-binding cassette subfamily B member 1
ABCC1 ATP-binding cassette subfamily C member 1
ABCC2 ATP-binding cassette subfamily C member 2
ABCC4 ATP-binding cassette subfamily C member 4

https://www.mdpi.com/article/10.3390/biomedicines10071720/s1
https://www.mdpi.com/article/10.3390/biomedicines10071720/s1


Biomedicines 2022, 10, 1720 19 of 21

ABCC5 ATP-binding cassette subfamily C member 5
ABCG2 ATP-binding cassette subfamily G member 2
ALDH aldehyde dehydrogenase
APC aminopentane carboxylic acid (7-ethyl-10[4-N-(5-aminopentanoicacid)-1-piperidino]

carbonyloxycamptothecin)
CES1 carboxylesterase 1
CES2 carboxylesterase 2
CMS consensus molecular subgroup
COX10 cytochrome C Oxidase Assembly Homolog 10
CPT-11 camptothecin-11
CYP3A4 cytochrome P450 family 3 subfamily A member 4
CYP3A5 cytochrome P450 family 3 subfamily A member 5
DAVID Database for Annotation, Visualization, and Integrated Discovery
DCAF4 DDB1 and CUL4-associated factor 4
DEGs differently expressed genes
FDR false discovery rate
FN fibronectin
FOLFIRI chemotherapy combination scheme: folinic acid (leucovorin), fluorouracil,

and irinotecan
FOLFOX chemotherapy combination scheme: folinic acid (leucovorin), fluorouracil,

and oxaliplatin
GEO Gene Expression Omnibus
hBChE butyrylcholinesterase
HIF-1 hypoxia-inducible factor 1
IL-17 interleukin 17
KEGG Kyoto Encyclopedia of Genes and Genomes
LCM laser capture microdissection
LGR5 leucine-rich repeat-containing G-protein-coupled receptor 5
LSM5 U6 small nuclear RNA and mRNA-degradation-associated protein 5
MDR multidrug resistance
NPC (7-ethyl-10[4-amino-1-piperidino]carbonyloxycamptothecin)
NSCLC non-small cell lung cancer
OATP organic-anion-transporting polypeptides
OXPHOS oxidative phosphorylation
RNA ribonucleic acid
SN-38 7-ethyl-10-hydroxycamptothecin
TWIST-1 Twist family BHLH transcription factor 1
UGT1A1 UDP glucuronosyltransferase family 1 member A1
UGT1A10 UDP glucuronosyltransferase family 1 member A10
UGT1A7 UDP glucuronosyltransferase family 1 member A7
UGT1A9 UDP glucuronosyltransferase family 1 member A9
VEGF vascular endothelial growth factor
VIM vimentin
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18. Kryczka, J.; Sochacka, E.; Papiewska-Pająk, I.; Boncela, J. Implications of ABCC4–Mediated cAMP Eflux for CRC Migration.
Cancers 2020, 12, 3547. [CrossRef]

19. Ween, M.P.; Armstrong, M.A.; Oehler, M.K.; Ricciardelli, C. The role of ABC transporters in ovarian cancer progression and
chemoresistance. Crit. Rev. Oncol. Hematol. 2015, 96, 220–256. [CrossRef]

20. Petitprez, A.; Poindessous, V.; Ouaret, D.; Regairaz, M.; Bastian, G.; Guérin, E.; Escargueil, A.E.; Larsen, A.K. Acquired irinotecan
resistance is accompanied by stable modifications of cell cycle dynamics independent of MSI status. Int. J. Oncol. 2013, 42,
1644–1653. [CrossRef]

21. Wu, Z.-X.; Yang, Y.; Zeng, L.; Patel, H.; Bo, L.; Lin, L.; Chen, Z.-S. Establishment and Characterization of an Irinotecan-Resistant
Human Colon Cancer Cell Line. Front. Oncol. 2020, 10, 624954. [CrossRef]

22. Kaur, G.; Dufour, J.M. Cell lines. Spermatogenesis 2012, 2, 1–5. [CrossRef] [PubMed]
23. Kanta, P.; Ghosh, T.; Kaur, A.; Muthukumarappa, T. An innovative and cost-effective way to estimate alkaline phosphatase

activity in in vitro cellular model systems. Int. J. Biochem. Mol. Biol. 2021, 12, 1–7. [PubMed]
24. Pastor, D.M.; Poritz, L.S.; Olson, T.L.; Kline, C.L.; Harris, L.R.; Koltun, W.A.; Chinchilli, V.M.; Irby, R.B. Primary cell lines: False

representation or model system? a comparison of four human colorectal tumors and their coordinately established cell lines. Int.
J. Clin. Exp. Med. 2010, 3, 69–83. [PubMed]

25. Bremnes, R.M.; Dønnem, T.; Al-Saad, S.; Al-Shibli, K.; Andersen, S.; Sirera, R.; Camps, C.; Marinez, I.; Busund, L.-T. The Role of
Tumor Stroma in Cancer Progression and Prognosis: Emphasis on Carcinoma-Associated Fibroblasts and Non-small Cell Lung
Cancer. J. Thorac. Oncol. 2011, 6, 209–217. [CrossRef]

26. Jensen, N.F.; Stenvang, J.; Beck, M.K.; Hanáková, B.; Belling, K.C.; Do, K.N.; Viuff, B.; Nygård, S.B.; Gupta, R.; Rasmussen,
M.H.; et al. Establishment and characterization of models of chemotherapy resistance in colorectal cancer: Towards a predictive
signature of chemoresistance. Mol Oncol. 2015, 9, 1169–1185. [CrossRef]

27. Rio, M.D.; Molina, F.; Bascoul-Mollevi, C.; Copois, V.; Bibeau, F.; Chalbos, P.; Bareil, C.; Kramar, A.; Salvetat, N.; Fraslon, C.; et al.
Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil,
and irinotecan. J. Clin. Oncol. 2007, 25, 773. [CrossRef]

28. Makondi, P.T.; Chu, C.-M.; Wei, P.-L.; Chang, Y.-J. Prediction of novel target genes and pathways involved in irinotecan-resistant
colorectal cancer. PLoS ONE. 2017, 12, e0180616. [CrossRef]

29. Tsukamoto, M.; Yamashita, M.; Nishi, T.; Nakagawa, H. A Human ABC Transporter ABCC4 Gene SNP (rs11568658, 559 G > T,
G187W) Reduces ABCC4-Dependent Drug Resistance. Cells 2019, 8, 39. [CrossRef]

30. Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Kalantari, M.; Mohammadinejad, R.; Javaheri, T.; Sethi, G. Association of the
Epithelial-Mesenchymal Transition (EMT) with Cisplatin Resistance. Int. J. Mol. Sci. 2020, 21, 4002. [CrossRef]

31. Morgan, R.G.; Mortensson, E.; Williams, A.C. Targeting LGR5 in Colorectal Cancer: Therapeutic gold or too plastic? Br. J. Cancer
2018, 118, 1410–1418. [CrossRef] [PubMed]

http://doi.org/10.1007/s40262-018-0644-7
http://doi.org/10.1016/j.phrs.2019.104398
http://doi.org/10.1016/j.dmpk.2017.10.002
http://www.ncbi.nlm.nih.gov/pubmed/29079228
http://doi.org/10.1002/cncr.22492
http://www.ncbi.nlm.nih.gov/pubmed/17285598
http://www.ncbi.nlm.nih.gov/pubmed/10725311
http://doi.org/10.3390/molecules23020331
http://doi.org/10.1124/mol.56.6.1219
http://doi.org/10.1177/0300891618811283
http://doi.org/10.1093/brain/awn222
http://doi.org/10.3390/cancers12123547
http://doi.org/10.1016/j.critrevonc.2015.05.012
http://doi.org/10.3892/ijo.2013.1868
http://doi.org/10.3389/fonc.2020.624954
http://doi.org/10.4161/spmg.19885
http://www.ncbi.nlm.nih.gov/pubmed/22553484
http://www.ncbi.nlm.nih.gov/pubmed/33824775
http://www.ncbi.nlm.nih.gov/pubmed/20369042
http://doi.org/10.1097/JTO.0b013e3181f8a1bd
http://doi.org/10.1016/j.molonc.2015.02.008
http://doi.org/10.1200/JCO.2006.07.4187
http://doi.org/10.1371/journal.pone.0180616
http://doi.org/10.3390/cells8010039
http://doi.org/10.3390/ijms21114002
http://doi.org/10.1038/s41416-018-0118-6
http://www.ncbi.nlm.nih.gov/pubmed/29844449


Biomedicines 2022, 10, 1720 21 of 21

32. Uhlén, M.; Björling, E.; Agaton, C.; Szigyarto, C.A.-K.; Amini, B.; Andersen, E.; Andersson, A.-C.; Angelidou, P.; Asplund, A.;
Asplund, C.; et al. A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol. Cell Proteom.
2005, 4, 1920–1932. [CrossRef] [PubMed]

33. Sebio, A.; Lenz, H.-J. The Molecular Taxonomy of Colorectal Cancer: What’s New? Curr. Colorectal Cancer Rep. 2015, 11, 118–124.
[CrossRef]

34. Santamaría, P.G.; Moreno-Bueno, G.; Cano, A. Contribution of Epithelial Plasticity to Therapy Resistance. J. Clin. Med. 2019, 8,
676. [CrossRef] [PubMed]

35. Chekulayev, V.; Mado, K.; Shevchuk, I.; Koit, A.; Kaldma, A.; Klepinin, A.; Timohhina, N.; Tepp, K.; Kandashvili, M.; Ounpuu,
L.; et al. Metabolic remodeling in human colorectal cancer and surrounding tissues: Alterations in regulation of mitochondrial
respiration and metabolic fluxes. Biochem. Biophys. Rep. 2015, 4, 111–125. [CrossRef]

36. Silva, V.S.e.; Chinen, L.T.D.; Abdallah, E.A.; Damascena, A.; Paludo, J.; Chojniak, R.; Dettino, A.L.A.; Mello, C.A.L.; Alves, V.S.;
Fanelli, M.F. Early detection of poor outcome in patients with metastatic colorectal cancer: Tumor kinetics evaluated by circulating
tumor cells. OncoTargets Ther. 2016, 9, 7503–7513. [CrossRef]

37. Henry, J.T.; Johnson, B. Current and evolving biomarkers for precision oncology in the management of metastatic colorectal
cancer. Chin. Clin. Oncol. 2019, 8, 49. [CrossRef]

38. Guinney, J.; Dienstmann, R.; Wang, X.; de Reyniès, A.; Schlicker, A.; Soneson, C.; Marisa, L.; Roepman, P.; Nyamundanda, G.;
Angelino, P.; et al. The consensus molecular subtypes of colorectal cancer. Nat. Med. 2015, 21, 1350–1356. [CrossRef]

39. Lenz, H.-J.; Ou, F.-S.; Venook, A.P.; Hochster, H.S.; Niedzwiecki, D.; Goldberg, R.M.; Mayer, R.J.; Bertagnolli, M.M.; Blanke, C.D.;
Zemla, T.; et al. Impact of Consensus Molecular Subtype on Survival in Patients with Metastatic Colorectal Cancer: Results from
CALGB/SWOG 80405 (Alliance). J. Clin. Oncol. 2019, 37, 1876–1885. [CrossRef]

40. Przygodzka, P.; Papiewska-Pajak, I.; Bogusz, H.; Kryczka, J.; Sobierajska, K.; Kowalska, M.A.; Boncela, J. Neuromedin U is
upregulated by Snail at early stages of EMT in HT29 colon cancer cells. Biochim. Biophys. Acta 2016, 1860, 2445–2453. [CrossRef]

41. Sadanandam, A.; Lyssiotis, C.A.; Homicsko, K.; Collisson, E.A.; Gibb, W.J.; Wullschleger, S.; Ostos, L.C.G.; Lannon, W.A.;
Grotzinger, C.; del Rio, M.; et al. A colorectal cancer classification system that associates cellular phenotype and responses to
therapy. Nat. Med. 2013, 19, 619–625. [CrossRef] [PubMed]

42. Ahmed, D.; Eide, P.W.; Eilertsen, I.A.; Danielsen, S.A.; Eknæs, M.; Hektoen, M.; Lind, G.E.; Lothe, R.A. Epigenetic and genetic
features of 24 colon cancer cell lines. Oncogenesis 2013, 2, e71. [CrossRef]

43. Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in
multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452–464. [CrossRef] [PubMed]

44. Saxena, M.; Stephens, M.A.; Pathak, H.; Rangarajan, A. Transcription factors that mediate epithelial-mesenchymal transition lead
to multidrug resistance by upregulating ABC transporters. Cell Death Dis. 2011, 2, e179. [CrossRef] [PubMed]

45. Douillard, J.Y.; Cunningham, D.; Roth, A.D.; Navarro, M.; James, R.D.; Karasek, P.; Jandik, P.; Iveson, T.; Carmichael, J.; Alakl, M.;
et al. Irinotecan combined with fluorouracil compared with fluorouracil alone as first-line treatment for metastatic colorectal
cancer: A multicentre randomised trial. Lancet 2000, 355, 1041–1047. [CrossRef]

46. Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3,
330–338. [CrossRef] [PubMed]

47. Dinicola, S.; Pasqualato, A.; Proietti, S.; Masiello, M.G.; Palombo, A.; Coluccia, P.; Canipari, R.; Catizone, A.; Ricci, G.; Harrath,
A.H.; et al. Paradoxical E-cadherin increase in 5FU-resistant colon cancer is unaffected during mesenchymal-epithelial reversion
induced by γ-secretase inhibition. Life Sci. 2016, 145, 174–183. [CrossRef]

48. Jiang, Z.-S.; Sun, Y.-Z.; Wang, S.-M.; Ruan, J.-S. Epithelial-mesenchymal transition: Potential regulator of ABC transporters in
tumor progression. J. Cancer 2017, 8, 2319–2327. [CrossRef]

49. Ritvo, P.; Myers, R.E.; Serenity, M.; Gupta, S.; Inadomi, J.M.; Green, B.B.; Jerant, A.; Tinmouth, J.; Paszat, L.; Pirbaglou, M.; et al.
Taxonomy for colorectal cancer screening promotion: Lessons from recent randomized controlled trials. Prev. Med. 2017, 101,
229–234. [CrossRef]

http://doi.org/10.1074/mcp.M500279-MCP200
http://www.ncbi.nlm.nih.gov/pubmed/16127175
http://doi.org/10.1007/s11888-015-0267-4
http://doi.org/10.3390/jcm8050676
http://www.ncbi.nlm.nih.gov/pubmed/31091749
http://doi.org/10.1016/j.bbrep.2015.08.020
http://doi.org/10.2147/OTT.S115268
http://doi.org/10.21037/cco.2019.08.08
http://doi.org/10.1038/nm.3967
http://doi.org/10.1200/JCO.18.02258
http://doi.org/10.1016/j.bbagen.2016.07.012
http://doi.org/10.1038/nm.3175
http://www.ncbi.nlm.nih.gov/pubmed/23584089
http://doi.org/10.1038/oncsis.2013.35
http://doi.org/10.1038/s41568-018-0005-8
http://www.ncbi.nlm.nih.gov/pubmed/29643473
http://doi.org/10.1038/cddis.2011.61
http://www.ncbi.nlm.nih.gov/pubmed/21734725
http://doi.org/10.1016/S0140-6736(00)02034-1
http://doi.org/10.1038/nrc1074
http://www.ncbi.nlm.nih.gov/pubmed/12724731
http://doi.org/10.1016/j.lfs.2015.12.048
http://doi.org/10.7150/jca.19079
http://doi.org/10.1016/j.ypmed.2016.12.024

	Introduction 
	Materials and Methods 
	Microarray Data Processing and Analysis 
	Hierarchical Clustering Analysis 
	Construction of PPI Network 

	Results 
	Discussion 
	Conclusions 
	References

